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I.; Uzelac Glavinić, I.; Torić, N.;
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Abstract: This paper presents the results of an experimental investigation of glued laminated timber
(glulam) beams made from European hornbeam (Carpinus betulus L.) under constant loading for
three months. Glulam beams were experimentally tested as a part of the last phase of the research
project conducted by Drvene konstrukcije Ltd. and the Faculty of Civil Engineering, Architecture
and Geodesy, Split. Beams were loaded in four-point bending tests with the applied load levels
of 20% and 30% of the maximum force obtained from previously performed short-term tests. The
experiments were carried out under minor environmental changes at the specialized laboratory unit
at the Faculty of Civil Engineering, Architecture, and Geodesy, Split. The objective of this study is to
present the research results of bending creep tests for hardwood species not included in the European
Assessment Document. The experimentally obtained deflection-time curves were fitted with the
power law equation used for the prediction of creep behavior. The results indicate that the power law
fits well with experimental data. A comparison with requirements from Eurocode 5 is given.

Keywords: creep; European hornbeam; glulam; power law; curve fitting

1. Introduction

Nowadays, engineered wood products (EWP) have gained popularity due to their
environmental and mechanical characteristics. However, the exposure of the EWPs to
constant load induces a creep strain, sometimes followed by a structural failure. Therefore,
the serviceability limit state is often a decisive criterion for structural design. Timber
is a time-dependent and viscoelastic material that exhibits elastic behavior under lower
stress levels [1]. The time-dependent behavior is investigated by means of creep as a
slow continuous strain under constant stress. Creep behavior of generally used building
materials can be described in three stages, with the initial deflection depending on the
magnitude of loading. The initial deflection is usually considered instantaneous, combining
elastic and delayed elastic deformation. The curve shown in Figure 1 represents creep
strain in the time domain. The first stage includes a continuous strain increase at a slowing
rate (primary creep); the second assumes a linear creep curve at an almost constant rate
which at low temperatures and low load levels may stabilize; and the third stage, which is
far less investigated, includes increasing rate and fracture.

Since timber is a natural and anisotropic material, general conclusions connected with
creep behavior are difficult to summarize. Many parameters influence creep behavior
changing the slope of the deflection curve, including moisture content (MC), temperature,
relative humidity, load type, size of the beam, knots, and grain deviation. The influence of
these parameters can be determined experimentally. Numerous studies [2–10] concluded
that the variation of relative humidity affects the MC of timber and increases creep, known
as a mechano-sorptive creep, in comparison to conditions of constant relative humidity. For
a given ambient temperature and relative humidity, wood adjusts a MC in equilibrium with
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the environment. Higher MC increases creep while the lower MC level may be neglected
in calculating wood creep for constant temperature and relative humidity [11]. However,
experimental investigations have shown that large-scale wood members used for indoor
purposes exhibit minimal moisture fluctuations, which implies a minor mechano-sorptive
creep effect [12]. Variable temperatures result in a complex creep behavior followed by
decreasing elastic modulus, with constant temperatures below 50 ◦C having a negligible
influence on creep [13,14]. During bending creep tests, it was shown that in the temperature
interval from 20 ◦C to 50 ◦C, the creep rate slightly increased. However, the creep rate
increases more pronouncedly above 50 ◦C [15]. Furthermore, a different creep rate level
was obtained for different stress actions (tension, compression, bending) [16–18] and for
loading parallel or perpendicular to the grain [19]. Experimental investigations have shown
almost equivalent creep performance of solid timber and timber products under different
environmental conditions [20]. The higher creep parameters are obtained for softwood in
comparison with hardwood, but further investigations are necessary for deriving solid
scientific conclusions [11].
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According to European standards, during the building lifespan, structural elements
are expected to fulfill requirements for serviceability and ultimate limit state. A bending
moment may occur if a structural element is exposed to an external load applied perpendic-
ular to a longitudinal axis of the element. The most common structural member subjected to
bending is a beam. Long-term loading causes beam sagging to some extent over time; that
is, the deflection increases over time in comparison to the initially measured deflection. The
creep behavior of beams as an important consideration in the design of timber structures
must be included in the limit state calculation since static testing is often not sufficient
for describing the behavior of structural elements. In order to reduce the design value
of a strength property Xd and to avoid the tertiary creep stage, Eurocode 5 [21] defines a
modification factor kmod which considers the effect of the load duration and the moisture
content as:

Xd = kmod
Xk
γM

(1)

where Xk presents the characteristic value of a strength property and γM is the partial factor
for a material property. According to this standard, the serviceability limit state includes
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the calculation of the instantaneous deformation uinst and the final deformation u f in under
permanent action by using the following equation:

u f in = uinst

(
1 + kde f

)
(2)

where kde f is the factor for the evaluation of creep deformation considering the relevant
service class. It defines a relation between the initial deformation and the final deformation
under permanent loading. Expected values of kde f are between 0.6 and 2.0 for solid and
glued laminated timber, which implies creep deformation as twice the instantaneous
deformation for service class 3. The instantaneous deformation should be calculated for
the characteristic combination of action, using average values of the relevant modulus
of elasticity. European codes define the criteria for the design of glued laminated timber
made of softwood and poplar. EOTA (European Organisation for Technical Assessment)
implemented EAD (European Assessment Document) in 2021, focusing on glued laminated
timber made from specific hardwood species [22]. Due to climatic changes and afforestation
policy, hardwood species are increasing their share in European forests. Also, hardwood
species show enhanced mechanical properties compared to softwood but due to diversities
between hardwood species, a complex manufacturing technology is required. According to
that, extensive studies have been performed during the last decade in order to improve the
insufficiently used potential of hardwood and to create a standardized European framework
for glulam made from hardwood.

Numerous investigations were performed during the past century dealing with deter-
mining the creep response of timber under constant load and under changing and constant
temperature and humidity. Due to a complex structure and various parameters influencing
timber behavior that can be determined only experimentally, there is no standardized
method for describing the creep behavior of timber. It has been experimentally confirmed
that wood shows non-linear behavior across the entire stress range, but within specific
stress boundaries and under constant MC and surrounding conditions, it is assumed as
a linear viscoelastic material [3,4,23–26]. According to that, Boltzmann’s superposition
principle can be applied under low stresses [27]. Constant loadings with values lower
than 45 to 60% of the maximum short-time load do not cause failure in the beams dur-
ing this time [28]. A study [23] has indicated that the deformation-stress relationship of
maple exposed to creep in tension parallel to the grain is dominantly linearly elastic under
conditions of sufficiently low stress, moisture content, and temperature.

Currently, the authors are unaware of any existing studies on the creep behavior of
glulam beams made from European hornbeam. Experimental investigations are needed
in order to form a relationship between creep, deflection, time, and load level. In the
framework of the research project conducted by Drvene konstrukcije Ltd. and the Faculty
of Civil Engineering, Architecture, and Geodesy, Split, short-term bending tests were
carried out to calculate the modulus of elasticity and ultimate strength of glulam made
from European hornbeam. Since the static testing of materials is often not sufficient for
the determination of their behavior in structural design, creep tests were also performed
in order to determine the creep model. This study presents the bending creep behavior
of glulam made from European hornbeam at different levels of the maximum short-term
load during the period of three months. The relationship between creep deflection, time,
and load level has been shown. The information was not available in the literature for
glulam made from hornbeam except for the study of Moosavi [29]. The effect of altitude on
creep parameters was examined during three-point bending tests of small specimens from
hornbeam at 20% of the maximum bending load for 14 h.

2. Analytical Approach for Creep

Several mathematical models have been developed in order to estimate the creep
response of linear and non-linear materials at constant and varying temperatures and
humidity. Studies performed so far described creep behavior through different aspects,
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including deflection, compliance as the inverse of stiffness, relative deflection, and relative
strain. A few empirical models were presented by Holzer et al. [12] for developing long-
term behavior of timber under constant environment using the following expressions for
creep compliance J(t):

J(t) = J0 + A1log(t + 1) (3)

J(t) = J0 + A1log(t + 1) + A2log2(t + 1) (4)

J(t) = J0 + mtn (5)

where A1, A2, m and n are material properties, J0 = 1
E0

corresponds to instantaneous
compliance for σ = 1, E0 is the elastic modulus. Although the appropriate equation
depends on the required accuracy, the length of modeling time, and the researcher’s choice,
the last equation presents the power law form, which appears to be the most suitable
equation with predictive capabilities for describing creep behavior. Refs. [11,18,28,30]
found the power law the most appropriate equation for modeling the long-term behavior of
Douglas-fir, spruce, and beech in bending under a constant environment. When validating
a creep model, bending test results are preferable in comparison to tension and compression
because of larger deformations which are easier to measure and simpler load method [12].

In the study [28], a power law equation is given in the aspect of deformation in time,
and the creep behavior up to the point of inflection is described by an empirical expression:

ε(t) = ε0 + atm (6)

where ε(t) is the total strain at time t, ε0 is the initial strain dependent on stress level at
t = 0, a and m are constants obtained by experimental testing. Parameter m is independent
of stress level, while ε0 and a are dependent. It has also been applied to describe creep
under compression and tension transverse to the grain.

3. Materials and Experimental Program

The hardwood species Carpinus betulus L. (European hornbeam) was used for the
production of three sets, including 12 glulam beams, at the production facility held by
the company Drvene konstrukcije Ltd. European hornbeam, a diffuse-porous hardwood
accounting for nearly 8.5% of the overall wood reserve in Croatia, is supplied from a forest
area in Virovitica—Podravina county. Lamellas were exposed to three diverse surface
methods, planing, sanding with grit 60, and sanding with grit 80. Lamellas adhered with
Prefere 4535 as a melamine-urea adhesive and Prefere 5035 as a hardener in relation to
100:25. Finally, 12 glulam beams were planned on each side with required dimensions of
60 mm × 80 mm × 1700 mm with no finger joints.

3.1. Short-Term Bending Tests

During the early phase of the previously mentioned research project [31–34], short-
term bending tests were performed on 18 glulam beams made from European hornbeam
according to EN 408 [35] at the specialized laboratory unit at the Faculty of Civil Engi-
neering, Architecture and Geodesy, University of Split. Lamellas were treated with three
different surface methods (planing—P, sanding with grit 60—S60, and sanding with grit
80—S80). The determined strength and stiffness were analyzed using ANOVA (analysis of
variance) to assess the impact of various surface treatments on lamellas at a 95% confidence
level [31]. The results revealed that there was no statistically significant impact of diverse
surface treatments on the bending strength and the modulus of elasticity of glulam beams
manufactured from European hornbeam. Also, the load-deflection graph from the bending
tests confirmed comparable flexural behavior for diverse surface treatments. The average
value of the maximum load Fmax was 28.84 kN for planing, 31.99 kN for sanding with grit
60, and 31.09 kN for sanding with grit 80, respectively.
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3.2. Creep Performance of Glulam Beams

Within the framework of the above-mentioned research project, the creep response of
12 glulam beams made from Carpinus betulus L. (European hornbeam) was investigated
for three months under constant loading. Lamellas used for the production of glulam
were processed at the production facility held by the company Drvene konstrukcije Ltd.
with three diverse surface preparations of the lamellas. Preceding the gluing process, the
moisture content of each lamella was determined using a moisture measuring device (Gann
Hydromette HT 65). The recorded moisture content for each lamella ranged between 8%
and 13%, with the greatest variability in moisture not exceeding 2% in each beam. Prefere
4535 as a melamin urea adhesive and hardener Prefere 5035 was used for gluing lamellas
with a few modifications of the existing technology previously used for softwood. When
applying adhesive to lamellas, the open assembly time persisted for up to 5 min, whereas
the closed assembly time ranged from 5 to 15 min. Finally, glulam beams were produced
with a cross-section of 60 mm × 80 mm and a length of 1700 mm without finger joints.

All specimens were kept in identical room conditions before performing tests. The
tests were initiated in December 2022 and ended in June 2023 at the specialized laboratory
unit of the Faculty of Civil Engineering, Architecture, and Geodesy, Split. Moisture content
and density were determined before testing. Glulams were positioned symmetrically
between supports made from stainless steel and loaded at two points with a constant load,
as it is shown in Figure 2. For each surface treatment, two beams were loaded with 20%
of a maximum short-term load Fmax and the remaining two beams were loaded with 30%
of Fmax. Eight beams were loaded continuously with concrete blocks (Figure 3a), while
four beams were loaded with sand (Figure 3b), both in two points. The mean density for
European hornbeam was 780 kg/m3.
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The instantaneous elastic vertical deflection was determined manually after loading
at the midspan with the Mituyoto dial indicator, capable of registering 0.01 mm. Also,
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deflections were recorded each hour during the first day of applying load, and then at
daily intervals for three months. Creep was calculated as the difference between measured
deflection and instantaneous elastic deflection. At the same time, the temperature and
relative humidity (RH) were recorded continuously by a handheld sensor. Furthermore,
the MC of each tested glulam beam was measured daily.

4. Results and Discussion

The creep arrangement was conducted in order to determine the time-dependent
behavior of glulam beams made from European hornbeam in laboratory conditions with
small changes in temperature and relative humidity. Previously, maximum load was
obtained from static bending tests performed on glulam beams made from European
hornbeam. The creep response of six glulam specimens was investigated under a constant
load of 0.3Fmax, while the other six specimens were investigated under a constant load of
0.2Fmax. Since short-term tests have shown that surface treatment of lamellas does not affect
the bending strength and stiffness, the average maximum load of 30.64 kN was calculated
for all glulam beams independent of different surface treatments with the average global
modulus of elasticity of 17,678 MPa.

The first group of specimens, including glulam of European hornbeam processed
with sanding with grit 80, was tested between December 2022 and March 2023, while the
second group, including glulam processed with planing and planing and sanding with
grit 60, was tested between March 2023 and June 2023. Minor changes in temperature
and RH are recorded, as shown in Figure 4. According to Eurocode 5, these conditions
correspond to service class 1, which includes a temperature of 20◦ and a relative humidity
exceeding 65% for a few weeks per year. The measured moisture content of each glulam
beam changed with daily and seasonal changes in humidity, and it was recorded between
8 ± 2%. Due to some small moisture changes recorded during the test, the results are
assumed to be representative of European hornbeam within the ambient relative humidity
and temperature range.
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Figure 4. Changes in temperature and relative humidity during test time for the second group of
specimens.

Deflections were recorded daily for each specimen, and the final deflection after three
months was compared with the initial deflection. None of the tested beams exhibited
a tertiary creep stage during the three months of performing the experiment due to a
lower level of the maximum short-term load. The influence of load level on the mid-span
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deflection was investigated. The large initial rate of creep deflection can be observed,
representing the primary creep stage. Afterward, the decreasing rate with small up-and-
down changes in creep deflection was recorded, indicating the secondary creep stage and
assuming a linear creep curve at an almost constant rate for an extended test period. The
instantaneous mid-span deflection of specimens increased with increasing load levels from
0.2Fmax to 0.3Fmax. Also, a creep part of the deflection increased with the increasing load
level for each surface treatment of lamellas. Thus, it can be concluded that the difference in
the final deformation between the load levels of 0.2Fmax and 0.3Fmax was caused by both
creep deformation and instantaneous deformation. During the observed period of three
months, the initial deflection was increased by approximately 30% for glulam beams under
the load level of 0.2Fmax. Also, the initial deflection increased by approximately 35% for
glulam beams under the load level of 0.3Fmax after three months, except for glulam beams
sanded with grit size S80 for which the initial deflection increased by 40%. The results of
short-term experimental tests have shown insignificant differences in the obtained results
for global modulus of elasticity with standard deviations of 1343.6 for planing, 859.7 for
sanding with grit 60, and 1769.3 for sanding with grit 80, respectively. Since the values of
the mid-span deflections of glulam beams depend on a global MOE, there are differences in
measured initial deflections as well as in the creep part of deflections. Further investigations
into larger sample sizes are needed in order to define a more detailed conclusion.

Deflection-time plots were obtained, and smooth curves were drawn through a suffi-
cient number of experimentally obtained points in order to accurately describe the creep
properties of glulam made from European hornbeam, as it is shown in Figures 5 and 6
under constant loading of 0.2Fmax and 0.3Fmax, respectively.
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Figure 5. Experimental deflection-time graph for six glulam beams under constant loading of 0.2Fmax.

The power law was used for a description of the creep behavior before the point of
inflection was reached. In comparison with other typical models, the power law is a simple
exponential model with two parameters:

u(t) = u0 + AtB, (7)

where u(t) is the total midspan deflection at time t, u0 is the initial deflection dependent on
stress level at t = 0, A and B are constants greater than 0, obtained by fitting experimental
data. The experimentally obtained data were parameterized by fitting the power law
using a non-linear least square method in Matlab Curve Fitter. The parameters A and
B are determined and presented in Table 1. Due to higher values of the coefficient of
determination R2, close to 1, it can be concluded that the regression curve fits well with the
experimental data and that the power law is suitable for describing the behavior of glulam
from European hornbeam. As it is previously mentioned, the theory of linear viscoelasticity
can be accepted for the lower load ratio, which is valid for this study. Generally, it can be
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noticed that the overall deformation curve exhibited a primary creep stage and part of the
secondary stage.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 11 
 

 
Figure 6. Experimental deflection-time graph for six glulam beams under constant loading of 
0.3𝐹௠௔௫. 

The power law was used for a description of the creep behavior before the point of 
inflection was reached. In comparison with other typical models, the power law is a simple 
exponential model with two parameters:  𝑢(𝑡) = 𝑢଴ + 𝐴𝑡஻, (7)

where 𝑢(𝑡) is the total midspan deflection at time t, 𝑢଴ is the initial deflection dependent 
on stress level at 𝑡 = 0, A and B are constants greater than 0, obtained by fitting experi-
mental data. The experimentally obtained data were parameterized by fitting the power 
law using a non-linear least square method in Matlab Curve Fitter. The parameters A and 
B are determined and presented in Table 1. Due to higher values of the coefficient of de-
termination 𝑅ଶ, close to 1, it can be concluded that the regression curve fits well with the 
experimental data and that the power law is suitable for describing the behavior of glulam 
from European hornbeam. As it is previously mentioned, the theory of linear viscoelastic-
ity can be accepted for the lower load ratio, which is valid for this study. Generally, it can 
be noticed that the overall deformation curve exhibited a primary creep stage and part of 
the secondary stage. 

Table 1. Obtained parameters for the creep model. 

Load Level 
Surface Treat-

ment Parameter A Parameter B 𝑹𝟐 

0.2𝐹௠௔௫ 
S80 0.27 0.45 0.90 
P 0.35 0.31 0.96 

S60 0.20 0.61 0.98 0.3𝐹௠௔௫ 
S80 0.40 0.52 0.96 
P 0.43 0.48 0.98 

S60 0.41 0.44 0.98 

According to Eurocode 5, the expected value for the factor for the evaluation of creep 
deformation during building lifespan and under permanent loading is 0.6 for service class 
1. In comparison, during this research, the increase of the initial deflection for three 
months was calculated with a value between 1.3 and 1.4 of initial deflection for glulam in 
bending and under constant loading of 20% and 30% of maximum loading from short-
term tests, respectively. It is important to mention that the applied stress during the bend-
ing creep test was 25 Mpa and 37 Mpa for 20% and 30% of maximum loading from short-
term tests, respectively. 

5
7
9

11
13
15
17
19

0 20 40 60 80 100 120

D
ef

le
ct

io
n 

[m
m

]

Time [days]

S80_1 S80_2 P_1 P_2 S60_1 S60_2

Figure 6. Experimental deflection-time graph for six glulam beams under constant loading of 0.3Fmax.

Table 1. Obtained parameters for the creep model.

Load Level Surface
Treatment Parameter A Parameter B R2

0.2Fmax

S80 0.27 0.45 0.90
P 0.35 0.31 0.96

S60 0.20 0.61 0.98

0.3Fmax

S80 0.40 0.52 0.96
P 0.43 0.48 0.98

S60 0.41 0.44 0.98

According to Eurocode 5, the expected value for the factor for the evaluation of creep
deformation during building lifespan and under permanent loading is 0.6 for service class
1. In comparison, during this research, the increase of the initial deflection for three months
was calculated with a value between 1.3 and 1.4 of initial deflection for glulam in bending
and under constant loading of 20% and 30% of maximum loading from short-term tests,
respectively. It is important to mention that the applied stress during the bending creep
test was 25 Mpa and 37 Mpa for 20% and 30% of maximum loading from short-term tests,
respectively.

5. Conclusions

Describing wood creep behavior is a complex procedure affected by its natural
anisotropy, assumed orthotropy for engineering structures, and other various parame-
ters like temperature, humidity, and loading type. Another difficulty is collecting data
through a long-term period since tests lasting for a few months are short in comparison to
50 years of the expected building’s lifespan. The authors are unaware of any study currently
carried out on glulam beams made from European hornbeam. This study was carried
out during the last phase of the aforementioned research project in order to understand
the load duration characteristics of glulam made from European hornbeam harvested in
Croatian forests and for which there is no technical assessment. Considering the outcomes
of this study, the following conclusions can be established:

- The creep curves for three sets of glulam beams under each load level were similar.
The negligible influence of surface treatment of lamellas on the flexural performance
of glulam beams was confirmed when analyzing creep behavior. One exception for
glulam beams sanded with grit size S80 under the load level of 0.3Fmax was observed
since the initial deflection increased by 40% after three months in comparison to 35%
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for planing and sanding with grit size 60. Further investigations into larger sample
sizes are needed in order to define a more detailed conclusion.

- The results have shown that the power law fits well with experimental data under
observed two load levels of 0.2Fmax and 0.3Fmax. The fitted curve was in an overall
good agreement due to high values of R2.

- Within a sustained load of 0.2Fmax and 0.3Fmax for three months, all glulam beams
exhibited only a secondary creep stage. The creep increased with the higher level of
load.

- Based on the obtained test results, the estimated value of bending deflection is higher
than it is presented in Eurocode 5.

- The mechano-sorptive effect is negligibly small since the relative humidity and tem-
perature in the Laboratory had small variations over time.

Further long-term experiments need to be conducted on a larger sample, including
variability of timber-like grain deviation. Also, the effects of changes in temperature and
relative humidity related to changes in moisture content of glulam made from European
hornbeam have to be considered for application in engineering since they can cause an
unknown amount of creep deflection. Other types of testing (compression, tension) have
to be taken into account during the same season in order to study their effect on creep
response. This study presents a contribution to the determination of creep characteristics of
hardwood species by expanding the available database.
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32. Uzelac Glavinić, I.; Boko, I.; Torić, N.; Lovrić Vranković, J. Application of hardwood for glued laminated timber in Europe.

Gradevinar 2020, 72, 607–616.
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