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Abstract: Supplementary cementitious materials (SCMs) have been widely used to replace cement
in recent years in order to reduce the burden of cement on the environment. In this study, fly ash
(FA) and ground-granulated blast furnace slag (GGBFS) were used as long-term 40%, 50% and 60%
replacement cement in order to explore the mechanical strength of different superplasticizers (SPs)
under high substitution amounts. The results of the study showed that, in terms of the nature of work,
when 60% of cement was replaced with SCM, the initial setting time was increased by 40–70 min.
The values of the ratio of the initial to final setting time (I/F ratio) are equivalent when the I/F values
of PCE and SNF are at W/B = 0.27 and 0.35, and at the lowest W/B (0.21) in this study, the I/F
calculation result was the difference between PCE and MLS. The I/F value is equal, which means that
when the W/B is low, PCE and MLS have the same impact on workability, and as W/B increases, the
impact of PCE and SNF is similar. In terms of compressive strength, W/B = 0.21. The 1-day curing
age of PCE was compared with the 91-day curing age, and it was found that at high volumes of
replacement, increasing GGBFS by 10% can increase the strength by 37%. Using the ultrasonic wave
velocity as the input value and the compressive strength result as the output value, the MATLAB
back propagation neural network prediction model was carried out. The best correlation coefficient R
value of MLS was 0.97, and the mean squared error was 2.21, which has good prediction ability.

Keywords: fly ash; ground-granulated blast furnace slag; superplasticizer; ternary compound
concrete; back propagation neural network

1. Introduction

A low-carbon circular economy is a goal that the whole world is striving to achieve.
Similarly, the construction industry wants to meet this goal in terms of its widely used
cement-related products and to thus reduce the negative effects of cement manufacturing
on the environment and create a sustainable, environmentally friendly, and green-energy-
based environment. During the cement manufacturing process, approximately 0.9 metric
tons of CO2 are emitted into the atmosphere for every metric ton of cement produced [1].
Cement, an adhesive in concrete, is one of the primary reasons for the considerable amounts
of greenhouse gases generated by the construction industry [2]. Therefore, the most
effective method for decreasing the harmful effects of greenhouse gases on the atmosphere
by reducing greenhouse gas emissions is to replace cement with materials that have cement-
like properties [3]. Supplementary cementitious material (SCM), as a substitute for concrete,
can effectively reduce environmental impact and protect natural resources. Most of the
basic components of SCM are pozzolanic, which can effectively increase the late strength of
concrete, improve the microstructure, and reduce greenhouse gas emissions [4].

Fly ash (FA) is a type of ash produced by coal-fired power plants and is commonly
used as a SCM inside cement-based materials. In industry, it is commonly believed that
when replacing cement with FA, 10–30% should be used [5,6]. Scholars have studied
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high-volume fly ash (HVFA) concrete [7,8], an environmentally friendly material, and
investigated its suitability as a sustainable material for the construction industry. HVFA
concrete can be developed that has the ideal mechanical properties and durability [9–12].
Bouzoubaâ et al. [13] replaced 50% of the mass of cement used with FA under the condition
of a water/cement ratio (W/C) of 0.42 and found that after the material had been cured
for 56 and 91 days, it exhibited a compressive strength of 32.2 and 35.2 MPa, respectively,
values that are considerably superior to those of ordinary Portland cement (OPC) concrete
without FA under the condition W/C = 0.53. Mardani-Aghabaglou and Ramyar [14]
indicated that when 60% of cement is replaced with FA, the material that results after
180 days of curing has 15–18% higher compressive strength than does OPC. Chen et al. [15]
reported that replacing 50–80% of cement with FA reduced the rate of drying shrinkage
by roughly 23–30%. Müllauer et al. [16] discovered that replacing 70% of cement with
FA effectively inhibited alkali–aggregate reactions. Wang et. al. [17] used finely ground
phosphorus slag (FGPS) and FA to investigate the durability of hydraulic concrete; their
results show that adding FGPS and FA can help reduce the pore structure of concrete,
and the optimal replacement amounts are 30% of FGPS and 15% of FA. Wang et. al. [18]
discussed the influence of FA on the permeability of panel concrete. Their research results
showed that the optimal FA addition amount is 30%, and under long-term maintenance, it
can effectively improve the development of compressive strength.

Ground-granulated blast furnace slag (GGBFS) is one of the waste products of blast
furnace ironmaking. When making iron, glassy blast furnace slag is produced following
water quenching and cooling. GGBFS has been widely used as a replacement for cement to
glue materials together and has been found to exhibit remarkable gluing effects. Crossin [19]
reported that using GGBFS as an SCM could lead to a decrease in greenhouse gas emissions
of 47.5%. Using a higher GGBFS content when fabricating ternary mixed cement led to
cement with higher mechanical strength compared to that of OPC when the curing period
was 28 days [20–22]. Lim et al. [23] noted that ternary mixed cement made using GGBFS
initially had a compressive strength lower than that of OPC because of the OPC dilution
effect. However, after a curing period of 28–365 days, the compressive strength was greater
than that of OPC [20]; the increase in compressive strength is most substantial for a curing
period of 28–91 days [21–24]. Cheah et al. [25] produced ternary mixed cement mortar by
using cement, ground coal bottom ash (GCBA), and GGBFS. Their results showed that the
optimal mix ratio was 40% GGBFS and 5% GCBA if no superplasticizer (SP) was added
and 40% GGBFS and 10% GCBA if SP was added. These findings revealed that the two
SCMs can effectively enhance the physical and mechanical properties of cement mortar [26].
Through the research on ternary cementitious materials (GGBFS and silica fume) and waste
concrete aggregates, it was found that effectively replacing cement with 25% GGBFS can
effectively increase the global warming potential value. Weise et. al. [27] explored the
effect of the addition of metakaolin on OH addition. The study showed that the addition of
metakaolin was 30 wt%, and the consumption of CH was the largest at the age of 28 days
and 56 days and the slowest at the age of 28 days. CH will be completely consumed after
the period, causing the strength to be affected. SCMs have a high amount of metakaolin,
which can improve the cement reaction in concrete [28].

Although many scholars have conducted correlation studies on various SCMs, few
have investigated the effects of high GGBFS and FA replacement ratios on the engineering
properties of various SP agents. As the use of environmentally friendly materials as building
materials becomes increasingly popular, replacing cement with SCMs in high ratios will
inevitably become a future development trend. Accordingly, this study replaced over 50%
of cement with GGBFS and FA (in accordance with the weights of cementing materials)
and with HVFA and GGBFS concrete (HVFGC) fabricated using three SP agents at low
water-to-binder (W/B) ratios; the engineering properties (e.g., workability, mechanical
properties, and durability) of the mixed materials were then examined.
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2. Methods
2.1. High Volume Fly Ash and Ground Granulated Blast-Furnace Slag Concrete
Material Preparation

The HVFGC cementitious materials produced in this study were mixtures of OPC,
GGBFS, and FA, whereas the pellets that were fabricated were made of natural sand from
Ligang Township, Taiwan. The SP employed, provided by Yo Rich (Taipei, Taiwan), had a
solid content of 34.4%; the polycarboxylate superplasticizer (PCE), a light yellow liquid,
had a water reduction rate of 26.9%; the sulphonated naphthalene formaldehyde (SNF)
condensate, a dark brown liquid, had a water reduction rate of 23.6%; and the modified salt
of lignosulfonates (MLS), a brown liquid with a pungent smell, had a water reduction rate
of 12.2%. Detailed information on the materials is provided in the following subsections.

2.1.1. Cementitious Materials

In this study, the cement used was Type 1 Portland cement provided by the Southeast
Cement Corporation (Kaohsiung, Taiwan); this cement conformed to the ASM C150 guide-
lines [29]. The FA used was Class F coal fly ash, a recycled and environmentally friendly
material provided by the Taiwan Power Company; this FA conformed to the ASTM C618
guidelines [30]. The GGBFS, provided by the China Steel Corporation (Kaohsiung, Taiwan)
conformed to the ASTM C989 guidelines [31]. The composition of the HVFGC cementitious
materials is detailed in Table 1.

Table 1. HVFGC materials chemical and physical composition.

Chemical Composition (%) Cement FA GGBFS

SiO2 21.23 67.9 34.4
Al2O3 5.57 21.5 14.8
Fe2O3 3.57 3.63 0.41
CaO 62.15 2.1 41.7
MgO 2.51 1.2 6.6
SO3 1.99 0.26 0.12

Na2O 0.1 0.68 0.28
K2O 0.54 0.84 0.37

Physical property

Fineness (m2/kg) 321 381.8 400
Specific gravity 3.15 2.16 2.90

Alkali content (%) - 1.23 0.52
LOI 2.65 2.8 -

2.1.2. Natural Aggregate

The coarse and fine aggregates used in the experiment were all natural river sand
collected from Ligang Township, Pingtung County, Taiwan. The aggregate particle sizes
conformed to the ASTM C33 [32] gradation curve guidelines. The coarse aggregate, which
was obtained by collecting the aggregate that did not pass through a 3/8” sieve #4, had a
specific gravity and water absorption rate of 2.65 and 1.71%, respectively (Figure 1). By
contrast, the fine aggregate had a specific gravity and water absorption rate of 2.61 and
1.92%, respectively (Figure 2).
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2.2. Mixing Proportionss and Specimen Preparation

This study investigated the effects of adding high ratios of pozzolanic materials and
SPs to high-performance concrete. The ratios were calculated using the volume method
and low W/B ratios of 0.21, 0.27, and 0.35. Fixed amounts (i.e., 2%) of PCE, SNF, and MLS
were added, where the ratios of FA and GGBFS that replaced the cement were set at either
20% or 30%. The different ratios of cement replaced in the experiment are shown in Table 2.

Table 2. Experimental variables and codes.

Variable Value

W/B 0.21, 0.27, 0.35
FA (%) 20, 30

GGBFS (%) 20, 30

Code For example: 21F20S30, then W/B = 0.21, FA substitution amount
is 20%, GGBFS substitution amount is 30%.

A cubic test object measuring 50 mm× 50 mm× 50 mm, and 40 mm × 40 mm × 160 mm
flexural test was used to test the mechanical properties and durability of the materials used
in the experiments. Relevant compression tests were performed for curing periods of 1, 7,
28, 56, and 91 days. HVFGC samples were mixed using a 12 L mortar mixer and by adopt-
ing the following procedure: (1) the coarse and fine aggregates were dry-mixed evenly,
1/3 of mixing water was added, and the mixture was then stirred at a speed of 100 rpm
for approximately 2 min to make the aggregates moist; (2) the premixed cementitious
materials were added, and the mixture was stirred at a speed of 100 rpm for 5 min; and
(3) the SP agents were added, and mixing was continued at 100 rpm for 5 min. The samples
were removed from the mold once they had entered a solid state (after 24 h), and the
samples were cured in saturated limewater until the time of the experiments.

2.3. Methods

The HVFGC was mixed following the procedure specified in ASTM C305 [33]. To iden-
tify the HVFGC’s construction workability, the fresh mix setting time (ASTM C807) [34] was
determined. Regarding engineering properties, the compressive strength (ASTM C109) [35],
flexural strength (ASTM C348) [36], ultrasonic wave velocity (ASTM C597) [37], and water
absorption rate (ASTM C1585) [38] were determined. Neural network simulations were
performed to establish related prediction models, and microscopic analyses were conducted
using scanning electron microscopy (SEM) and X-ray diffraction.

The back propagation neural network (BPNN) was analyzed by Matlab to explore the
prediction model of ultrasonic wave velocity and compressive strength in this experiment.
The basic assumptions for model establishment were: (1) the number of neurons in the
hidden layer was 2; (2) the number of training times was 10,000; (3) the minimum error
converged to 0.0001; (4) the learning rate was 0.1; (5) the inertia factor was 0.5; (6) the
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relationship between the input layer and the hidden layer was logsig; (6) the relationship
between the hidden layer and the output layer was purelin.

3. Results and Discussion
3.1. HVFGC Workability

Figures 3–5 show the time it took for PCE, SNF, and MLS to set in the experiments,
respectively. As the W/B ratio was decreased, the setting time decreased, especially the
initial setting time, for which the effect was strongest for SNF. When the W/B ratio was
decreased from 0.35 to 0.21, the initial setting time for SNF, MLS, and PCE decreased by
2.56, 1.54, and 1.25 times, respectively. When the W/B ratio was 0.35, the final setting
time of MLS exceeded 1400 min. This is unsuitable in engineering practice because an
overly long final setting time affects the mechanical properties of HVFGC. The ratio of
the initial to final setting time (I/F ratio) was calculated and revealed that when 50% of
cement was replaced with SCM, the I/F values were similar regardless of whether the
cement was replaced with FA at a higher ratio than it was with GGBFS (or whether the
cement was replaced with GGBFS at a higher ratio than it was with FA), that is, F20F30 and
F30S20 had similar I/F values. When the I/F values of PCE and SNF are at W/B = 0.27 and
0.35, the I/F values of the two materials are equivalent, and the lowest W/B = 0.21 in this
study. The I/F calculation result is the difference between PCE and MLS. The I/F value
is equal, which means that when the W/B is low, PCE and MLS have the same impact on
workability, and as W/B increases, the impacts of PCE and SNF are similar. Although PCE
and SNF had similar final setting times, the initial setting time of PCE was approximately
2 h shorter than that of SNF, which indicated unfavorable workability. When the amount
of SCM that replaced cement was increased to 60%, the initial setting time increased by
roughly 40–70 min, signifying that the decrease in cement specific surface area slowed the
hydration heat release [39,40].
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3.2. HVFGC Mechanical Behavior to Compressive Strength

The mechanical behavior of HVFGC was determined using compressive strength
and flexural strength tests. The compressive strength of PCE, SNF, and MLS are shown
in Figures 6–8, respectively. As the percentage of SCM was increased, the compressive
strength decreased. The optimal compressive strength (79.93 MPa) was achieved using
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PCE, a curing period of 91 days, a W/B ratio of 0.21, and FA and GGBFS replacement
ratios of 20% and 20%, respectively. The strength development of PCE and SNF was
more pronounced from Days 1 to 7, whereas that of MLS was most pronounced from
Days 7 to 28. The strength development of MLS slowed considerably after Day 28 and
increased again after Day 56. These phenomena were primarily caused by the SCM trig-
gering pozzolanic reactions, which produced secondary hydrations that contributed to
strength development. When the SCM replaced 60% of the cement, the strength devel-
opment was the most pronounced from Days 28 to 56. In engineering practice, PCE and
SNF are suitable for engineering projects needing rapid early-stage strength development.
Conversely, MLS is suitable for engineering projects that require late-stage strength de-
velopment. Concerning the effects of the ratios of FA and GGBFS used in addition to
SP, for PCE, when 20% of the cement was replaced with FA, an increase in the ratio of
cement-replacing GGBFS resulted in an improvement in strength development. This find-
ing supported that of Manojsuburam et al. [41], who reported that under the interaction
between the two-phase SCM materials FA and GGBFS, GGBFS can effectively accelerate
strength development [42,43]. In this study, taking W/B = 0.21 as an example, the 1-day
curing age of PCE was compared with the 91-day curing age, and it was found that at high
volume replacement, increasing GGBFS by 10% can increase the strength by 37%.
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3.3. HVFGC Mechanical Behavior to Flexural Strength

The flexural strengths of PCE, SNF, and MLS are illustrated in Figures 9–11, respec-
tively. The optimal flexural strength was 18.75, 19.31, and 18.75 MPa for PCE, MLS, and
SNF, respectively. Such flexural strength was achieved using a W/B ratio of 0.21 and FA
and GGBFS replacement ratios of 20% and 20%, respectively. As the percentage of cement
that was replaced with SCM was increased, the flexural strength decreased. The strength
development increased the most rapidly from Days 1 to 7 and slowed as the curing period
progressed. For MLS, when 30% and 30% of cement was replaced with FA and GGBFS,
respectively, the strength development from Days 1 to 7 was approximately 33.9% higher
than when 20% and 20% of cement were replaced with FA and GGBFS, respectively. This
phenomenon was mainly because of the effects of FA, which increased strength develop-
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ment [44]. Nevertheless, at a curing period of 56 days, a change in the ratio of SCM that
replaced cement did not result in a significant change in flexural strength [45–48].
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3.4. Nondestructive Experiments and Mechanical Behavior

Ultrasonic wave velocities were used in nondestructive experiments, which were
performed to determine how nondestructive experiments affect HVFGC compressive
strength; the findings can provide reference information for future projects. Figures 12–14
show the ultrasonic wave velocity experimental results. As the percentage of cement that
was replaced with SCM was increased, the ultrasonic wave velocity decreased; as the W/B
ratio was increased, the ultrasonic wave velocity and compressive strength increased. We
used the ultrasonic wave velocity and compressive strength values to develop a MATLAB
backward transfer neural network prediction model. The results of the prediction model
are illustrated in Figures 15–17. The predicted R value represents the correlation of the
test values of the predicted results. In the results of the prediction model of this study,
the R value of PCE is 0.96; the R value of MLS is 0.97; and the R value of SNF is 0.96.
The three test results are all highly reliable and can be used as a reference for future
engineering applications. The MLS R value of 0.97 is the highest value of the three SPs, and
the corresponding mean squared error is 2.21.

3.5. Comprehensive Assessment of the Microscopic Analyses

We used microscopic analyses as a comprehensive platform to assess engineering
properties. Microscopic analyses were conducted on the test objects when using a curing
period of 28–56 days. The results are shown in Figure 18. The MLS sample had more
pores than the other samples, which explained why its compressive strength was lower.
Comparing the SEM images for curing periods of 28 and 56 days revealed that, for a curing
period of 28 days, the FA sample had not been fully hydrated, which diminished the effects
of FA on strength development.
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4. Conclusions

1. As a result of setting time, the I/F value W/B = 0.21, the ratio of PCE to MLS is the
same as 4.4~5, and the ratio of W/B = 0.27 and 0.35 is the same as the ratio of PCE to
SNF, which is 3.3~3.6.

2. The optimal ratio was achieved by using PCE, a W/B ratio of 0.21, and FA and GGBFS
replacement ratios of 20% and 20%, respectively.

3. For the compressive strength of SP types, PCE and SNF can affect the strength devel-
opment of concrete in 1–7 days, and the strength development after 7 days is more
obvious to MLS.

4. In the ultrasonic velocity and compressive strength prediction model, the correlation
coefficient R value is >0.9, which is highly reliable, among which the R value of MLS
is 0.97 is the best, and its mean squared error is 2.21.
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