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Abstract: Concrete, as a complex and anisotropic material, poses challenges in accurately simulating
its behavior in numerical simulations. This paper focuses on selecting an appropriate constitutive
model for simulating the behavior of a steel–concrete composite column using finite element analysis
under compression and push-out tests. Two models are analyzed and compared, namely, Drucker–
Prager and concrete damage plasticity. The results demonstrate that the concrete damage plasticity
model outperforms the Drucker–Prager model in all six test cases, indicating its superior accuracy
in capturing the composite column’s behavior. This study enhances the reliability of numerical
simulations for steel–concrete composite structures by choosing the most suitable constitutive model,
parallel with extensive sensitivity analysis and model calibration. The findings emphasize the
significance of meticulous model selection and precise parameter definition for achieving accurate
predictions of concrete behavior. This research contributes to advancing the understanding and
modeling of concrete’s intricate behavior in structural analyses.

Keywords: concrete constitutive model; parameter optimization; concrete damage plasticity; model
calibration

1. Introduction

The selection and parameterization of a model significantly impact its simulation
results, influencing the design and safety of the analyzed structure. Optimizing the model
parameters and performing meticulous calibration are vital steps in accurately capturing the
material behavior under diverse loading conditions. Additionally, rigorous verification and
validation procedures enhance the reliability and accuracy of simulation results, instilling
confidence in their validity. Thus, the combination of selecting an appropriate constitutive
model, optimizing its parameters, and conducting verification, validation, and calibration
processes are essential for conducting reliable and accurate finite element simulations in
structural engineering applications.

The task of selecting the most suitable constitutive model and its parameters can be
challenging due to several sources of uncertainty. These uncertainties arise from factors
such as experimental measurement errors, inherent variability in material properties, and
simplifications made during the modeling process. Even under the same loading con-
ditions, different constitutive models can yield varying responses and failure modes. A
constitutive model establishes the relationship between a material’s mechanical or thermal
responses and the corresponding loading conditions, playing a crucial role in formulating
governing equations, conservation laws, and kinematic relations in finite element mod-
eling. The choice of a constitutive model depends on the selected modeling technique,
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as certain techniques necessitate advanced models that consider multiple variables. The
variability of constitutive models plays a significant role in uncertainty assessments for
structural systems.

Concrete and steel are two widely used materials in structural engineering and con-
struction. They have widely different properties such as tensile capacity and ductility yet
have very similar thermal expansion coefficients. Combining these two materials creates
an efficient composite structural element, which is commonly used in beams and columns.
The sources of uncertainty in constitutive models applied in continuum finite element
simulations include the following.

Continuum-based Concrete Nonlinearity: Several constitutive models have been
proposed for nonlinear response of concrete material in finite element formulations. These
models include fixed/rotating smeared crack [1–5], plasticity [6,7], damage mechanics [8,9],
fracture mechanics [10], and different micro-plane models [11,12].

Concrete Fracture Initiation: In nonlinear models, it is crucial to define an appropri-
ate criteria for crack initiation and propagation. There are two distinct methods used to
model joints, cracks, and flaws in concrete structures. The first method is discrete fracture
formulation [13], such as in the cohesive crack model and discontinuity in finite element
model [14–16]. The second method involves models with distributed cracking/damage
using continuum finite elements and discrete elements such as a random lattice or particle
model [17]. Several studies have compared the discrete and smeared crack models, includ-
ing their inherent uncertainties [18–25]. Based on a detailed analysis of several concrete
beams, columns, and shear wall models, it is recommended to use discrete or smeared
models for plain concrete with a known crack path, and smeared models for reinforced
concrete [26]. For unknown crack paths, discrete or smeared models should be used for
plain concrete and combined or smeared model for reinforced concrete.

Reinforcement Modeling: There are two methods to model the reinforcing rebar in a
concrete structure, namely, the discrete and smeared model approaches [27]. In the discrete
model approach, individual rebars are explicitly modeled using link-type or solid-type
elements. This approach involves using different steel and concrete material models that
need to be properly linked to each other at the interface, enabling very detailed steel–
concrete modeling. In the smeared modeling approach, the material properties of the
elements which the rebar passes through are modified to reflect a homogenized property
of both concrete and steel. In the smeared modeling approach, the rebar is not typically
modeled separately, which reduces computational time and complexity.

Bond Strength Modeling: The complex interaction between the concrete and rein-
forcement is characterized by bond strength models, which enable force transfer and
deformation compatibility between the reinforcing steel bars and the surrounding con-
crete. These models can be divided into three main categories, with a large variability
among different representations: empirical models developed by regression analysis on the
experimental tests [28–30], analytical models [31–34], and probabilistic models [35,36].

Uncertainty in (reinforced) concrete constitutive models has been studied
previously [37–43]. The above studies have identified the importance of accounting for the
randomness in the choice of constitutive model and its parameters in the damage response
of structural systems. Addressing such uncertainties in composite structures is even more
challenging due to the complex interaction between concrete and steel.

Several studies have examined the modeling of composite structures, with most being
limited to frame elements and relyingg on uniaxial constitutive relationships. Notable
studies have focused on composite columns, including Schneider [44], who conducted
an experimental and numerical investigation into the effects of geometric shapes, steel
tube properties, and concrete confinement on composite column capacity. Hajjar et al. [45]
proposed a dispersed plasticity approach for modeling concrete-filled tubes (CFTs) acting
as beam-columns using slip effects. The study analyzed rectangular and square CFT
beam-columns subjected to monotonic loading using 3D analysis. Varma et al. [46] studied
high-strength square CFT beam-columns subjected to seismic loads. Hu et al. [47] employed
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the Abaqus finite element package to study CFT columns with confinement effects, and
tested three different types of sections: circular sections with no ties, and square sections
with and without reinforcing ties. Kostic et al. [48] investigated the nonlinear behavior of a
beam-column element used to analyze rectangular CFT columns. Their study focused on a
sensitivity analysis of model parameters and their impact on the accuracy of the results.
Zhou et al. [49] conducted an eccentric compression test on square tube steel-reinforced
concrete (SRC) columns to evaluate the performance of centrally and eccentrically loaded
SRC columns. Lai and Varma [50] developed a unique stress–strain relationship for the
concrete core and steel tube of slender and non-compact CFT section through 3D finite
element analysis. The CFT columns had various geometric and material parameters,
providing accurate predictions for the behavior of such members.

Wang et al. [51] conducted an experimental study on the axial compressive behavior
of circular fiber-reinforced polymer (FRP) steel tubed concrete stub columns. Their study
showed that FRP confinement significantly enhanced the axial compressive strength and
ductility of the columns. The confinement mechanism was attributed to the increase in
the lateral pressure on the concrete core, which prevented the concrete from buckling
and improved the load transfer between the concrete and the steel tube. Wei et al. [52]
presented a comprehensive literature review on the confinement effectiveness of circular
concrete-filled steel tubular columns under axial compression. Their review covered a
wide range of topics, including the definition of confinement, the different methods of
confinement, the factors affecting confinement effectiveness, and both experimental and
numerical studies. Their paper concluded that confinement is an important factor in the
behavior of concrete-filled steel tubular columns, and that it can significantly increase the
strength and ductility of these columns. Le Hoang and Fehling [53] studied the compressive
behavior of circular steel tube confined concrete (STCC) stub columns. The results of their
study showed that the confinement provided by the steel tube significantly increased the
strength and ductility of the concrete core. The same study showed that the concrete
strength, steel yield strength, and steel tube thickness all affected the behavior of circular
STCC stub columns. Wang et al. [54] investigated the compressive behavior of carbon
fiber-reinforced polymer (CFRP) steel composite tube steel-reinforced columns with high-
strength concrete. The study was conducted using a combination of experimental and
numerical methods. The results of the study showed that CFRP steel composite tubes can
effectively prevent both buckling of the steel tube and concrete crushing. The same study
showed that CFRP steel composite tubed columns have a higher compressive strength and
ductility than conventional steel-reinforced concrete columns. Chen et al. [55] conducted an
experimental study on the compressive behavior of CFRP-confined post heated square CFST
stub columns. The study investigated the effects of CFRP confinement, post heating, and
concrete strength on the load bearing capacity, ductility, and failure mode of the columns.
The results showed that CFRP confinement significantly improved the load-bearing capacity
and ductility of the columns, while post heating had only a minor effect. The failure mode
of the columns was changed from brittle to ductile with CFRP confinement.

One major limitation observed in previous studies is the absence of a comprehen-
sive parametric and sensitivity analysis, as well as the lack of generalization of the pro-
posed procedures for various cases involving different shapes, dimensions, materials, and
loading conditions. It is essential to validate the proposed methodology through exper-
imental testing on a wide range of cases to ensure its applicability and effectiveness in
real-world scenarios.

This research aims to investigate the mechanical behavior of composite columns with
different cross-sections, which poses a challenge in understanding their overall behavior.
In order to represent the behavior of concrete, both the Drucker–Prager (DP) and concrete
damage plasticity (CDP) model are utilized, with focus on CDP model’s parameter selection.
There are two main reasons for considering these two models. First, both are widely
recognized and extensively used constitutive models in the analysis of concrete structures.
Moreover, they are commonly available in commercial finite element software packages,
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making them accessible and applicable for practitioners in the field. Second, to ensure
consistency and minimize uncertainties associated with different software packages, we
specifically focused on utilizing a single software package, Abaqus, providing a reliable
and standardized framework for our study.

The primary objective of this study was to determine the most accurate CDP model
parameters and gain insights into their mechanical behavior without the need to conduct
experimental work for future similar specimens. This approach is shown to be practi-
cal and cost-effective, significantly reducing the time and effort required to comprehend
the mechanical behavior of composite columns. To explore the effects of changing CDP
variables and parameters on the structure’s performance, we conducted a sensitivity and
optimization study using finite element analysis. This technique allows for parametric
studies by systematically varying unknown variables such as mesh size, dilation angle, or
the shape of the yield surface. In contrast, experimental tests would require physical modi-
fications and repeated testing, making the process more challenging and time-intensive in
the laboratory. Therefore, the contribution of this paper lies in a series of detailed model
calibration and sensitivity analyses aimed at quantifying the uncertainties in numerical
simulations. It establishes a generalized procedure to calibrate composite structures using
the CDP constitutive model. Furthermore, it provides recommendations for practitioners
regarding the optimal choice of these parameters.

2. Characteristics and Simulation of Concrete Materials

A comprehensive understanding of various crucial aspects is necessary in order to
accurately model concrete behavior in composite structures. These aspects include the
constitutive behavior of concrete, the plastic behavior of the steel components, and their
composite behavior. This understanding plays a vital role in selecting an appropriate
approach for the mathematical model and determining the values of the model’s parameters.
Unreinforced concrete can be described as a cohesive and frictional material composed
of stiff particles or aggregates with diverse shapes and sizes. These particles are bound
together by a cementitious matrix. Cracks develop when this system is subjected to different
loading conditions, and exhibit distinct behaviors under tension and compression [56]. In
compression, cracks tend to close, and are capable of transmitting significant compressive
stresses. Conversely, tensile forces cause cracks to open up, eliminating the ability of the
concrete to bear additional tension and significantly reducing its ability to withstand shear
loading.

Finite element simulations offer a valuable tool for simulating concrete behavior in
composite structures. One advantage of finite element analysis is the ability to eliminate
structural and modeling features that have negligible impact on the overall behavior of
the structure without compromising the simulation’s accuracy. For instance, in composite
buildings the behavior of studs can be represented using beam elements if their individual
behavior is not of critical importance. This simplifies the modeling process and allows
for more efficient simulations. It is essential to emphasize the limitations of finite element
simulations, including but not limited to mesh dependency, computational intensity, mod-
eling assumptions, user expertise, numerical errors, appropriate material modeling, and
the verification and validation process.

The linear behavior of concrete is characterized by its modulus of elasticity, denoted
as Ec, and its Poisson’s ratio νc. Within the commercially available finite element analysis
software Abaqus, there are several material models available to simulate the nonlinear
behavior of concrete, two of which, the DP and CDP models, are used in this paper [57].
The DP model is well-suited for accurately describing materials that are sensitive to applied
pressure, such as concrete, soil, and rock. However, it falls short in capturing the tensile
behavior of brittle materials, which is crucial for modeling concrete cracking behavior [58].
In contrast, the CDP model, which incorporates a non-associative flow, is able to account for
concrete damage [59]. Therefore, it is considered an ideal model for representing concrete
behavior in composite structures, where the reinforcement ductility is important. This
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model is able to simulate concrete behavior under various loading conditions and account
for the development and evolution of damage in the material. By accurately determining
the parameters of this model, it is possible to predict the behavior of composite structures
without the need to conduct costly and time-consuming experimental work.

Concrete Damage Plasticity Model: A Brief Review

The concrete damage plasticity model is notable for its ability to capture the com-
plete plastic behavior of concrete under both tensile and compressive stresses thanks to
its distinctive damage characteristics. Creating an appropriate damage simulation model
utilizing CDP is beneficial for analyzing reinforced concrete structures exposed to any
loading condition, including static and dynamic loading. The CDP model incorporates two
major failure modes, namely, tensile cracking and compressive crushing. Furthermore, the
model describes the uniaxial tensile and compressive behavior of concrete through damage
plasticity. Hardening and softening damage parameters are defined to represent crack-
ing (tension), crushing (compression), the yield surface progression, and elastic stiffness
degradation [60].

To define the compressive stress–strain relationship of concrete, the stress σc and
inelastic strain εin

c are respectively used to represent the stress and strain values, while the
damage property Dc represents the inelastic strain. Therefore, the total strain values can be
converted to inelastic strains εin

c = εc − εel
0c, where εel

0c =
σc
E0

. The accuracy of the damage

curve is checked using the plastic strain values ε
pl
c :

ε
pl
c = εin

c −
(

Dc

1− Dc

)
σc

E0
(1)

Concrete’s post-failure tensile stress–strain correlation is used to simulate the behavior
of reinforced concrete in tension. This relationship takes into account tension stiffening,
steel and concrete interaction, and strain softening. To develop this model, the Young’s
modulus E0, tensile stress σt, tensile stress at failure σt0 , cracking strain values σcr

t , and
damage parameter values Dt all need to be defined. The cracking strain is calculated as
εcr

t = εt − εel
0t, where εel

0t =
σt
E0

. Furthermore, corrective measures should be taken to ensure
that the plastic strain values are neither negative nor decreasing with increasing stress:

ε
pl
t = εcr

t −
(

Dt

1− Dt

)
σt

E0
(2)

A typical stress–strain relationship for the concrete damage plasticity model in both
compression and tension is provided in Figure 1.

Figure 1. Stress–strain relationship for the concrete damage plasticity model in compression and
tension [61].
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The constitutive CDP parameters fundamentally define the flow potential G and yield
surface shape. The Drucker–Prager hyperbolic function is defined as

G =

√
(σc − εσt tan Ψ)2 + q̄2 − p̄ tan Ψ− σ (3)

where σc and σt are the uniaxial strengths of concrete in compression and tension, respec-
tively, Ψ is the dilation angle in the p− q plane, and ε is an eccentricity of the inelastic
potential surface.

The p− q plane includes the flow potential surface, where p̄ = −1/3σ̄I is the effective
hydrostatic stress, q̄ =

√
3/2S̄S̄ is the von Mises equivalent stress, S̄ is the deviatoric part

of the effective stress tensor σ̄, and I is the moment of inertia.
In the CDP model, after defining all the parameters the yield function takes the

following form controlled by the hardening variables:

F =
1

1− α

(
q̄− 3α p̄ + β(εpl)〈 ˆ̄σmax〉 − γ〈− ˆ̄σmax〉

)
− σ̄c(ε

pl
c ) ≤ 0 (4)

with the function β(εpl) defined as

β(εpl) =
σ̄c(ε

pl
c )

σ̄t(ε
pl
t )

(1− α)− (1 + α) (5)

where σ̄c and σ̄t are the effective compressive and tensile cohesion stresses, respectively.
In addition, α and γ are dimensionless material constants. The coefficient α is typically

determined from the initial equi-biaxial (σb0) and uni-axial (σc0) compressive yield stress as
follows:

α =
σb0/σc0 − 1

2σb0/σc0 − 1
(6)

where the ratio of σb0/σc0 for concrete is typically in the range of 1.10–1.16.
The presence of the coefficient γ in the yield function is limited to stress states charac-

terized by triaxial compression:

γ = 3
1− Kc

2Kc − 1
(7)

The parameter Kc should be identified as well, although it is limited by the availability
of complete concrete triaxial test data. Otherwise, a sensitivity analysis must be performed
to obtain an accurate and compatible value for the parameter. Typical values are between
0.64 to 0.8; Kc = 2/3 in the Rankine formulation and Kc = 1 in the Drucker–Prager model.
Another parameter included in the CDP model is the ratio of initial equi-biaxial to uniaxial
compressive yield strengths fb,0

fc,0
=

σb,0
σc,0

, where σb,0 is the compressive stress under biaxial
loading and σc,0 is the compressive stress under uniaxial loading. The default value of this
ratio is 1.16. The input viscosity parameter µ is disregarded in this study and has a default
value of zero, as viscoplasticity does not apply to concrete.

3. Experimental Data and Numerical Models
3.1. Data Collection

This study used previous experimental work by Schneider [44] and Chen and Han [7]
on composite columns with various dimensions and cross-sectional shapes (circular and
square) as a source of data. The authors identified significant factors affecting the behavior
and capacity of these axially loaded columns and sought to improve their mechanical
properties. These factors encompass dimensions of the composite column, such as diameter,
height, steel case thickness, as well as the ratio between the column diameter and steel
case thickness. Building on this work, Hu et al. [47] performed an enhanced study using
the Abaqus package to explore the nonlinear behavior of the columns, with a particular
focus on the concrete confinement effect of columns designed using the Saenz equation [62].
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They proposed a numerical technique to define the mathematical parameters related to the
stress–strain relationship, adopting the Drucker–Prager model to simulate the concrete’s
behavior. This approach was used to define the modulus of elasticity and Poisson’s ratio
to represent the linear part of the behavior, while the hardening curve was used to model
the nonlinear part. They then validated their simulation procedure on more complicated
specimens.

Other researchers, including Zhou et al. [49], have conducted experimental and ana-
lytical studies on square composite columns with embedded steel sections and studs, eval-
uating their capacity under axial compression with and without eccentricity. Tao et al. [63]
tested a composite square column with studs on the interior walls to study the bond behav-
ior in concrete through a push-out test, while Pagoulatou et al. [64] performed numerical
analysis on circular concrete-filled double-skinned steel tubes using the Drucker–Prager
model. Li et al. [65] examined the behavior of tapered CFSDT columns through experimen-
tal and numerical tests. Table 1 displays the main properties of the specimens considered
in this investigation, including f ′c (concrete compressive strength), fy (steel yield stress),
D or B (the diameter or side length of the cross-section), D/t (the diameter to steel-case
thickness ratio), and L (the specimens’ length).

Table 1. Collected experimental models from [47,49,64,65]

Specimen Cross-Section D or B [mm] D/t L [mm] f ′c [MPa] fy [MPa]

CU-70 Circular 280 70 840 31.15 272.6
SU-150 Square 300 150 840 27.27 341.7
STSRC-2.0-0-S Square 200 100 1200 61.1 290.1
SC600NS Square 600 60 1800 54.4 356
cc3a Circular 180 60 540 47.4 275.9
C3-1 Circular 350 86 1050 42.5 439.3

3.2. Finite Element Considerations

This section discusses the complications involved in finite element modeling with
Abaqus, including the interaction between the concrete and the steel surface, boundary
conditions, loading, etc.

The CDP model in Abaqus was used to simulate concrete behavior by taking into
consideration the confinement effect. The modulus of elasticity was calculated using Ec =
4700

√
f ′c [MPa], where f ′c is the concrete’s compressive strength. To represent the stress–

strain curves of concrete under both tension and compression, the Saenz equation [66]
and Hu et al. [47] approach were utilized, adding the confinement effect of concrete to the
composite behavior. In addition, the column equations for double-skinned steel tubes from
Mander’s approach [67] were used to simulate the behavior of concrete in double-skinned
columns. A bilinear stress–strain curve was used for steel, with a slope change point on the
yield strength. The initial modulus of elasticity Es and Poisson’s ratio νs for the steel were
set to 200,000 N/mm2 (MPa) and 0.3, respectively.

In order to accurately model the experimental data, reference points were established
at both ends of the specimens. The reference points were connected to the equivalent point
nodes via tie connections to ensure proper load transfer and boundary conditions. A tie
connection in Abaqus is a type of constraint that joins two separate regions even if the
meshes created on the surfaces of the regions are dissimilar. It achieves this by effectively
linking or “tying” the two surfaces together, ensuring that they do not experience any
relative motion between them. The CU-70 and SU-150 specimens were modeled as two
separate components, namely, the steel tube and concrete filling. To define the interaction
between the steel and concrete surfaces, master and slave surfaces were utilized. In Abaqus,
the master surface is the surface that imposes the contact constraints, whereas the slave
surface is the surface that is subject to these constraints. The steel tube was selected as the
master surface, and the interaction was modeled as “hard contact” for normal behavior
(i.e., fully transferable forces between surfaces) and “penalty friction”, with a coefficient
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of friction of 0.25 for tangential behavior (i.e., frictional contacts with slippage). The
same interactions were applied to simulate the interaction of the steel case and concrete
core for the STSRC-2.0-0-S and SC600NS specimens. According to experimental tests by
Hajjar et al. [45] on composite columns, the failure process initiates with local buckling in
the steel case, which subsequently causes debonding between the steel case and the filled
concrete. As a result of this debonding, voids are formed, ultimately leading to crushing
in the filled concrete. This phenomenon elucidates the rationale behind designating the
steel contact surface as the primary component, as the stresses first develop in the steel
and subsequently transfer to the stresses within the filled concrete. To establish contact
between the studs and section flanges in Specimen STSRC-2.0-0-S and between the studs
and case interior walls in Specimen SC600NS, a tie connection was utilized. In the latter two
specimens, the embedded region option was employed to connect the tied stud set and steel
section to the concrete. Figure 2b provides details on the tie connection used in Specimen
SC600NS, where faces with matching shapes were selected to define the interaction area.

(a)

(b) (c)

(d) (e)

Figure 2. Visualization of geometries, boundary conditions, finite element meshes, and interaction
surfaces; no scale. (a) Model geometry and boundary conditions; (b) interaction surfaces between
studs and case inner face; (c) mesh pattern; (d) mesh of concrete in SC600NS; and (e) studs on steel
section flange (left: STSRC-2.0-0-S; right: SC600NS).

All specimens were subjected to specific boundary conditions. The bottom of each
specimen was fixed against all degrees of freedom by attaching a reference point to all corre-
sponding nodes. Similarly, the top of each specimen was fixed against all types of rotations
and lateral displacements (in the x and z directions) by means of a secondary reference point.



Buildings 2023, 13, 1759 9 of 17

The top reference point was able to deform along the longitudinal axis (y), along which
the compressive loads were applied. Loads were applied using a displacement-controlled
method whereby a non-zero displacement value was specified at the top reference point
and the weight was added as a gravity load on the y-axis with a value of 9807 mm/s2.

The use of a fully integrated element such as C3D8R in Abaqus allows for accurate
stress and strain predictions throughout the model. The average mesh size used in this
study (35 mm) was chosen in order to balance computational efficiency and accuracy. The
meshing arrangement was designed to capture the geometric features of the specimens
while minimizing the number of elements required (Figure 2c). The partitioning command
in Abaqus was used to ensure proper contact between the steel section, studs, and concrete,
allowing for accurate transfer of both loads and boundary conditions. The detailed meshes
of the studs and the steel case in specimens STSRC-2.0-0-S and SC600NS (Figure 2d,e)
ensured accurate prediction of stress and strain concentration in these regions.

4. Results
4.1. Initial Comparison

This section commences by comparing the experimental and numerical results before
model calibration. Figure 3a,b depicts a comparison between the experimental results
and the two constitutive models for two structural models, CU-70 and SU-150. The finite
element results utilizing the Drucker–Prager model, which includes a hardening curve
defining the nonlinear portion of the stress–strain curve, exhibits favorable agreement
with the experimental tests. The percentage differences between the DP model and the
experimental results for Specimen CU-70 are 0.9% and 16.7% at the maximum capacity and
failure point, respectively, while for Specimen SU-150, these percentage differences amount
to 6.4% and 12.5%, respectively.

(a) (b)

(c) (d)

Figure 3. Axial load vs. axial strain for two specimens, including the stress distribution in steel cage
and concrete core in MPa for both specimens: (a) CU-70, load–strain curves; (b) SU-150, load–strain
curves; (c) CU-70, stress distribution; (d) SU-150, stress distribution.
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Comparing the results of the uncalibrated Concrete Damage Plasticity model with the
experimental tests reveals an acceptable agreement, which could be further enhanced by
conducting a sensitivity analysis of the parameters employed for concrete modeling. The
percentage differences between the CDP model and the experimental results are 2.1% and
12.1% at the maximum capacity and failure point, respectively, for CU-70 and 7.5% and
2.8%, respectively, for SU-150.

Additionally, Figure 3c,d showcases the stress distribution in both the steel case and
concrete core for specimens CU-70 and SU-150. The agreement between the experimental
and analytical results is confirmed by these figures. In specimen CU-70, the stress distribu-
tion aligns well with the actual experimental findings reported in [45]. It can be observed
that there is debonding between the steel case and the filled-in concrete, leading to the
failure of the specimen. In the case of specimen SU-150, a noticeable stress concentration
can be observed at the edges of the square shape. This behavior is commonly observed in
square sections subjected to axial compression in concrete.

4.2. Sensitivity Analysis

In order to obtain the most accurate results using the Concrete Damage Plasticity
model, the constitutive material model parameters and other analysis characteristics were
investigated and calibrated. Specimen CU-70 was chosen as the control specimen to
examine the CDP parameters and perform model calibration. Initially, the CDP default
parameter values were obtained from the Abaqus manual. These values were as follows:
dilatation angle = 36◦, eccentricity = 0.1, ratio of initial cracking stress in bending to initial
cracking stress in compression fb0

fc0
= 1.16, ratio of initial yield stress in bending to initial

cracking stress in bending Kc = 0.667, and viscosity parameter T = 0.
To determine the optimized mesh size, a mesh convergence study was conducted. The

selection of an appropriate mesh size is crucial in finite element simulations, as using a
finer mesh can result in localization and non-convergence of the solution. Consequently,
plasticity models that exhibit softening behavior are often affected by the mesh size. In
this study, mesh sizes of 35 mm, 45 mm, and 60 mm were tested, taking into account the
maximum aggregate size. The choice of these mesh sizes aimed to avoid the numerical
issue known as “hourglassing,” which causes nonphysical deformation and distortion,
particularly in integrated elements with a coarse mesh such as the C3D8R element. The
35 mm mesh size was selected, as it was larger than the maximum aggregate size yet not
excessively coarse. Figure 4a demonstrates that all tested mesh sizes yielded similar results
for the failure load. However, as the 35 mm mesh size provided slightly more reliable
results, it was chosen for all subsequent analyses of all specimens.

Concrete is a brittle material which undergoes significant volume changes due to
inelastic strains. This phenomenon is known as dilatancy. The dilation angle is a material
parameter that characterizes this volume change [68]. According to Chen and Han [7],
frictional materials such as concrete follow a non-associated flow rule of dilatancy. Thus,
the dilation angle was further investigated as a crucial parameter for concrete behavior.
Previous studies, such as Lee and Fenves [62], proposed a dilatancy parameter value of 0.2
in the Drucker–Prager inelastic function. Other researchers, including Wu et al. [69] and
Voyiadjis et al. [70], stated that the parameter value typically ranges between 0.2 and 0.3.
Consequently, the dilation angle in the Concrete Damage Plasticity model falls within the
specified range of 31◦ to 42◦. To determine the most reliable value for the dilation angle in
this investigation, a range of values was tested using finite element analysis, as shown in
Figure 4b. The results indicate that the ultimate load before failure is highest for dilation
angles of 38◦ and 40◦. Considering that the failure load was slightly higher at a dilation
angle of 38◦, this value was chosen for all specimens. However, the results were relatively
close for all tested models using dilation angle values between 34◦ and 40◦.
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(a) (b)

(c)

Figure 4. Sensitivity analysis results in terms of axial load vs. axial strain for CU-70 specimen:
(a) mesh size, (b) dilation angle, and (c) shape of the yield surface.

In addition to the sensitivity analysis conducted earlier, a further investigation was
carried out to explore the impact of different values of the Kc parameter in the CDP model.
Figure 4c illustrates the influence of varying the Kc value on the behavior of the tested
specimen. Five different values of the Kc parameter were tested: 0.667, 0.7, 0.8, 0.9, and
1. The results indicate that varying the Kc parameter does not significantly affect the
load–strain response of the specimen. As the Kc parameter decreases, both the load and
the ultimate displacement values tend to increase minimally. Based on these findings, it
was determined that for all future analyses the default value of 0.667 for the Kc parameter
would be selected.

After conducting a thorough sensitivity analysis to determine the parameters for the
CDP model, the following values were selected: Dilatation angle = 38◦, Eccentricity = 0.1,
fb0
fc0

ratio = 1.16, Kc = 0.667, and a mesh size of 35 mm. Using these parameters, updated
finite element simulations were conducted for the CU-70 and SU-150 specimens. Figure 5
illustrates the updated results. The calibrated numerical results show better agreement
with the experiments compared to the initial default results. It should be noted that in the
Drucker–Prager model the tension behavior of concrete is completely neglected, making it
suitable for axial compression tests. The concrete’s behavior is defined by the hardening
curve in compression only after the linear portion (0.5

√
f ′c) based on the DP model. On

the other hand, the CDP model allows for a comprehensive definition of the concrete’s
behavior in both compression and tension.
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(a) (b)

Figure 5. Updated axial load vs. axial strain for two specimen after performing sensitivity analysis
and calibration: (a) CU-70 and (b) SU-150.

4.3. Generalized Assessment

In this section, the optimal parameters for the CDP constitutive model determined
in the previous subsection are applied. The set of direct finite element simulations listed
in Table 1 was conducted on four new specimens. The results of these simulations are
presented in Figure 6, where the first column displays the capacity curves and the second
column depicts the stress distribution within the specimens.

The validity of the model was confirmed through the analysis of the STSRC-2.0-0-S
specimen in compression and the SC600NS specimen in pushout tests. These tests involved
detailed composite sections comprising steel sections and studs. Figure 6a presents a com-
parison between the numerical and experimental tests, specifically the axial load versus
the mid-span deflection curve for specimen STSRC-2.0-0-S. The verification results from
embedded steel section and shear stud model demonstrate the accuracy of the model. The
percentage differences between the CDP model and the experimental results at the maxi-
mum capacity and failure point are 2.1% and 4.9%, respectively. Furthermore, Figure 6b
displays the stress distribution within the entire specimen (left) and the embedded steel
section with studs (right). The results for the bond stresses versus slippage for specimen
SC600NS with shear studs are presented in Figure 6c. The bond stresses were calculated by
dividing the applied load by the contact surface area. This analysis further confirms the
accuracy of the concrete model utilized in all the conducted verifications. The percentage
differences between the CDP model and the experimental results at the maximum capacity
and failure point were found to be 2.8% and 11.5%, respectively. Figure 6d displays the
stress distribution within the entire specimen (left) and the steel cage with struts (right).

Figure 6e illustrates the comparison between the axial load capacity and axial strain
for specimen cc3a based on both the CDP model and experimental tests. Good agreement is
observed between the two. The percentage differences between the calibrated CDP model
and the experimental results were found to be 1.1% at maximum capacity and 4.2% at
the failure point. Additionally, a numerical simulation using the DP constitutive model
was conducted (not shown here). The results indicate that the DP model exhibits better
agreement at the failure point compared to the CDP model; however, the overall behavior of
the CDP model is deemed more reliable than the DP model. Furthermore, Figure 6f depicts
the stress distribution within the entire specimen (left) and the inner tube section (right).
The axial load versus axial strain relationship for specimen C3-1 is presented in Figure 6g.
The calibrated CDP model demonstrates excellent agreement with the experimental results.
The percentage differences between the CDP model and the experimental results at the
failure point and maximum capacity were 2.4% and 1.9%, respectively. Furthermore,
Figure 6h displays the stress distribution within the entire specimen (left) and the inner
tube section (right).



Buildings 2023, 13, 1759 13 of 17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Generalized capacity curves for four new specimen after model calibration, including the
stress distribution in MPa: (a) capacity curve, STSRC-2.0-0-S; (b) stress distribution, STSRC-2.0-0-S;
(c) capacity curve, SC600NS; (d) stress distribution, SC600NS; (e) capacity curve, cc3a; (f) stress
distribution, cc3a; (g) capacity curve, C3-1; (h) stress distribution, C3-1.

5. Conclusions

This study presents an efficient method for simulating concrete behavior in composite
structures, addressing a significant challenge in the field of simulation. The focus is on the
concrete damage plasticity (CDP) model in comparison with experimental tests conducted
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by previous researchers as well as other simulation models, particularly the Drucker–Prager
(DP) model. A simplified methodology using a sensitivity study is proposed to determine
the most accurate parameters for the CDP model, ensuring reliable and realistic simulations.

The validity of the CDP model is demonstrated through the analysis of six specimens
in four different categories. To obtain the optimal parameters and model properties, an
extensive sensitivity analysis is performed, considering factors such as the mesh size,
dilation angle, and Kc factor. The results of the finite element simulations are compared
with experimental data in terms of axial load versus strain, load versus mid-span deflection,
and bond stresses versus slippage for various specimen types.

Remarkable agreement is achieved between the finite element and experimental results
across all specimen categories, affirming the accuracy and validity of the calibrated CDP
model. Moreover, the comparison between the CDP and DP models reveals distinct concrete
behaviors, with the CDP model demonstrating greater reliability in predicting concrete
response. This highlights the significance of employing the CDP model for analyzing
various types of concrete structures under different loading conditions encompassing both
static and dynamic scenarios.

The development of a reliable damage CDP simulation model holds immense value in
the analysis of concrete structures, enabling the evaluation of their behavior at different
scales and providing more accurate results. An important aspect of this study is the ability
to define the necessary CDP parameters without relying on extensive experimental work by
instead leveraging the knowledge of the concrete’s compressive strength ( f ′c). This practical
and economical approach emphasizes the core principle of simulation, namely, simplicity.

Overall, this research contributes to advancing the understanding and modeling of
concrete behavior in composite structures, offering a robust and efficient approach for
simulating and predicting the response under various loading conditions.

In addition to the CDP model explored in this paper, for which we used the Abaqus
finite element package, there exist several other constitutive models and software packages
that are frequently utilized by researchers and practitioners. Future work could extend
the research presented here to incorporate these alternative models and investigate the
variability between different software packages (i.e., model-to-model variability). Such a
study would provide valuable insights into the complexity of different constitutive models,
the accuracy of their results, and the simplicity of model calibration. Furthermore, although
the current results focus on static loading conditions for composite structures, it is crucial
to explore the behavior under dynamic loading as well. This would involve calibrating
additional parameters in order to accurately capture dynamic effects, making the calibration
process more intricate. Therefore, future studies should consider the optimization of
dynamic material properties and model parameters to enhance the understanding and
prediction of dynamic responses in steel–concrete composite structures. Moreover, it is
recommended that different load cases be explored and analyzed, including eccentric
loading and bending loading, in order to gain a deeper understanding of the behavior of
the concrete model under varied loading conditions. By investigating these additional
load cases, knowledge of the model’s performance can be enhanced and its accuracy and
reliability can be assessed in more complex scenarios.
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