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Abstract: The steel racks on the floor are seen as live loads in the current design process, ignoring
the interaction with the supporting frames. In this paper, multiple steel racks with different masses
and stiffnesses are placed on the first floor of a two-story main structure to form different real
structures (RS). The corresponding simplified structures (SS) are frames with the mass of steel racks
concentrated on the first floor of the main structure. Modal analysis is performed to analyze the
relationship between the periods of RS and SS in the cross-aisle direction. Firstly, the beams on the
first floor are assumed to be infinitely rigid. The relationship between the periods of the rack Tgy,
the simplified structure Tsg, and the real structure Trg under different mass ratios « is established,
and an accurate equation relating Trg with Ty and Tsg is proposed. Moreover, by considering the
influence of finite beam stiffness, the interaction between racks and the main structure is studied
by constructing different analysis models. The effect of the main structure on the racks is reflected
by a combined system consisting of beams and racks. A modified model, distinguished from SS by
considering the effect of no-mass racks, is constructed to study the strengthening effect of the racks
on the first-floor beams. The effect of the top connecting bars is also analyzed.

Keywords: rack; frame; modal analysis; period relationship; floor beam stiffness; interaction

1. Introduction

In recent years, a large number of two-story warehouses have been built in China, as
shown in Figure 1. The warehouse height can reach 20-25 m, and the story height is about
10-12 m. The cold-formed steel storage racks are installed on the ground and the first floor
to make effective use of precious spaces.

Currently, the steel racks and main structures are designed, respectively, by rack
manufacturers [1] and authorized institutes for two-story warehouses where racks are
installed both on the ground and first floors. The steel racks are regarded as nonstructural
components fixed to the ground [2-5]. Since the arrangement of steel racks is usually
uncertain in the early design stage, the steel racks are simplified as additional live loads
and the interaction between the main structures and the racks is ignored.

These two-story warehouses with racks installed on the first floor can be seen as
primary-secondary combined systems, where the interaction between the primary and
secondary structures can be called the Primary-Secondary Structure Interaction (PSSI),
ensuring that the structure performs as a whole system. By considering the influences of
PSS, the floor response spectrum (FRS) method is applied to check the strength of non-
structural members and the connections between non-structural members and supporting
structures. For the calculation of primary-secondary combined systems, Sackman and Der
Kiureghian [6,7] adopted the perturbation theory based on the dynamic properties of the
primary and secondary structures. However, this method, based on the available literature,
is only suitable when the secondary system is relatively light (usually below 1%) compared
with the total mass of the whole system [8-13].
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Figure 1. A Two-story Warehouse.

The FRS approach has attached much attention recently, however, these research
works [14-22] concentrated on the simplified single-degree-of-freedom (SDOF) secondary
system and elastic and inelastic multi-degree-of-freedom (MDOF) primary structure sys-
tems. It should be noted that secondary constructions may be connected to more than two
locations in practical engineering, but the FRS method only allows for the construction of
one or two points of attachment.

For the large two-story warehouse described in Figure 1, the racks on the first floor
enlarge the demand on the stiffness of the floor, so the floor slabs of the main structures are
generally made of reinforced concrete with thicknesses of 200-250 mm. On the first floors
of the main structures, the dead load is 5-8 kN/m? and the live load is usually as high
as 20 kN/m?. Under these loading conditions, the mass of goods on the steel racks can
account for more than 70% of the total mass of the structures. The current FRS approach
is mainly for structures where the mass from the secondary equipment is very small and
is not applicable for frames investigated in this paper where most of the mass is from
secondary structures.

Meanwhile, the rack is a multistory structure with a height of 8 m—12 m and should
be treated as an MDOF secondary system. Thus, the racks on the first floor should be
considered as multiple identical MDOF secondary systems interconnected at the top. The
interaction between multiple MDOF secondary systems is not considered in the current
FRS approach. Therefore, a new analysis must be carried out so that the FRS approach is
modified for possible future applications.

In the current design specifications involving multistory racks, no specific design
requirements and methods are given for the racks installed on the first floor. It is specified
in ASCE 7 [2] that when the weight of a nonstructural element is not less than 25% of
the effective seismic weight of the structure, the nonstructural element is regarded as a
nonbuilding structure. In addition, when the nonbuilding structure weight is not less
than 25% of the combined effective seismic weights of the whole system, the different
fundamental period T of the nonbuilding structure leads to different calculating methods.
When T is less than 0.06 s, the nonbuilding structure should be treated as a rigid element
with appropriate distribution of its effective seismic weight, and it can be simplified as an
additional mass when designing the supporting structures. This method is similar to the
method used when the mass of the supported nonbuilding structure is less than 25% of
the mass of the combined system. However, when T is not less than 0.06 s, the supporting
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structure and nonbuilding structure should be regarded as a combined system with the
appropriate stiffness and effective seismic weight distributions. Moreover, Chinese Codes
GB50011 [23] and JGJ339 [24] only specify the seismic design method for the non-structural
component of buildings when its mass is less than 10% of the floor.

A two-story frame was constructed by Zhang and Tong [25], where the racks were
installed on the first floor. Dynamic history analysis on the overall structures was conducted.
The elastic shear force spectra of the frames and racks were studied to verify the applicability
of the simplified design method where the racks are regarded as live loads. Simplified
design methods for racks and frames were proposed and the period relationship for three
types of models was established. The interaction between steel racks and the main structure
is considered but the influence of the floor elasticity was neglected, and the mass of racks
was constant during the research, so the applicability of the period relationship needs to be
further verified.

Therefore, for the two-story main structures with racks installed on the first floor,
both steel racks and main structures with different first vibration periods are selected to
be combined into different real structures in this paper. The following analysis will be
performed in the cross-aisle (CA) direction:

(1) Modal analysis will be conducted to study the dynamic characteristics of the real
structures and the simplified structures. The mass of racks is concentrated on the first
floor of the main structures in the simplified structures. The relationship between the
periods of the racks, the main structure, simplified structures, and real structures will
be studied.

(2) The influence of the mass ratio of the rack mass to the total mass of the first floor will
be involved.

(3) The influence of the floor beam stiffness will be considered.

(4) The interaction between the main structures and the racks considering the stiffness of
the floor will be discussed.

The spine-bracing system is always used in the down-aisle (DA) direction to bear the
weight of seismic actions [2,4], representing a different aseismic structural system. Thus, it
will be examined in future studies.

2. Calculation Models and Process
2.1. Calculation Models

In this paper, a two-story structure (Figure 2d) with multiple six-story racks installed on the
first floor is studied. Based on this original structure, the following four models are analyzed.

1.  The first model is the steel rack. As shown in Figure 2a, the steel rack height is 9.0 m
with each story possessing a height of 1.5 m. There are four rack pieces in the DA
direction, and the span between rack pieces is 4.0 m. The spacing between two rack
columns is 1.0 m in the CA direction, and the effective mass of each story is denoted
by m. The elasticity modulus of elements in the rack is denoted by Egy, and the natural
period of the steel rack in the CA direction is denoted by Tgy. The value of Tgy is
changed by varying Egy.

2. A two-story steel frame is taken as the main structure, which is the second model and
is described in Figure 2b. The spans of the main structure in two directions are both
12.0 m, and the height of each story is 10.0 m. The mass of the first floor is M1, and
the mass of the roof is M,. The elastic modulus of the column of the main structure
is denoted by Ec, and the elastic modulus of the beam is denoted as Eg. The natural
period of the main structure in the CA direction is denoted by Tsgy (without including
the masses of racks). Based on the given sections of main structural components, the
period Tsgp will vary in the analysis through changing Ec and Eg.

3. As presented in Figure 2¢, the simplified structure is the third model analyzed in
this paper, which is widely used in current seismic design. The total mass of racks is
concentrated on the first floor of the main structure, and the interaction between the
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main structure and racks is ignored. Thus, the mass of the first floor in the simplified
structure is denoted as M; + n - 6m, in which n represents the number of steel racks.
The natural period of the simplified structure in the CA direction is denoted by
Tss, which varies by changing the values of Ec and Eg. The simplified structure is
abbreviated as SS in the following analysis for convenience.

4. The last model is the real structure shown in Figure 2d, which is composed of the
main structure and n regularly spaced steel racks with the same stiffness. As a result,
the mass of the first floor is M7, while that of the roof is M,. The effective mass of
each story m is considered as live loads subjected to the main structure, but the active
points of the live loads are at their original positions, which is different from the SS.
All the racks are interconnected at their tops. The natural period of the real structure
in the CA direction is denoted by Trs, and the real structure is abbreviated as RS.
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Figure 2. Analysis models.

For the convenience of calculation, the sections of calculation models stay the same dur-
ing the calculation. Table 1 summarizes the details of the calculation models in OpenSees,
and the initial elasticity modulus is set as 2 x 10°N/mm?.
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Table 1. The Sections of Calculation Models.
Size (mm)
Model Element Section
Depth Flange Width Flange Thickness Web Thickness
column W14 x 211 399 401 39.6 249
Main structure
beam W16 x 89 427 264 22.2 13.3
upright W8 x 31 203 203 11 7.24
Rack Pallet beam W8 x 15 206 102 8 6.22
Upright bracing W4 x 13 106 103 8.76 7.11

2.2. Calculation Methods and Processes

The software OpenSees [26] is used for structural modal analysis. Since a large amount
of modal analysis is carried out in this paper, MATLAB is used for data analysis. The steel
members of calculation models are linearly elastic since the study is intended to serve the
practical design. The beams and columns are simulated by elastic beam-column elements,
and the elastic truss elements are used to model the braces of the racks. For the convenience
of calculation, the sections of calculation models stay the same during the calculation. In
addition, the masses of the main structures in OpenSees are M; = 8.155 x 10* kg and
M, =25 x 10* kg. The seismic masses are assumed to be combined on the nodes in terms
of numerical modeling. Furthermore, because concrete slabs are usually used on the floor, a
rigid diaphragm is applied for all floors [27]. The connections between beams and columns
and between columns and foundations are set to be rigid. For the real structures with
racks on the first floor, the uprights of racks are simply supported on the floor beams in the
models, which means that only translational restraints are given to the bottom nodes of the
rack uprights.

Two types of modal analysis are firstly defined as follows:

Modal Analysis 1 (MA1): The period Tgy of the steel rack remains constant, and the
period Tsgp of the main structure changes continuously.

Modal Analysis 2 (MA?2): The period Tsgp of the main structure remains constant, and
the period TRy of the steel rack changes continuously.

The number of steel racks n and the mass of each rack story m varies during the
calculation. For the convenience of calculation, the sections of calculation models stay the
same during the calculation, and the change of the periods of different calculation models
will be realized by changing the elastic modulus of the structural members of models.

Based on the four calculation models mentioned above, the following aspects are
studied respectively:

(1) The beam stiffness of the first floor is infinite (Eg = o0), which means the influence of
the elasticity of the first floor of the main structure is not considered.

Modal analysis is performed on both RSs and SSs to calculate periods Trs and Tss,
and the relationship between Tsg, Ty, and Trs is studied in MA1 and MA2, respectively.
In these cases, the period Tsgy will be varied by changing the elastic modulus Ec of the
columns of the main structure.

(2) When the beam stiffness of the first floor is finite, the relationship between Tsg, Try,
and Trs is also studied in MA1 and MAZ2. In these cases, the period T'sgp will be varied
by changing the elastic modulus Ec (column) and Eg (beam) of the main structure
simultaneously.

(3) The interaction between the regularly spaced steel racks and the main structure is
then studied, considering the influence of the floor elasticity of the main structure.
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3. Period Relationship with Infinite Beam Stiffness
3.1. Rack Periods

As shown in Figure 2a, the period of an independent rack fixed on the ground is Tgy.
When this rack is installed on the first floor of the main structure (Figure 3a), the beams
become the elastic support of the racks. As a result, the period of the rack installed on
the first floor will change. Therefore, a combined system consisting of floor beams and
racks can be constructed with the beams being fixed, and the period of this beams-racks
combined system is denoted by Ty, ., where the subscript n represents the number of racks.
The combined system with one rack is shown in Figure 3b and the period is T, .

7 77 77 777
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i

(a) real structure with one rack on the first floor (b) beams-racks combined system with one rack
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Figure 3. Real structure with one rack on the first floor.

In this section, the beams of the first floor are assumed to be infinitely rigid (Eg = ©0).
Given the mass m of each rack floor, the elasticity modulus of the rack Egy is modified to
obtain an independent rack with the period Ty = 1.0 s. The period of the beams-racks
combined system with one rack can be obtained as Tf{kl = Tk = 1.0 s, indicating that Tgy
does not change if the first-floor beams are infinitely rigid.

As the number of racks increases from 1 to 6, different beams-racks combined systems
are shown in Figure 4. The connections between the racks at their tops ensure that all racks
in the combined system vibrate in the same first vibration mode, as shown in Figure 5. It can
be seen that without considering the influence of floor beam stiffness (Eg = c0), the number
and the arrangement of racks do not affect the modal shape of beams-racks combined
systems, and the periods of the six combined systems are the same, i.e., T}, = Trx = 1.0's.
Therefore, the vibration characteristics of the combined systems with # racks are consistent
with those of the combined system with one rack whose masses and stiffness are multiplied
by n (Figure 6).

A1

Z1

(@n=1

Figure 4. Cont.
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Figure 4. The beams-racks combined system with n racks.
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Figure 5. The first vibration modes of a beams-racks combined system with n racks (Eg = o).

(| simplified as
Ll —

7 regularly-spaced steel racks

Figure 6. Simplified equivalent model in modal analysis (Eg = ©0).

Based on the simplified equivalent model shown in Figure 6, modal analysis will be
conducted to study the relationship between the periods of the rack Tgy, the simplified
structure Tsg, and the real structure Trg under two different cases:
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(1) The total mass of the steel rack is constant, and the value of Ty is changed by varying
the elasticity modulus Egy of the racks.

(2) The stiffness of the rack is constant, and the period Tgy of the rack varies through
changing the total mass of the steel rack.

3.2. Period Relationship with Constant Rack Mass

Firstly, the mass ratio & of the rack mass to the total mass of the first floor in a real

structure is calculated as:
6nm

“= My + 6nm

)

The mass M; of the first floor of the main structure is 8.1646 x 10* kg. The mass m is
firstly taken as 1.3607 x 10* kg, with which the mass ratio is &« = 6nm/(Mj + 6nm) = 0.5,
i.e., the mass of the first floor of the main structure is equal to the total mass of the racks.

Modal analysis is conducted for different real structures composed of different racks
and main structures. The period Ty varies by changing the Egy of racks, and the period
Tssp varies by changing the elastic modulus Ec of columns. It should be emphasized that
varying the period Tsgy will consequently change the period Tsg of the simplified structure
in Figure 2c. Since the simplified structure is used in the current aseismic design, Tsg can
be used directly instead of Tsgg in MA1 and MA2 in this section.

In MA1, Tsg changes continuously (0.02, 0.04, ---,2.98, 3.0 s) while Ty remains constant
(Trx =0.1,0.5,1.0,1.5,2.0, 2.5, 3.0 s, respectively). Under this condition, modal analysis
is conducted on a total of 1050 real structures. Taking the simplified structure period
Tss as the abscissa, seven Trs—Tss curves corresponding to the seven Tgy are obtained in
Figure 7a.

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
Tss /s Tri /s

(a) Trs in MA1 (b) Trs in MA2

Figure 7. Period relationships between three periods with a constant rack mass (Eg = oo, a = 0.5).

In MA2, Ty changes continuously (0.02, 0.04, ---,2.98, 3.0 s) while Tsg remains constant
(Tss =0.1,0.5,1.0,1.5, 2.0, 2.5, 3.0 s, respectively). Under this condition, modal analysis is
conducted on a total of 1050 real structures. Taking the period Tgy as the abscissa, seven
Trs —TRrk curves corresponding to the seven Tsg are obtained in Figure 7b.

From the curves in Figure 7a, it can be seen that for different Ty, each Trs—T'ss curve
starts at Trs = Trx and gradually increases to the straight line of Trg = Tsg with the increase
of Tss. For Ty = 0.1 s, the Trg curve is basically coincident with this straight line. The
curves in Figure 7b obtained in MA2 assume a similar pattern: each Trg curve starts
at Trs = Tss and gradually increases to the straight line of Trs = Trik with the increase
of TRk'
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As the effects of Tsg and Tgi on Trs are mathematically the same, the relationship
between the three periods can be accurately expressed by Equation (2), which is obtained
according to the least squares method. The comparison between the numerical results
and Equation (2) is also presented in Figure 7. The comparison shows that the maximum
deviation is only 1.0%, so Equation (2) has excellent accuracy for both MA1 and MA2.

T = i+ TR @

The mass ratio « is constantly equal to 0.5 in this analysis procedure, and « is not consid-
ered as a variable that may affect the relation between the three natural periods. Therefore,
the role of « will be addressed through parametric studies in the rest of this section.

Firstly, the mass m is set to be m = 5.4431 x 10* kg, giving the mass ratio « = 0.8 and
indicating that the mass of the rack is four times the mass M;. Similarly, the modal analysis
in MA1 and MA2 is conducted to calculate the Trg—Tsg and Trg—TRy curves, and the results
are given in Figure 8. The curves in Figure 8 have similar shapes to those in Figure 7, but
the fitting equation according to the least squares method is Equation (3), which is slightly
different from Equation (2). The comparison between numerical results and Equation (3) is
also given in Figure 8 and the maximum deviation is only 0.8%.

T = T + 1 o

Tgs=0.15
B Ty=0.5s
: : i | 4 Ty=1.0s
* """" """" """"" * v Te=1.5s
| | : : ¢ Ty=2.0s

* Tg=2.5s)
> Tgg=3.0s[
Eq.(3)

i

1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
T /s Tr /s

(a) Trs—Tss in MA1 (b) Trs—Trc in MA2

0.0 0.5 1.0

Figure 8. Period relationships between three periods with a constant rack mass (Eg = oo, a = 0.8).

It can be concluded from Equations (2) and (3) that the relationship between Tgy, Tss,
and TRgs for any value of & can be expressed in the form of:

¢ _ 16 '
Trs = Try + Tss (4)

where the power exponent ¢ is dependent on the mass ratio «.

To further determine the expression of ¢ as a function of &, « is set to 0.1, 0.2, 0.3, 0.4,
0.6,0.7, and 0.9 in MA1 and MA2. Due to the symmetry of the results in MA1 and MA2,
only the Trs—TRk curves obtained in MA2 with different values of a are plotted in Figure 9.
Meanwhile, Equation (4) is also plotted in all the subfigures of Figure 9 using the best fitting
values of ¢ (shown in the notation of each subfigure). The Trs—TRry curves with « = 0.9 are
no longer given and the power exponent is § = 2.35. The maximum deviations between
Equation (4) and the numerical results in Figure 9a—f are 0.94%, 1.07%, 1.08%, 0.92%, 0.96%,
and 0.97%, respectively.
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Figure 9. Period relationships with a constant rack mass (Eg = o0, « =0.1,0.2, 0.3, 0.4, 0.6, 0.7).

According to the results shown in Figures 7-9, the relationship between the power
exponent ¢ and the mass ratio « is concluded as plotted in Figure 10, and the empirical
expression obtained by the least squares method is proposed as Equation (5). The maximum
deviation is only 1.2%.

2.25
= N ®)

8.0 T T T T T T T T T

75F 1

6.5}

Power exponent &
B W W (=)
5 2 0 2

ES
=
T

25+

20 I S T T N R R T
00 0.1 02 03 04 05 06 07 08 09 1.0
Mass ratio &

Figure 10. The relationship between the power exponent ¢ and the mass ratio «.
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Therefore, in the case of infinitely rigid first-floor beams (Eg = 0), if the total mass of
racks on the first floor of the main structure is given, the mass ratio « can be determined and
subsequently the power exponent ¢ is available in Equation (5). Next, the period Tgs of the
real structure can be determined by Equation (4). Therefore, when the simplified structure
is used for analysis in design practice, Equations (4) and (5) can be used to calculate Trg to
consider the difference between Trg and Tsg in the simplified method.

3.3. Period Relationship with Constant Rack Stiffness

When the stiffness of the steel rack is determined (i.e., the elastic modulus Egy is
constant), but the total mass of the rack is uncertain, the period Ty of the rack will vary
through changing the mass of the rack. The constant elastic modulus Egy of the rack is
determined following the principle that Tgy = 3.0 s when the mass ratio « is 0.95. With
the known Egy, Try is 0.158 s when a = 0.05. Similarly, as Try changes continuously (0.02,
0.04, ---, 2.98, 3.0 s), the corresponding relationship between a and Ty can be shown in
Figure 11. It can be seen that the constant Egy obtained by this principle can make the mass
ratio « reasonably distributed in the range of 0~0.95.

1.0 T T T T T
09f - boeooee boooooe- b e R

e

e
3

o
o

Mass ratio o
(=]
i

N
IS

02f o T e o S

CRY Y0 O O O

0.0 1 1 1 1 1

Figure 11. The relationship between Ty and the mass ratio «.

For the calculation models in Figure 2, the period Tsg of the simplified structure
changes with the change in mass of the racks. The modal analysis is conducted on both the
simplified structures and the real structures according to MA2, in which the Tgy changes
continuously (0.02, 0.04, ---, 2.98, 3.0 s) while Tsgy remains constant (Tsgp = 0.1, 0.5, 1.0,
1.5, 2.0, 2.5, 3.0 s, respectively). The simplified equivalent models for real structures in
Figure 6 are still used in modal analysis. Therefore, Trs—Trk and Tss—Try curves can be
obtained corresponding to the Tsgy of the seven periods of the main structures, as shown
in Figure 12a. Meanwhile, according to the relationship between Ty and the mass ratio a
(Figure 11), Trs—oc and Tsg—a curves are shown in Figure 12b.

Since the rigidity of the rack is constant, Figure 12 shows that:

(1) For the main structure with maximum rigidity (Tsgp = 0.1 s), Trs is basically the same
as Try, and Tsg hardly changes with Tgy and «;

(2) For relatively flexible main structures (Tsgg > 2.0 s), Trs is close to Tsg and the
maximum deviation is only 6.0%, which means the simplified structure can be used
in place of the real structure in modal analysis;

(8) With the decrease in Tsgy, (i.e., the rigidity of the main structure is gradually increased
relative to the rack), the difference between Trg and Tsg becomes more obvious;
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Power exponent &

(4) With the increase of TRy, the Trs—Trk and Tss—Try curves gradually become straight
lines, which means Trg and Tsg are linearly related to Try. Moreover, the difference
between Trs and Tsg gradually increases.

12 T T
TRS
11 F—e— Ty =0.15F © -

o Tggy=0.58 0 -
2 Tgq=1.09 2 -
9 v Tso=1.59F <~
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T, Rk /s o

(a) Trs—Trk and Tss—Trk curves (b) Trs—a and Tss—a curves

Figure 12. Trg and Tsg curves as a function of Ty and « with constant rack stiffness.

The numerical results of Trs and Tsg in Figure 12 can also be used to validate Equation (4).
Based on the corresponding relationship between Ty and « in Figure 11, the power exponent
¢ in Equation (4) can be obtained by Equation (5), as shown in Figure 13a. Therefore, the
periods TRrg of real structures can be calculated using Equation (4) (TES = Trg{k + Tgs) and
plotted in Figure 13b. The Trs—Try curves obtained from Equation (4) are in good agreement
with the numerical results, with a maximum deviation of 0.6%.

T T T
'umerical results Eq.(4)

11 0 Ts5=0.1s |[—o— Ts=0.1 5
0 Teq0.5s o Ty =053 | D}},

00 & =105 [a—Tym104 ! )};
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5 L > Tsso=3.0s J——T5=3.05 f /
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N
E@
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A

M\E w

TRk-/S 4 4 TRJ;/S

(a) Relationship between Trk and power exponent £  (b) Numerical results and Equation (4) for Trs

Figure 13. Comparison of the numerical results and Equation (4) for Trs with changing rack mass
ratio o (Eg = o).

To conclude, the Tgry—Tss—TRrs relationship can be accurately expressed using
Equations (4) and (5) when the influence of floor beam stiffness is not considered and
the first-floor beams are assumed to be infinitely rigid (Eg = o0).
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4. The Period Relationship with Finite Beam Stiffness

The Tri—Tss—TRrs relationship, Equation (4), is based on the assumption that the first-floor
beams are assumed to be infinitely rigid (Eg = c0). However, the floor beam stiffness is finite
in practice. Therefore, the influence of floor beam stiffness on the Try—Tss—TRrs relationship
will be taken into account in this section.

The real structures with 1-6 steel racks installed on the first floor, as shown in Figure 14,
are used in the modal analysis. For the main structure shown in Figure 2b, because the
frame beam is normally heavy in such warehouses, the period Tsgg is mainly controlled by
the elastic modulus of columns (Ec). The elastic modulus of beams (Eg) is always equal to
Ec. The variation of Tsg is realized by changing Eg and Ec simultaneously, and the ratio
of beam-to-column stiffness 7, /i. is constant at 0.41 according to the given sections of the
main structural components in Table 1.

(e)n=5 (f)n==6
Figure 14. Real structures with n racks on the first floor.

Considering that Equation (4) is related to the mass ratio «, in order to more directly
show the influence of the number of racks, the mass of racks can be prescribed as follows:
The total mass of racks is prescribed (the mass ratio « is constant), and it is uniformly
distributed to different numbers (1 =1, 2, 3, 4, 5, and 6) of racks on the first floor, ensuring
the same period for each rack. Since the total mass of racks in engineering practices would
not be very small, the mass ratio « is assumed to be in the range of 0.4-0.9.

For each constant mass ratio &, modal analysis is carried out for the six real structures
in Figure 14 and simplified structures according to MA2, in which Ty changes continuously
(0.02, 0.04, ---, 2.98, 3.0 s) while Tsgy remains constant (Tsgg = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 s,
respectively).
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It should be noted that when the Tsgy remains constant, the changing a will conse-
quently change the period Tsg of the simplified structure in Figure 2c. With different values
of «, the corresponding Tsg values are listed in Table 2.

Table 2. Period Tsg of simplified structures with different values of .

Periods of the Main Periods of Simplified Structures T'sg (s)

Structure Tsso (s) k=04 &=05 w«=06 x=07  «=08 x=09
0.1 0.114 0.121 0.131 0.146 0.172 0.235
05 0572 0.606 0.655 0.730 0.862 1175
1.0 1.144 1213 1.310 1.460 1.724 2.351
15 1.717 1.819 1.965 2.190 2.586 3.526
2.0 2.289 2.425 2.620 2919 3.448 4701
25 2.861 3.032 3.275 3.649 4311 5.877
3.0 3.433 3.638 3.930 4379 5.173 7.053

Firstly, modal analysis on the six real structures (Figure 14) with different Tsgy and Tgy is
conducted to obtain the corresponding Trs when the mass ratio « is 0.4, as shown in Figure 15.

1

For comparison, the Trg can be calculated using Equation (4) (Trs = (Tlgk + Tgs) ¢ ), in which
the period Tsg can be determined in Table 2 with the given mass ratio « and Tsgy. The power
exponent ¢, is calculated by Equation (5) (¢ = 2.25/+/a = 3.558). Therefore, the calculation
results of Equation (4) are the same for the six real structures in Figure 14, as shown in
Figure 15. It can be seen that: when Tgy > 1.0 s, the maximum deviation of Trg between the
numerical results and Equation (4) is only 3.4%. When the racks are nearly rigid (Tgy = 0.02 s)
and Tsgy = 3.0 s, the maximum deviation is 18.9%.
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Figure 15. Numerical results and Equation (4) for Trg with finite beam stiffness (« = 0.4, ¢ = 3.558).
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Similarly, for « = 0.6 and 0.8, the numerical results of Tgg are plotted in Figures 16 and 17,
and Trs—Tgk curves obtained from Equation (4) with { = 2.25/y/a = 2.905 and
¢ =225//a = 2516 are also plotted in Figures 16 and 17 for comparison, respectively. It
can be seen from Figure 16 that when Tgy > 1.0 s, the maximum deviation of Trg between
the numerical results and Equation (4) is only 4.4%. When the racks are nearly rigid and
Tsso = 3.0 s, the maximum deviation is 18.2%. For Figure 17, the maximum deviation is 6.6%
when Tgy > 1.0 s, while it increases to 17.0 when the racks are nearly rigid and T'sgy = 3.0 s.
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Figure 16. Numerical results and Equation (4) for Trg with finite beam stiffness (« = 0.6, ¢ = 2.905).

Based on Figures 15-17 illustrating the influence of finite floor beam stiffness, the
following conclusions can be drawn:

(1) When Tgg > 1.0 s, the numerical and theoretical (Equation (4)) results of Trg are in
good agreement. Therefore, Equation (4) is still applicable.

(2) When Tgi < 1.0 s, the numerical results of Trg are shorter than those obtained from
Equation (4).

(3) With the increase of the rack number #, the difference between the numerical results
and Equation (4) becomes more obvious, especially in the cases of longer Tsgy. Max-
imum differences occur when n is 6, Tsgg = 3.0 s, and Ty < 1.0 s, in which case the
racks are relatively rigid and the floor beams are flexible.

For practical engineering, the warehouse height can reach 20-25 m, and the story
height is about 10-12 m. The steel racks are essentially very tall and flexible structures, and
many racks supporting heavy pallet units have periods of 1.5-2.5 s in the CA direction.
When multiple racks with periods of 1.5-2.5 s are placed on the first floor of the two-story
real structure, most of the mass of the real structure comes from the racks and the period of
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the real structure will be longer than 1.0 s. For these cases, Equations (4) and (5) proposed
in this article are applicable in the design practice.

Although these differences are almost acceptable in practical engineering, the reasons

for the differences should be further analyzed in the following part to include them in

practice.
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Figure 17. Numerical results and Equation (4) for Trg with finite beam stiffness (« = 0.8, { = 2.516).

5. The Interaction between Racks and the Main Structure

Based on the above analysis, the reason for the difference between Equation (4) and
the numerical results is that the interaction between racks and the main structure (mainly
floor beams) has been neglected in Equation (4). In the following, the influence of the racks
on the main structure and the influence of the main structure on the racks are studied by
constructing different analysis models.

5.1. Influence of the Main Structure on Racks

The influence of the main structure on racks on the first floor is mainly reflected in the
influence of the rigidity of the first floor beams as the elastic supports of the racks. In the
case of infinite beam stiffness (Eg = 0), all racks in the six combined systems (Figure 4)
have the same first vibration mode in the CA direction, i.e., TI/{kn = TRy, as seen in Figure 5
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When the floor beam stiffness is finite, however, the period Ty, , # Trk. Therefore,
the different beams-racks combined systems given in Figure 4 are selected to study the
influence of the main structure on the racks. The elastic modulus Eg of the beams will be
taken as the elastic modulus of the members when the period Tsgy of the main structure is
0.1,0.5,1.0,1.5, 2.0, 2.5, and 3.0 s, respectively, ensuring that Tsg basically covers the range
of 0.02 s-3.0 s. For example, when Tsg is 1.0 s, the elastic modulus of beams is denoted as
EB (TSSO =1.0 S).

The real structures with 1-6 steel racks installed on the first floor, as shown in Figure 14,
are used in the modal analysis. For the main structure shown in Figure 2b, the period Tsg
is mainly controlled by the elastic modulus of columns (Ec). The elastic modulus of beams
(Ep) is always equal to Ec, and thus, the variation of Tsg is realized by changing Eg and
Ec. The ratio of beam-to-column stiffness #,/i. is constant at 0.41, according to the given
sections of main structural components in Table 1.

Therefore, the mass ratio is set as « = 0.6 and the Ty changes continuously (0.02,
0.04, ---,2.98, 3.0 s) for each elastic modulus Eg (Tsgy = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 s). The
modal analysis is conducted for the six different beams-racks combined systems to obtain
corresponding T, ,,, and the relationship between T, . and Ty is shown in Figure 18.
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Figure 18. The period Tﬁkn of the six different beams-racks combined systems with finite Eg (« = 0.6).

It can be shown in Figure 18 that when the elastic modulus Ep of the beams results in
a main structure period of Tsgp = 0.1 s, meaning that the first-floor beams are nearly rigid,

Thy, is closed to Try.

For the case of the rack number 1 = 1, the difference between T, ; and Tgy increases
gradually with the decrease in Eg, which means that the restraint of the beams to the racks
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decreases. However, as n increases, the differences become insignificant, e.g., when n =6,
Figure 18f shows that Tﬁkn and Tgy are almost the same, which means the restraint to the
racks is nearly rigid and the effect of beam stiffness Ep is small.

For the calculation of T, , of the combined system shown in Figure 19a, a simplified
equivalent method (Figure 19b) can be introduced: the connecting bars between racks at
their tops ensure that all racks in the combined system vibrate in the same shape, and the
floor beams act as the elastic rotational restraint for the racks under horizontal vibration.
The period is written out by considering the original system as the two sub-systems set up
in series:

Tiin = To + Tii ©)

in which Ty is the period when the racks are integrated as one infinitely rigid rack which is
supported by a rotational spring with a stiffness of Kz. Therefore, Ty physically represents
the rotational restraint of the floor beams to the racks. Tgy is the period of the rack fixed on
the ground.

n regularly-spaced steel racks —
Rigid |—Rack

N\

UTIN T Ty T
‘E; :E;

= +
H
e
NH R
i i
A AL KZ - KZ
(a) The beams-racks combined system with 7 racks (b) The simplified equivalent model

Figure 19. The beams-racks combined systems and the simplified equivalent model.

Based on this simplified equivalent method, referring to the values of T, . in Figure 18
(« = 0.6), the period T for different numbers of racks can be determined using Equation (6)
(To = /T, — T3,) and plotted in Figure 20.

Ty decreases with the increase in floor beam stiffness (Eg), as shown in Figure 20, and
Trs becomes closer to that obtained using Equation (4), which can also be concluded from
Figure 16.

By comparing the curves with Tsgp = 3.0 s in Figure 20a—f, it is found that:

(1) Inthe case of n =1, Ty approaches the maximum value of 1.6 s, which means that
the restraint of the beams to the racks is relatively minimal. The difference between
Tﬁkl and Tgy also reaches the maximum. However, as illustrated in Figure 16a, the
numerical results of Ty are approximated to those obtained from Equations (4) and
(5) with good accuracy.

(2) In the case of n = 6, the maximum value of Ty is only 0.5 s and Ty decreases further in
the short period range of Ty < 1.0 s, which means the difference between Tﬁké and
TRk is small and the restraint of the beams to the racks is nearly rigid. However, as
depicted in Figure 16a, the maximum difference of Trg between the numerical results
and the prediction of Equation (4) occurs exactly within this range.

Therefore, in the period range of long Tsgy and short Ty in Figure 16, the differences
between numerical results and Equation (4) are not due to the influence of the floor beams
on the racks.

Comparing Figures 18 and 20, it can be seen that such differences are basically con-
sistent with the trend of T curves. Based on the simplified equivalent method for T, ,
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in Figure 19b, the decrease in T is due to the increase in Kz, which means the reversed
rotational constraint of racks on the beams also increases gradually. Therefore, the dif-
ferences of Trg between numerical results and Equation (4) are probably caused by the
strengthening effect of the racks on the floor beam stiffness, which will be discussed in
detail in the following.
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Figure 20. The period T of the six different beams-racks combined systems with finite Eg (o« = 0.6).

5.2. Influence of Racks on the Main Structure

The racks may increase the stiffness of the first floor, and this can be studied using
the new model shown in Figure 21. This modified model reserves the racks but integrates
the total mass of the racks into the first floor of the real structure. This modified model is
distinguished from the simplified structure in Figure 2¢ by taking into account the effect of
the no-mass racks, so the period of this modified model is denoted by TéS' Therefore, the
analysis of the influence of the racks on the main structure can be obtained by comparing
the periods of the simplified structure (Tsg) with the periods of the modified model (T{).

The analysis started with the case leading to the maximum difference in Trg between
numerical results and Equation (4) in Figure 16, in which Tsgyp =3.0s, 7 =6, and a = 0.6. In
this case, the period Tsg is 3.93 s. The Trs obtained from Equation (4) (Tlg = Tng + Tsés) is
larger than the numerical result, especially when Tgj < 1.0 s.

For the new modified model with no-mass racks in Figure 21, the influence of the
different racks is included by setting different values of Ery corresponding to Tryx = 0.1,
0.5,1.0, 1.5, 2.0, 2.5, and 3.0 s. Modal analysis on modified models with these different
racks is conducted. The obtained T{g are listed in Table 3, and corresponding modal shapes
are plotted in Figure 22a—f. For comparison, the modal shape of the simplified structure
without racks (Tsg = 3.93 s) is also given in Figure 22g.
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M [Modified as i

Real Structure Modified model
Pcriod: Ty Period: T

Figure 21. The new modified model based on the real structure.

Table 3. Period Tés of the modified model with no-load racks (n = 6, x = 0.6).

Frame Beam Amplitude of = Frame Beam Amplitude of

Tsso (5) Tri () Tss (s) Tss () Simplified Structure (mm) Modified Model (mm)
0.1 3.29 0.49
0.5 3.53 2.08
1.0 3.70 3.77
3.0 15 3.93 379 6.16 471
2.0 3.84 5.22
25 3.87 5.51
3.0 3.88 5.69
\ \ \
NNNTN
URYARvRY i }
NNRKKES
AU
NNNNNN
A AN
(@) Tre=0.1s (b) Tre=0.5s (c) Tre=1.0s (d) Tre=1.5s

NNNN
nk
N
vyl

() Tre=2.0s (f) Tre=2.5s (8) Tre=3.0's (h) Tss=3.93s

Figure 22. The first modal shapes of modified models and simplified structures.
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It is seen in Table 3 that Tés is always shorter than Tsg and the difference increases
with the increase in the rack stiffness. Combined with Figure 22 for the first modal shape, it
is found that with the increase in rack stiffness, the deflection amplitude of the floor beam
in the vibrational mode becomes smaller. The specific deflection values of the first vibration
amplitude are given in Table 3.

When Tgy = 3.0 s, the racks have a small effect on the stiffness of the frame beam.
The vibration amplitude of the frame beam is 92.3% of that in the simplified structure
shown in Figure 22h with the corresponding Tg = 3.88 and s = 0.99Tsg. Thus, the vibration
characteristics of the two models are almost identical. In this case, the value of Trg obtained
from numerical results is basically equal to that obtained from Equation (4), as shown in
Figure 16f.

On the other hand, when Tgy = 0.1 s, the frame beam of the first floor is almost rigid,
and the vibration amplitude is only 8% of the amplitude in the simplified structure, and
T¢s = 3.29 and s = 0.837Tss. Therefore, the racks with high rigidity increase the stiffness of
the floor beams and contribute to reducing the period of the simplified structure. However,
in Equation (4) which represents the simplified design method, this strengthening effect
has not been included in the simplified structure, thus a long Tss leads to a longer Trg
obtained from Equation (4) than the numerical results, as shown in Figure 16f.

The role of the connecting bars between racks in this strengthening effect should
also be addressed in this section. Modal analysis is conducted on the modified model in
Figure 21, without connecting bars between the top of racks. Similarly, given Tsgy = 3.0 s
and different values of Egy corresponding to Ty =0.1,0.5,1.0, 1.5, 2.0, 2.5, and 3.0 s, the Tés
and the vibration amplitudes of frame beams are listed in Table 4. Meanwhile, the periods
Trs of the seven real structures in Figure 16f are also listed. The first modal shape of the six
modified models without connecting bars are shown in Figure 23.

Table 4. Vibration characteristics of the modified model with/without connecting bars (1 = 6, x = 0.6).

Frame Beam Amplitude of

Tsso (5) Tric (6) Tss () Tgs (5) ss @ Modified Model (mm)
With Bars Without Bars With Bars Without Bars
0.1 3.28 3.29 3.50 0.49 3.27
0.5 3.54 3.53 3.73 2.08 432
1.0 3.75 3.70 3.80 3.77 492
3.0 15 3.93 3.90 3.79 3.85 471 5.33
20 4.04 3.84 3.87 5.22 5.59
25 421 3.87 3.89 5.51 5.76
3.0 441 3.88 3.90 5.69 5.86

(@) T=3.50's (Tre=0.1s) (b) T=3.73s (Tr=0.5's) (c) T=3.80s (Tre=1.0's)

Figure 23. Cont.
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(d) T=3.855(Trc=1.55) (e) T=3.87s(Trx=2.05) (f) T=3.89s (Trc=2.55)
Figure 23. The first periods and modal shapes of the modified models without connecting bars.

It is found in Table 4 that, when Tgy > 1.0 s, the T{g of the modified model with no-mass
racks is not significantly affected by the top connecting bars. The modal shapes corresponding
to different Tés are quite similar, as shown in Figure 23. However, when Ty < 1.0 s, the
strengthening effect of the connecting bars on the frame beams cannot be ignored.

To further analyze the effect of connecting bars on the real structure, the real structure
with Tsgp = 3.0 s and Ty = 0.1 s is selected, and modal analysis is conducted on real
structures with and without the top connecting bars, respectively. The modal shapes of this
real structure without connecting bars are plotted in Figure 24, and those of real structures
with connecting bars are plotted in Figure 25.

(@) Ty, =351s (b) Ty, =1.35s (c) Tys; =1.25s (d) Tpg, =0.78s

Figure 24. The periods and modal shapes of the real structure without connecting bars.

(@) Ty, =328 (b) Ty, =1.225 (©) Ty =020s

Figure 25. The periods and modal shapes of the real structure with connecting bars.
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It can be seen that the first modal shapes are similar with or without bars, and the
connecting bars reduce the first natural period of the real structure by 6.6%. The top
connecting bars change the second and higher-order vibration modes.

Therefore, the strengthening effect of the racks on the beams is partly due to the high
rigidity of the racks and connecting bars. The connecting bars eliminate the local vibration
modes between racks and ensure that the modes of all racks are laterally consistent. As a
result, the real structure will vibrate as an integrity.

Thus, Equation (4) can be modified by replacing Tsg with T{g:

¢ _ ¢ /¢
Trs = Ty + Tsg )

in which the power exponent ¢ corresponding to the mass ratio « can be obtained by
Equation (5).

In order to validate Equation (7), modal analysis is conducted on the modified model
shown in Figure 21 according to MA2, in which Tgy changes continuously while Tgg
remains constant. The obtained Tg are plotted in Figure 26a, and the corresponding Tsg are
also given. Therefore, the Trs can be calculated by Equation (7) to be compared with the
numerical results, as shown in Figure 26b. It can be seen that they are in good agreement
and the maximum deviation is only 1.1%.

43 — T 45
L [Ty 3083935

Ul T, FTeeam 40
35 T g2, Tg3.275) ] 35
pa® "ol booieod-odod 3.0
g 25

2

%

| [Numerical Tyq:Tgq= © 0.1s

Ahdddd bbb ddddddddd

1.5 W Tgq=1.08,Tgs=1.31s| _ | 15

‘ | o 05 & 10s v 155
- LOF------ R~ | o 205 o 25 > 3.0s |

’ : | {Trs by Eq.(7): Tggg=——0.1s
sk S L =055 —A—1.0s—v—1.5s | |

T ’ | —#—2.0s —#—2.55 ——3.0s

. . . > > T | | |
0.0 ! poecepeceepeseepeees 0.0 ; ; ; i i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
Ty /s Tail/s

(a) Ty; of modified model with no-mass racks  (b) Numerical results and modified Equation (7) for Trs

Figure 26. T4s of the modified model and a comparison between numerical Trg and modified
Equation (7) (n =6, a = 0.6).

In addition, it is also indicated in Figure 26a that the difference between T{g and Tsg
due to the strengthening effect of racks on floor beams is significant only in the cases where
the racks are relatively rigid compared with the first floor of the main structure. With an
increase in floor stiffness, the difference becomes smaller. For Tsgy = 3.0 s, when Ty =0.5s,
T¢g = 3.53 and s = 0.9Tsg, and the deviation is 10% while it was only 5% when Tgy = 1.06 s.
When Ty continues to increase, the influence of steel racks on the main structure floor can
be neglected.

For convenience of calculation, this type of strengthening effect can be considered by
multiplying the obtained period Trs by a reduction factor of 0.8-0.95, similar to the effect of
infilled interior walls on the period of a frame. When Tgy > 1.0 s, a reduction factor of 0.95
can be used. A reduction factor of 0.8 should be used when the racks are nearly rigid and
Tsso is approaching 3.0 s. However, these cases rarely happen in practice, as the rigidity of
the first floor is generally large as they are required to support multiple fully distributed
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and fully loaded racks. As the steel racks are essentially very tall and flexible structures,
many racks supporting heavy pallet units have periods Trx > 1.5 s in the CA direction.

Therefore, in the design practice of a real structure with racks on the first floor, the
simplified structure period Tsg can be obtained by concentrating the mass of all racks into
the first floor of the main frame. Combined with the characteristics of racks, the period Trg
of the real structure can be accurately predicted by Equations (4) and (5), with a suitable
account of the stiffening effect of racks on beam stiffness by a period reduction factor of
0.8-0.95.

6. Summary and Conclusions

In this paper, a two-story steel frame is selected as the main structure. Steel racks
with different masses, stiffnesses, and quantities are placed on the first floor of the main
structure to form different real structures (RSs). The corresponding simplified structures
(SS) are frames with the mass of steel racks concentrated on the first floor of the main
structure. Modal analysis is performed to analyze the dynamic characteristics of RS and
SS in the CA direction. The periods Trs of the RSs and Tsg of the SSs are calculated, and
the interaction between regularly spaced steel racks and the main structure is studied. The
following conclusions can be drawn based on the results:

(1)  When the first-floor beams are assumed to be infinitely rigid (Eg = o), the connecting
bars at the top of the racks ensure that all racks vibrate in the same first vibration
mode. The number and arrangement of racks have no influence on the modal shape
of the real structure.

(2) When Eg = oo, the relationship between the period Ty, Tss, and Trs can be accurately
expressed by Equation (4): TES = Tlgk + T§S/ where the power exponent ¢ = 2.25/+/a.
The influence of the mass ratio « is considered, so that the relationship is applicable
for the mass ratio « changing in the range of 0~1.0.

(3) The influence of the finite floor beam stiffness of the main structure on the relationship
between the period TRy, Tss, and Tgs is taken into account. When Tgy > 1.0 s,
Trs predicted by Equation (4) are in good agreement with the numerical results.
However, with the increase of the rack number 1, the difference becomes more
obvious, especially for the cases of long T'sgy with relatively rigid racks and flexible
floor beams.

(4) With finite beam stiffness, the influence of the main structure on the racks is reflected
in the influence of the rigidity of the first-floor beams as the elastic supports of the
racks. Different beams-racks combined systems are selected to study the influence of
the main structure on the racks. The period Ty, of the beams-racks combined system
is always greater than Ty, and the difference increases gradually with the decrease in
beam stiffness, but with the increase in the number of racks (which is always the case
in practice), the difference is becoming non-significant and negligible.

(5) With finite beam stiffness, the strengthening effect of the racks on the stiffness of the
floor beams of the main structure is studied by constructing a new modified model,
which is distinguished from the simplified structure by taking into account the effect
of the no-mass racks. The racks with high rigidity and the continuous inter-connecting
bars at the tops of the racks increase the stiffness of the floor beams and contribute to
reducing the period of the simplified structure. The inter-connecting bars eliminate
the local vibration modes between racks and ensure the modes of all racks are laterally
consistent. As a result, the real structure will vibrate as an integrity.

(6) This strengthening effect leads to a shorter period Trs than that predicted by
Equations (4) and (5), especially in the cases where the racks are relatively rigid
compared with the first floor of the main structure. This effect can be considered by
multiplying the obtained period Trs by a reduction factor of 0.8-0.95, similar to the
effect of infilled interior walls on the period of a frame, but these cases rarely happen
in practice.
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Therefore, in the design practice of a real structure with racks on the first floor, the
simplified structure period Tsg can be obtained by concentrating the mass of all racks on
the first floor of the main structure. Combined with the characteristics of racks, the period
Trs of the real structure can be accurately predicted by Equations (4) and (5), with the mass
of steel racks concentrated on the first floor of the main structure.
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