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Abstract: China is currently recognized as the leading global energy consumer and CO2 emitter. A
significant amount of carbon emissions can be attributed to urban public buildings. Establishing
an equitable and efficient carbon emission allocation mechanism is a crucial step to meeting the
ambitious targets in China’s 2030 carbon peak plan. In this study, we estimate the total amount of CO2

emissions from urban public buildings by 2030 and propose a preliminary scheme of carbon quota
assignment for each province. By means of applying the zero-sum gains data envelopment analysis
(ZSG-DEA) model, the carbon emission quotas allocation of urban public buildings in China’s
30 provinces is proposed, and the corresponding pressure to reduce provincial carbon emissions is
analyzed. The results indicate that Qinghai has the lowest carbon emission rate (0.01%) for urban
public buildings, while Guangdong has the highest (9.06%). Among the provinces, Jiangsu, Jiangxi,
and Tianjin face the least pressure in reducing carbon emissions from urban public buildings. On
the other hand, Hebei, Beijing, and Anhui are under great pressure to decrease carbon emissions.
Notably, Hebei is predicted to have the highest emission reduction requirement of 95.66 million tons.
In terms of pressures on carbon emissions reduction for urban public buildings, Jiangsu, Jiangxi, and
Tianjin exhibit the least pressure. Hebei, Beijing, and Anhui are facing intense pressure to decrease
carbon emissions. These findings offer policymakers valuable insights into developing a fair and
efficient carbon allowance allocation strategy, while also contributing to China’s efforts to mitigate
carbon emissions and combat climate change.

Keywords: carbon peak; China; urban public building; carbon emission allocation; zero sum
gains-data envelopment analysis (ZSG-DEA)

1. Introduction

Greenhouse gases are widely recognized as the primary contributors to climate
change [1]. The control of greenhouse gas emissions and mitigation of global warming are
not only a concern for developed countries, but also for developing countries. In 2015, over
190 parties signed the United Nations Framework Convention on Climate Change in Paris
(UNFCCC). This international agreement stipulates that the average global temperature
growth should not exceed preindustrial levels by 2 ◦C, and preferably 1.5 ◦C [2].

As the world’s largest developing country, China has grown into the world’s top
consumer of energy and carbon emissions producer [3]. China released 28% of the world’s
total carbon emissions in 2017, which is significantly more than the United States, the
second-largest emitter, which contributed only 15% [4]. China has taken significant mea-
sures to address climate change by presenting remarkably ambitious Intended Nationally
Determined Contributions (INDCs) as part of the Paris Agreement [5]. By 2030, China has
pledged to reduce carbon intensity by 60% to 65% from 2005 levels [6] and achieve carbon
neutrality no later than 2060 [7]. The Action Plan for Peaking Carbon Dioxide by 2030 was
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released by China in 2021 in order to provide policy direction for the execution of various
peaking carbon efforts and promote the achievement of the peaking carbon objective [8].

Buildings are a major source of both energy consumption and CO2 emissions. In
2019, buildings’ energy consumption in China amounted to approximately 1.11 billion
tons of standard coal, leading to total carbon emissions of around 2.2 billion tons, which
accounted for approximately 22% of the entire carbon emissions in China [9]. In 2018,
the overall building area in China encompassed about 60.1 billion square meters, with
approximately 12.8 billion square meters of urban public buildings accounting for 21.3%
of the total building area [10]. The average annual building completion area increased by
about 2.5 billion square meters from 2014 to 2018, with urban public areas accounting for
about 33%. The urban public building area per capita rose from 9 square meters in 2001 to
15 square meters in 2018 [11]. Nevertheless, there remains ample room for future growth as
it still lags behind the levels observed in developed countries.

Urban public buildings play a pivotal role as crucial venues for various activities, and
their significant energy consumption throughout their lifecycle, including construction,
operation, maintenance, and dismantling, has made carbon dioxide emissions from these
buildings a focal point for emission reduction targets. It is imperative to reduce carbon
dioxide emissions from urban public buildings to achieve China’s carbon reduction goals.
Among the array of strategies for emission reduction, carbon trading is widely acknowl-
edged as one of the most effective methods [12]. Therefore, it is of paramount importance
to research methods that incentivize the participation of urban public buildings in carbon
trading, particularly through the equitable allocation of carbon dioxide emission quotas.

However, many studies have focused solely on the fairness or efficiency of carbon
emission allocation, overlooking the importance of considering both aspects. For instance,
Serrao et al. [13] employed a data envelopment analysis approach to redistribute agri-
cultural greenhouse gas emissions among EU15 countries. Park et al. [14] employed the
Boltzmann distribution, which takes efficiency into account, to allocate permits in carbon
emissions trading. Meng et al. [15] considered the fairness principle and employed a
three-indicator allocation model to measure the provincial quota allocation for carbon
emissions in China’s electric power sector. Jin et al. [16] investigated the allocation plan
of carbon emission allowances among each province in China based on a two-stage DEA
model. However, given the varying technological development levels and different stages
of development across different regions, as well as the diverse emission reduction targets
set for different regions, a research approach that solely emphasizes fairness or effective-
ness appears insufficiently comprehensive and integrated. To establish a rational carbon
emission allocation mechanism, we contend that both fairness and effectiveness principles
should be simultaneously considered.

Furthermore, scholars have extensively researched energy consumption analysis and
carbon emission measurement in the context of public buildings. Huang et al. [17] employed
the life cycle assessment approach to evaluate the achievements of public buildings in
Shenzhen by quantifying the reduction of CO2 emissions over the past decades. Qian
et al. [18] empirically investigated the carbon emissions of public infrastructure and their
influence on the global greenhouse effect. You et al. [19] conducted a study on the carbon
dioxide emissions from public and commercial buildings in China, analyzing the temporal
and spatial changes as well as the driving factors of CO2 emissions. Li et al. [20] examined
the interoperability between energy simulation and building information modeling (BIM)
tools, focusing on simulating the total energy consumption during the operational phase of
buildings. The study compared the predicted total energy consumption with the actual
monitored data to evaluate the accuracy of the simulation results. Liu et al. [21] and Huang
et al. [22] developed a support vector machine (SVM) model for predicting and diagnosing
the total energy consumption in public buildings. Yue et al. [23] utilized a dynamic life cycle
model to accurately calculate the carbon footprint of hospital buildings, which provides a
basis for developing energy conservation and emission reduction plans.
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It is evident that only a limited number of studies have examined the allocation
of carbon emission quotas at the provincial level, with a specific focus on urban public
buildings. Gan et al. [9] conducted a comparison between provincial allocation results
derived from the ZSG-DEA model and the fixed cost allocation model. They further utilized
these models to develop an allocation scheme for carbon emission quotas in China’s public
buildings. Zhang et al. [24] employed the SBM-DEA model to allocate carbon emission
quotas for public buildings across different provinces, with the aim of achieving carbon
reduction targets. Therefore, there exists a research gap in the current literature regarding
the allocation of carbon emission quotas at the provincial level, particularly in the context
of urban public buildings.

This paper addresses the research gap by examining how to allocate carbon quotas
among urban public buildings in provinces. The objective is to develop a scientifically rig-
orous allocation mechanism with the objective of determining the optimal interprovincial
distribution of carbon quotas for urban public buildings in China. By doing so, we aim to
provide informed guidance to policymakers and promote the sustainable and low-carbon
development of urban public buildings. Firstly, we predicted the overall carbon emission
of urban public buildings in 2030 and formulated an initial scheme for carbon quota distri-
bution for each province. Then, we transformed the traditional model referred to by Lins
et al. [25] into a novel zero-sum gain data envelopment analysis (ZSG-DEA) model, which
maintains the constant total amount concept while simultaneously achieving the best input
and output efficiency. Subsequently, in accordance with principles of both equality and effi-
ciency, we utilized the ZSG-DEA approach to appraise the comprehensive efficiency of the
above-mentioned allocation outcomes. In the adjustment of carbon emission allowances,
the quota allocation among provinces is typically considered a zero-sum game, implying
that an increase in the quota allowances for one province would lead to a corresponding
decrease in the allocation for another province. The state of Pareto efficiency is achieved
and the final allocation results are obtained.

Urban public buildings’ carbon emission quota allocation can serve as an incentive for
provinces to collaborate in achieving carbon emissions peak targets, effectively controlling
carbon emissions in public buildings, and attaining energy conservation and emission
reduction objectives. Additionally, it can provide policy guidance and support for carbon
trading market quota allocation.

This study has made the following contributions.

1. Many earlier studies in the field of carbon emission allocation have concentrated on
the distribution of CO2 emissions among provinces primarily. However, we have
directed our attention to carbon emission allocation in provincial public buildings,
and fill the gap created by the lack of studies shedding light on carbon emission
allocation in the public building sector. We developed an optimal scheme for carbon
emission allocations in provincial urban public buildings in China which provides a
clear and effective strategy for reducing carbon emissions in these buildings.

2. We have developed a ZSG-DEA model which takes into account the actual perfor-
mance of each region in achieving its carbon emission goals. Compared to other
models of previous research, this model gives more attention to the overall regional
efficiency and allows for the reward of regions that achieve optimal performance in
reducing their carbon emissions while penalizing those that do not meet the fixed
target.

3. This study not only proposes an innovative scheme for carbon emission allocations in
provincial urban public buildings but also provides significant policy recommenda-
tions for provincial-level allocation quotas for urban public buildings. It is significant
in addressing China’s serious challenge of decreasing carbon emissions.

The rest of this paper is structured as follows. Section 2 examines significant research
on the allocation of carbon emission allowances. Section 3 describes the methods and data
source. Section 4 shows the results and discussion. Finally, the summary of the key findings
and the policy recommendations are presented in Section 5.
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2. Literature Review
2.1. Equity and Efficiency in Carbon Emission Allocation

In recent years, there has been a considerable body of research on low-carbon develop-
ment, with scholars focusing their attention on carbon emission allowances and showing a
particular interest in the choosing of appropriate principles and approaches. In order to
tackle climate change, the UNFCCC [26] emphasizes equality principles and proposes a
framework of “shared but distinct responsibilities”. The principle of equity is a broad con-
cept that encompasses several criteria, including equality, historical responsibility, carbon
emission abatement capability, and grandfathering [27].

In the recent literature, the equity principle has been explored through various indica-
tors. Pan et al. [28] have proposed an allocation plan based on equal cumulative carbon
emissions per person, emphasizing the notion of equality. Similarly, Ye et al. [29] utilize the
population indicator to reflect the concept of equality. Fang et al. [30] employ a multi-criteria
allocation approach for 30 provinces using an enhanced ZSG-DEA model, incorporating
GDP and historical carbon emissions as measures of equity. Zhang et al. [31] put forth a
regional CO2 allocation scheme that aligns with the principle of equality. Furthermore, Han
et al. [32] and Qin et al. [33] have considered indicators such as per capita GDP, historical
CO2 emissions, and CO2 emissions per unit of industrial added value as indicators to
represent the principle of equality. It can be seen that when it comes to the issue of fairness
in carbon emission allocation, researchers frequently take population size, economic status,
and historical carbon emissions into account.

As research advances and our knowledge deepens, these studies continue to enhance
our comprehension of the equity in carbon emission allocation. However, it becomes
increasingly apparent that the concept of absolute fairness in the allocation of carbon
emissions does not necessarily serve the best interests of all nations and regions [4]. While
the equity principle considers all regions, it lacks efficiency as it fails to incentivize provinces
with low carbon emissions or constrain those with high emissions, thereby limiting overall
efficiency. Therefore, efficiency should be a crucial principle to consider when allocating
carbon emission allowances [34]. The objective of this principle is to optimize society’s
overall carbon emission efficiency, where regions that produce greater output with lower
emissions ought to be granted a greater number of allowances [35]. The allocation of
carbon emissions is primarily based on DEA-based efficiency measurements that reflect
the production efficiency of countries or regions. This evaluation method offers a more
comprehensive reflection of production factors and enables a detailed assessment of a
country’s or region’s efficiency [36].

2.2. Data Envelopment Analysis (DEA) Model

The data envelopment analysis (DEA) model, which was first developed by
Charnes [37], has gained extensive application in the distribution of resources, partic-
ularly when the input or output remains constant [38]. This method is categorized into
two types: input-oriented models and output-oriented models. It is primarily utilized
to evaluate the effectiveness of decision-making units (DMUs) that contain numerous
inputs and outputs. The DEA model has been widely adopted by numerous scholars in
their research on carbon emission allocation, serving as a valuable tool for evaluating the
efficiency of carbon emission quotas. Lozano et al. [39] proposed a three-stage DEA method
which involves maximizing the total desirable outputs, minimizing the total undesirable
emissions, and minimizing the consumption of input resources, in order to reallocate
emission permits.

The overall quantity of CO2 emissions must stay within certain limits due to the estab-
lishment of carbon emission goals by countries and regions. Consequently, determining
how to achieve maximum efficiency in carbon emission allocation remains a significant
challenge. The ZSG-DEA model, introduced by Lins et al. [25], is a suitable approach
to address this issue. The ZSG-DEA follows procedures that resemble a game with a
zero-sum outcome, where a gain for one side corresponds to a loss for the other, but the
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total allotment of resources remains constant [40]. This model is easy to implement and
enables the maximization of overall efficiency by adjusting the quotas to their maximum
potential [41]. Gomes and Lins et al. [42] employed the ZSG-DEA model to analyze a
case study on carbon emissions. Chiu et al. [43] investigated the reallocation of carbon
emission allowances among the European Union’s 24 members by applying the ZSG-DEA
model. Xiong et al. [44] developed a weighted ZSG-DEA model to assess the allocation
of energy consumption for every province. Furthermore, The appraisal of carbon emis-
sion allowances at a provincial level has been carried out by various scholars using the
ZSG-DEA model. For instance, Cai et al. [45] utilized the ZSG-DEA model to allocate
emission allowances throughout China’s 30 provinces. Yang et al. [46] assessed carbon
emission allocation schemes in China through the ZSG-DEA model. Cui et al. [47] and
Fang et al. [30] redistributed carbon emission quotas among China’s 30 provinces using the
ZSG-DEA model. Song et al. [48] integrated the fairness principle into the ZSG-DEA model
with the aim of improving the efficiency of carbon emission quotas and creating a more
equitable allocation scheme among provinces. However, it is worth noting that the existing
literature in this field predominantly focuses on either fairness or efficiency, with limited
consideration given to the integrated principles of fairness and efficiency. By combining
these two principles, not only can the equitable allocation of resources be ensured, but also
the enhancement of carbon emission reduction efficiency can be promoted. Therefore, this
study adopts a holistic approach that incorporates both fairness and efficiency considera-
tions. By taking into account indicators such as population, economy, and historical carbon
emissions, the ZSG-DEA model is employed to explore the allocation of carbon emission
quotas for urban public buildings in 30 provinces in China.

3. Methodology and Data Sources

Due to significant disparities in development among different regions in China, the
allocation of carbon emission quotas for urban public buildings should be coordinated
and harmonized. The allocation process is illustrated in Figure 1. First, the research data
were collected from China Statistical Yearbook and the China Energy Statistical Yearbook.
Next, the carbon emissions from urban public buildings in China for the year 2030 were
predicted using the GM (1,1) model. Subsequently, adhering to the principles of fairness
and efficiency, and considering factors such as population, economic development, and
energy consumption in each province, the iteration and reallocation results were carried
out using the ZSG-DEA model. Lastly, analysis and discussion were conducted on the
allocation results of carbon emission quotas for urban public buildings and the pressure to
reduce emissions.

3.1. Methodology

DEA is a linear programming technique that was first introduced in 1978 by
Charnes [37]. It is widely utilized to assess the effectiveness of homogenous collections of
decision-making units (DMUs). The conventional DEA model makes the assumption that
all inputs and outputs of all decision-making units are independent of one another and
have no impact on other activities. However, the entire quantity of a certain input or output
is constant in the allocation field. If a specific DMU’s input or output increases, it will
result in a decrease in other DMUs’ input or output; this renders the typical DEA model
ineffective. Consequently, Lins et al. [42] proposed the ZSG-DEA model. The ZSG-DEA
model reconfigures the inputs and outputs of DMUs to achieve new targets for all DMUs
while keeping the sum of the changing variables constant [4]. This feature enables the
ZSG-DEA model to be more suitable for resource-constrained research, such as carbon
emission allocation.
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Figure 1. Flowchart of the method.

Input-oriented models are used to measure the efficiency of decision-making units. If
DMU0 is not technically efficient, it is assigned an efficiency value ϕ0 under the ZSG-DEA
model. To become DEA efficient, the DMU0 must decrease its input k by a certain amount
u0 = x0k(1− ϕ0). This decreased amount is then allocated proportionally to the other
DMU. The value k of allocation that DMUi obtained from DMU0 is

xik

∑
i 6=0

xik
·x0k(1− ϕ0) (1)
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Since the percentage of input is being decreased simultaneously by each DMU, after
all adjustments are completed, the redistribution of input k to DMUi is

x′ik = ∑
i 6=0

Xi

 xik

∑
i 6=0

xik
·x0k(1− ϕ0)

− xik(1− ϕi), i = 1, 2, 3, · · · , N (2)

The input-oriented BCC model employs the ZSG-DEA approach to assess the relative
efficiency of DMU0. The result [49] is shown in Equation (3).

In the original model, all non-DEA-efficient DMUs allocate their excess inputs propor-
tionally to achieve DEA efficiency. However, the consequence of doing so for all DMUs
is that some DMUs still fail to achieve DEA efficiency after abating their inputs, even
according to Equation (3). There are two approaches to address this problem: the pro-
portional abatement formula method [25] and the iterative method [50]. In this study,
the iterative method is used, and multiple redistributions of the input k can be achieved
through multiple iterations. Eventually, all DMUs will attain the effective boundary, that is,
all DMUs will be 100% effective. The result of the reallocation of inputs at this point is the
allocation scheme that makes the best efficiency.

minϕ0

s.t.



N
∑

i=1
λiyij ≥ y0j, j = 1, 2, 3, · · · , M

N
∑

i=1
λixik

[
1 + x0k(1−ϕ0)

∑
i 6=0

xik

]
≤ ϕ0x0k, k = 1, 2, 3, · · · , R

N
∑

i=1
λi = 1, i = 1, 2, 3, · · · , N

λi ≥ 0, i = 1, 2, 3, · · · , N

(3)

In the economic-environmental system, carbon emissions are non-desired outputs. The
DEA-based environmental efficiency evaluation model offers several methods to handle
non-desired outputs, including the main idea of “treating non-desired outputs as inputs”.
This approach aligns with the DEA model’s requirements for input indicators, where the
lower the input and the higher the desired output, the more efficient the technology is
deemed to be. Similarly, in this study, we employed this approach and served carbon
emissions as the input variable of the model.

Gomes et al. [42] have utilized GDP, population, and energy consumption as output
variables. Choosing GDP as the desired output associated with carbon emissions is more
comprehensible. Considering population as the desired output suggests that regions with
larger populations are more efficient in terms of GDP when they maintain the same level of
carbon emissions between regions. Moreover, selecting energy consumption as the desired
output implies that regions with lower levels of carbon emissions are more efficient when
they maintain comparable levels of energy consumption between regions.

The GM (1,1) model, which was first introduced by Deng in 1982, is a time series
prediction model [51]. The GM (1,1) model employs a single input variable and differential
equations distinct from first-order ones [52], allowing it to generate predictions for un-
available or incomplete time series data by analyzing existing information. It is frequently
utilized to estimate population and has been widely applied in predicting resources and
emissions [53]. Due to a lack of officially ordered and uniformly spaced statistics on GDP,
population, and energy consumption for 2030, there is a strong demand for reliable predic-
tion models to forecast these crucial variables. Therefore, this study adopts the GM (1,1)
model to predict these indicators.

The formulas are as follows:
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Step 1: Data preprocessing. This step involves the collection and preprocessing of
the input data. Let the original data sequence be X(0)(i), where i denotes the i th sample.
Additionally, the raw sequence of n samples is defined as

X(0) =
(

x(0)(1), x(0)(2), · · · , x(0)(n)
)

, x(0)(k) > 0, k = 1, 2, 3, · · · , n (4)

Step 2: Create a new sequence from the original data sequence. Using the accumulated
generating operation (AGO), generate a new sequence X(1).

X(1) =
(

x(1)(1), x(1)(2), · · · , x(1)(n)
)

(5)

The x(1)(k) is calculated in the following way:

x(1)(k) =
n

∑
i=1

x(0)(i),k = 1, 2, 3, · · · , n (6)

Step 3: Establish the grey differential equation. Transform the original data sequence
into a first-order differential equation to approximate the time series using an exponential
function. This results [54] in the grey differential model, which is represented as

dx(1)

dt
+ ax(1) = b (7)

where a and b are the development coefficient and grey input, respectively, obtained
through least squares estimation using Equations (8) and (10). Parameter â is represented

â = (BT B)
−1

BTY (8)

where

B =


−z(1)(2) 1
−z(1)(3) 1
...

...
−z(1)(n) 1

, z(1) = (z(1)(2), z(1)(3), · · · , z(1)(n)) (9)

In Equations (8) and (9), B is the accumulation matrix of the interval-type accumulated
generating sequence, where the element in B is

z(1)(k) =
1
2

(
x(1)(k) + x(1)(k− 1)

)
, k = 2, 3, · · · , n (10)

and

Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

 (11)

Step 4: Obtain the grey forecasting predictor by substituting the estimated parameters
obtained from Equations (8) to (11) into Equation (7). The resulting equation [55] is

x̂(1)(k + 1) = (x(1)(0)− b
a
)e−ak +

b
a

, k = 1, 2, 3, · · · , n (12)

where x̂(1)(k + 1) represents the predicted value of the future k + 1 time point of the time
series. a is the development coefficient of the GM (1,1) model, b is the gray input data, k is
the prediction step, and x(1)(0) is the first element of the original data.
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Step 5: Check the prediction process. Repeat Steps 1–4 to forecast process behavior
after obtaining a new sample until abnormal circumstances emerge. If a forecast point falls
between the upper and lower control boundaries, the process is under control, and moni-
toring can proceed. However, If the predicted point goes outside of these boundaries, this
suggests the process has been out of control, necessitating further analysis and corrective
action.

3.2. Data Sources

This study employs the ZSG-DEA approach to allocate 2030 CO2 emission quotas for
interprovincial urban public buildings across China. Hong Kong, Macao Taiwan, and Tibet
are excluded owing to lacking data. The data period covers from 2005 to 2020, with the
latest published data available until 2020. Additionally, the GM (1,1) model is employed in
this research to forecast the CO2 emissions of provincial public buildings in 2030.

Carbon emissions were selected as the undesirable input, with GDP, population, and
energy consumption as the three output variables. Table 1 provides a description of these
input and output variables. The China Energy Statistical Yearbook and China Statistical
Yearbook were the sources of data for the years spanning from 2005 to 2020.

Table 1. Input–output variables.

Variable Classification Specific Variable Variable Explanation

Input variable
Population

GDP
Energy consumption

Population of each province in 2030
GDP of each province

energy consumption of each province in 2030

Output variable Carbon emissions Estimated CO2 emissions by regions of urban
public buildings

4. Results
4.1. The Initial Carbon Quotas Allocation

The initial carbon quotas allocation for urban public buildings among Chinese provinces
is a crucial step in managing carbon emissions and addressing climate change. As depicted
in Figure 2, the initial carbon quota allocation results show that the provinces with the high-
est allocations are primarily located in the east and southeast regions of China, while those
with the lowest allocations are primarily located in the western regions. The provinces
of Hebei, Jiangsu, and Guangdong received the highest carbon quotas, accounting for
25.32% of the total initial allocation. This can be attributed to their significant economic
development, large population, and high levels of carbon emissions. In contrast, Qinghai,
Ningxia, and Gansu received the lowest carbon quotas, amounting to only 2.08% of the total
allocation. These provinces exhibit low levels of economic development, small populations,
and relatively low carbon emissions, which may explain the lower allocation.

Table 2 presents the energy consumption, GDP, population, and allocation results of
urban public buildings’ initial CO2 emission quotas in 2030. The following are the reasons
for allocating CO2 emission allowances to urban public buildings. Provinces with lower
CO2 reduction potential or obligation, such as Hebei and Guangdong, were assigned higher
quotas. Provinces with less CO2 reduction responsibility but higher emission efficiency,
such as Shanghai, Zhejiang, and Jiangsu, were given more quotas. Provinces with greater
CO2 sequestration potential, such as Fujian, Yunnan, and Sichuan, were considered to have
higher emission feasibility and were given more quotas. Conversely, provinces with higher
CO2 reduction responsibility but lower economic feasibility or environmental sustainability
were given fewer quotas. In conclusion, the initial carbon quota allocation for urban public
buildings is a significant step toward carbon emission reduction in China. The allocation
results indicate that provinces with the highest carbon emissions and greater economic
development have been assigned higher quotas.
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Figure 2. Initial carbon emission allocations for urban public buildings among thirty Chinese
provinces in 2030.

Table 2. Initial carbon emission allocations for urban public buildings among thirty Chinese provinces
in 2030.

Province Carbon Quota
(Million Tons)

Energy Consumption
(Million Tce)

GDP
(Billion Yuan)

Population
(Million)

Beijing 94.30 78.07 9454.55 24.70
Tianjin 28.30 93.16 3166.36 14.80
Hebei 208.77 388.43 7575.23 77.81
Shanxi 45.61 245.37 3586.52 34.77

Inner Mongolia 74.69 354.29 4027.39 23.56
Liaoning 54.11 249.38 4585.15 41.57

Jilin 31.84 54.05 2397.51 21.31
Heilongjiang 42.03 117.17 2255.15 26.84

Shanghai 66.05 125.82 9230.37 27.03
Jiangsu 183.81 413.61 27,641.29 90.95

Zhejiang 137.66 319.70 16,398.45 76.59
Anhui 111.31 200.38 11,932.85 61.75
Fujian 63.57 196.03 13,902.60 46.86
Jiangxi 55.34 156.28 7415.71 45.94

Shandong 137.41 500.11 16,645.72 107.78
Henan 78.16 231.83 14,505.83 103.84
Hubei 56.55 189.89 13,680.23 60.13
Hunan 60.44 166.87 11,812.72 67.71

Guangdong 141.23 461.97 29,017.68 151.85
Guangxi 37.97 165.91 6077.94 53.25
Hainan 23.82 38.82 1612.12 11.62

Chongqing 40.84 100.34 8053.32 35.64
Sichuan 78.93 232.33 14,404.98 86.44
Guizhou 41.51 130.36 7308.79 41.29
Yunnan 52.61 173.13 7792.94 48.29
Shaanxi 61.01 211.84 7436.71 41.68
Gansu 21.75 101.15 2077.54 24.51

Qinghai 8.70 67.89 859.95 6.24
Ningxia 13.61 177.15 1048.71 8.17
Xinjiang 56.33 409.45 3771.64 30.43
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4.2. Efficiency and Final Carbon Quotas Allocation

The initial carbon quotas allocation for urban public buildings across 30 Chinese
provinces was found to be largely inefficient. As shown in Table 3, only 8 of the 30 provinces
achieved an optimal efficiency score of 1, achieving the DEA frontier. This group includes
Henan, Hubei, Guangdong, Guangxi, Qinghai, Ningxia, and Xinjiang. Following closely
was Hunan, with an efficiency assessment of 0.932. The remaining 22 provinces had
efficiency scores ranging from 0.4 to 0.9, indicating that the initial quota allocation in these
regions was not entirely efficient. Specifically, Shanghai, Zhejiang, Jilin, Heilongjiang,
Hainan, Anhui, Beijing, and Hebei were among the eight provinces with efficiency scores
below 0.62, significantly below the DEA frontier. Hebei received the lowest efficiency score
at 0.42.

To attain efficient and equitable quota allocation across provinces, an iterative process
was applied to the adjustment of the initial quotas. In each iteration, the carbon quota
allocation was recalibrated based on the ZSG-DEA model to ensure that the efficiency
score of each province approached 1 while keeping the total carbon emissions constant
throughout the iteration [45].

Figure 3 depicts the results of the iterative process in optimizing the carbon emission
quota allocation plan. The graph presents the efficiency values for each province in each
iteration. During the first iteration, there were numerous provinces with low efficiency
values, while some provinces started to approach the efficient frontier. During the second
iteration, the efficiency values of many provinces improved, and eight provinces achieved
high efficiency values approaching 0.99. In the third and fourth iterations, many provinces
with high efficiency values increased, and 26 and 29 provinces achieved near-perfect
efficiency values above 0.99. Finally, in the fifth iteration, almost every province achieved
an efficiency value of 1, indicating that the carbon emission quota allocation plan had
been optimized. Therefore, Figure 3 demonstrates the effectiveness of the iterative process
in improving provinces’ efficiency values and ultimately achieving an optimal carbon
emission quota allocation plan.
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Figure 3. The DEA efficiency of initial allocation and reallocation.

In Figure 4, the carbon emission quotas for urban public buildings for 30 different
provinces are shown as they are adjusted following every iteration. The overall carbon
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emission quota for provinces combined remains constant at 2108 million tons throughout
the iterations. However, the amount of carbon emissions allowed for each province’s urban
public buildings changes with each iteration. It is crucial to emphasize that the total carbon
emission quota adjustment for all urban public buildings in all provinces amounts to zero
after each iteration. This means that any increase in the carbon emission quota for one
province’s urban public buildings must be offset by a decrease in another province’s carbon
emission quota.
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As a result of these adjustments, some provinces will experience an increase in their
carbon emission quotas, while others will see a decline. This suggests that there may be
differences in urban public building carbon emissions across the provinces. By adjusting the
carbon emission quotas after each iteration, the overall goal of reducing carbon emissions
can be achieved while also accounting for provincial differences.

The first two iterations exhibit substantial changes in carbon quotas, with certain
provinces experiencing much larger adjustments compared to others. The provinces with
significant increases in carbon emission allowances include Guangdong, Shandong, Henan,
Hubei, etc. Guangdong increased by 37.85 million tons, and Shandong increased by
36.82 million tons. Conversely, Hebei experienced a significant decrease in carbon emis-
sion allowances, primarily due to its lower efficiency value, resulting in a reduction of
77.10 million tons during the redistribution process. In contrast, the third, fourth, and fifth
iterations exhibit minimal deviations in quotas, which suggests that quotas have stabilized
over time. Furthermore, in the fifth iteration, the majority of provinces display an increase
in carbon quotas, whereas Hebei and Beijing observe a decrease due to their initially low
efficiency values. Overall, these findings demonstrate the potential for policy interven-
tions to improve energy efficiency and carbon reduction in public buildings, which can be
sustained over time with appropriate measures. The stabilization of carbon quotas over
several iterations also implies that policymakers may refine and optimize their strategies
for desirable outcomes.

Figure 5 illustrates the CO2 emission quota allocation for urban public buildings. The
data indicate that Guangdong, Shandong, and Jiangsu provinces had the highest carbon
quotas, exceeding 150 million tons of carbon emissions per province. Notably, Guangdong
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province had the most substantial amount of carbon emissions at 191.05 million tons,
representing 9.06% of the total quota for the country. The high carbon emission quota
for this province can be attributed to its dense population and rapid industrialization. In
contrast, the provinces of Qinghai, Hainan, and Ningxia received the smallest carbon quotas,
with Qinghai and Hainan getting only 11.77 and 16.74 million tons each, respectively. These
provinces have low population densities and are primarily focused on agriculture and
tourism, explaining their reduced carbon quotas. Figure 5 demonstrates the wide variation
of carbon quotas across different regions of China and underscores the need for a targeted
and strategic approach to carbon emission reduction.
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Table 3. Initial and final carbon emission quotas and allocation efficiency.

Province Initial Efficiency Final Efficiency Adjustment Amount
(Million Tons)

Final Quota
(Million Tons)

Hebei 0.42576 1 95.67 113.1
Beijing 0.44369 1 39.14 55.16
Anhui 0.50604 1 37.16 74.15
Hainan 0.52254 1 7.08 16.74

Heilongjiang 0.52267 1 12.61 29.42
Jilin 0.57153 1 7.38 24.46

Zhejiang 0.61115 1 26.87 110.79
Shanghai 0.61239 1 12.02 54.03

Tianjin 0.61939 1 4.71 23.59
Inner Mongolia 0.66326 1 8.49 66.2

Shaanxi 0.66807 1 6.42 54.59
Jiangxi 0.69239 1 3.93 51.41
Jiangsu 0.74473 1 3.04 180.77
Yunnan 0.76735 1 −1.68 54.29

Liaoning 0.78163 1 −2.78 56.89
Shanxi 0.82855 1 −5.31 50.92

Guizhou 0.86662 1 −7.01 48.52
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Table 3. Cont.

Province Initial Efficiency Final Efficiency Adjustment Amount
(Million Tons)

Final Quota
(Million Tons)

Chongqing 0.87262 1 −7.25 48.09
Sichuan 0.90653 1 −17.51 96.44
Fujian 0.91565 1 −14.97 78.54
Gansu 0.92357 1 −5.4 27.15
Hunan 0.93201 1 −15.6 76.04

Shandong 1 1 −48.47 185.88
Henan 1 1 −27.56 105.72
Hubei 1 1 −19.95 76.5

Guangdong 1 1 −49.82 191.05
Guangxi 1 1 −13.39 51.36
Qinghai 1 1 −3.07 11.77
Ningxia 1 1 −4.79 18.4
Xinjiang 1 1 −19.86 76.19

5. Discussion
5.1. Pressure of Provincial Carbon Emission Reduction for Urban Public Buildings

This paper utilizes historical data on carbon emissions to forecast the expected CO2
emissions for every province in China by 2030. Subsequently, we utilized the principles
of equality and efficiency to distribute carbon quotas to each province, which provide a
strong foundation for measuring the pressure of carbon emission reduction for provinces.
Reduction pressure is a metric that quantifies each province’s carbon emission reduction
goal towards the country’s target. If the projected carbon emissions for a province were
to surpass its allocated quota, then it incurred a positive reduction pressure, indicating
the need to reduce emissions further. Conversely, if the projected carbon emissions were
lower than the allocated quota, then it had a quota surplus, resulting in negative reduction
pressure. The carbon emission reduction pressure was estimated by the gap between the
allocated quota and the projected carbon emissions of provinces, measured in millions of
tons. The higher the reduction pressure value, the greater the mitigation efforts required by
the province to meet the 2030 carbon emission reduction targets. Moreover, we utilized the
percentage of carbon emission reduction pressure to provide a relative indication of the
effort required for each province, calculated as the ratio of the carbon emission reduction
pressure to the allocated carbon emission quota. Figure 6 provides a visual representation
of the pressure on each province in China to reduce its carbon emissions.

The carbon reduction pressure varied significantly among provinces, and each province
had different reasons behind its reduction pressure. In terms of the number of provinces
under pressure to reduce their emissions, 17 provinces showed a surplus in their carbon
emission quotas, which means that they are emitting less than their permitted limits. The
other 13 provinces have experienced positive reduction pressure, which means that they
need to put more effort into reducing their carbon emissions. By analyzing the provinces
which possess a quota surplus or experience reduction pressure, it is clear that there is a
fair distribution, demonstrating the effectiveness and equity of the 2030 carbon emission
quota allocation scheme.

Guangdong, Shandong, Henan, Hubei, Xinjiang, Sichuan, Hunan, Fujian, and Guangxi
had a significant quota surplus. The province of Guangdong received the highest excess
allocation, which amounts to 49.82 million tons of carbon emissions. The majority of
these provinces were in the beginning stages of carbon quotas and were expected to have
comparatively decreased carbon emissions in 2030. Thus, they had a surplus in their quota.
In contrast, Qinghai and Ningxia, positioned in the end stages of carbon quotas, enjoyed a
large quota surplus due to the lowest predicted carbon emissions in China. Additionally,
a total of nine other provinces, including Fujian, Guangxi, Chongqing, Guizhou, Gansu,
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Shanxi, Liaoning, and Yunnan, had some quota surplus but not as much as the previously
mentioned provinces.
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Figure 6. Carbon emission reduction pressure of provincial urban public buildings in 2030.

In the provinces where the carbon reduction pressure is positive, Jiangsu, Jiangxi,
and Tianjin have less than 5 million tons of reduction pressure value, and they have
the least reduction pressure. Conversely, Hebei had the highest reduction pressure at
95.66 million tons. In addition, reduction pressure in Shannxi, Hainan, Jilin, Inner Mongolia,
Shanghai, Zhejiang, Anhui, and Beijing gradually increases, ranging from 6.41 million tons
to 39.14 million tons. These reduction pressures reflected their responsibilities to mitigate
carbon emissions to reach their allocated quotas. Overall, the reduction pressure values
provided insight into the measures each province needed to take in order to meet their
emission reduction goals and contribute towards China’s carbon emission targets.

5.2. Comparison with the Existing Literature

This study proposes an allocation scheme for carbon quotas in urban public buildings
that aims to balance fairness and efficiency principles. Our quota allocation scheme priori-
tizes provinces with greater potential for output increase while ensuring that the overall
carbon emissions from Chinese urban public buildings do not increase. To evaluate the
rationale and accuracy of our proposed scheme, we compare it with relevant published
studies.

Figure 7 presents the comparison results between this study and the published litera-
ture regarding the allocation of carbon quotas in Chinese urban public buildings by 2030
derived from the existing literature [9,24]. Due to differences in allocation principles and
measurement methods, the research findings on the allocation of carbon quotas for urban
public buildings are inconsistent. By observing Figure 7a, we can note significant variations
in the allocation results of carbon quotas for urban public buildings. Figure 7b illustrates
the proportion of carbon quota allocations for urban public buildings among provinces.
Further analyzing Figure 7b, we find that the provinces with the highest carbon quota
allocations, exceeding 4%, include Jiangsu, Guangdong, Zhejiang, Shandong, Beijing, and
Shanghai. These regions are located in the economically developed eastern coastal areas.
In contrast, the provinces with the lowest carbon quota allocations, less than 1%, consist
of Hainan, Gansu, Ningxia, and Qinghai. These areas belong to the less economically
developed western regions.
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Figure 7. The comparison of allocation results for urban public buildings in 2030 between this
paper and the published literature. (a) Carbon emission quota allocation results among provinces;
(b) proportion of carbon emission quota allocation results among provinces (Gan et al. (2022) [9] and
Zhang et al. (2023) [24]).

These observations indicate that the economically lagging western regions bear a
smaller responsibility for CO2 emissions reduction, providing greater space for future
socioeconomic development. Conversely, the economically advanced eastern regions
shoulder a larger burden of CO2 emissions reduction, aligning with China’s goal of balanced
regional development to narrow the economic development gap.

Although there are some differences in detail between our study and others, the overall
trends in our results align with existing research. Our study provides a suitable allocation
scheme for carbon quotas in urban public buildings, promoting sustainable development
and achieving carbon reduction goals.

6. Conclusions
6.1. Main Findings

The paper proposes a scheme for allocating carbon emission quotas to urban public
buildings in China. It is founded on the principles of equality and efficiency and uses
the ZSG-DEA model to ensure that each province receives an equitable and appropriate
amount of carbon quotas. We first measure the overall CO2 emissions of urban public
buildings in China by 2030 using a number of factors, including economic development,
historical carbon emissions, and population and, provide a preliminary scheme of carbon
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emission quotas allotment for all of the provinces at the beginning of the allocation process.
Employing the ZSG-DEA model, carbon emission quotas for urban public buildings in
30 different Chinese provinces are determined. Lastly, CO2 emission reduction pressure is
investigated.

The research findings can be summarized in three main points:

1. Qinghai, Hainan, Ningxia, Tianjin, and Jilin had small carbon quotas for urban public
buildings. These provinces, characterized by relatively low population density and
abundant resources, have achieved a balance between economic and environmen-
tal development, facilitating the attainment of sustainable development objectives.
Consequently, these provinces are encouraged to develop their economies while
minimizing the negative impact on the environment. Provinces such as Guangdong,
Shandon, Jiangsu, Hebei, Zhejiang, and Henan were assigned substantial carbon
quotas due to their high population densities and superior input–output efficiencies.
In essence, these provinces exhibit a superior ability to generate higher economic
output with lower input, positioning them as significant drivers of economic growth.
Nonetheless, this advantage often corresponds to increased carbon emissions. In order
to balance growth and environmental protection in these provinces, the allocation
scheme has awarded higher carbon quotas to enable them to continue developing
their economies while minimizing the carbon footprint of their urban public build-
ings. This not only promotes sustainable development in these provinces but also
contributes to achieving the national goal of reducing carbon emissions.

2. There is variation in carbon emission quotas across different regions of China, with
quotas gradually increasing from the northwest to the southeast. This is because the
southeast coastal areas are more developed economically, have larger populations,
and also have higher carbon emission efficiency. As a result, provinces such as
Guangdong, Jiangsu, Shandong, and Zhejiang have been assigned higher carbon
quotas. The allocation of higher carbon quotas to these provinces is intended to
incentivize them to mitigate their carbon emissions and also improve sustainable
development. In contrast, the northwest regions have fewer economic advantages,
smaller populations, and lower carbon emission efficiency. Consequently, provinces
such as Qinghai, Hainan, Ningxia, and Gansu have been assigned relatively lower
carbon emission quotas, which may provide incentives to develop cleaner and more
sustainable industries and lead to long-term economic and environmental benefits.

3. According to the results of carbon emission reduction pressure, it has been observed
that many of the 30 provinces in China are facing pressures to decrease carbon emis-
sions. Out of these provinces, 17 have a surplus in their carbon emission quotas,
including Guangdong, Shandong, Hubei, Hunan, and others. Guangdong and Shan-
dong have the highest proportion of quota surplus among all the provinces. Both
Guangdong and Shandong are considered highly industrialized and developed re-
gions in China, which could contribute to their better performance in reducing carbon
emissions. While some provinces are carbon emissions quota surplus, others are expe-
riencing significant pressure to reduce emissions. Provinces such as Hebei, Beijing,
Anhui, and Zhejiang are facing huge emission reduction pressure, indicating that
they are struggling to bring their carbon emissions down to more sustainable levels.
Provinces with abundant resources, such as Heilongjiang and Inner Mongolia, face
significantly higher pressure to reduce emissions in urban public buildings. Con-
versely, provinces such as Sichuan, Fujian, and Hunan, which have low historical CO2
emissions and strong economic development, experience relatively lower reduction
pressure.

6.2. Policy Implications

The findings carry significant implications for policymakers who need to implement
measures to mitigate carbon emissions and foster a sustainable future. Based on the
findings, three main policy suggestions can be proposed.
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Established differentiated goals and strategies: It is imperative for all provinces to
contribute to carbon emission reduction by gaining a comprehensive understanding of the
current state of greenhouse gas emissions. However, it is not feasible to hold all provinces
to the same standards or targets. A one-size-fits-all approach is not practical, and therefore
governments need to establish differential benchmarks that take into consideration eco-
nomic development, energy-use efficiency, and carbon emissions. As a result, establishing
differentiated goals and strategies will be key in ensuring that all countries are responding
realistically to climate change.

Looser reduction targets for developed and energy-efficient provinces and stricter
targets for developing and energy-dependent provinces: Some provinces may be more
efficient than others in terms of their energy usage and might have more efficient policies
in place that help reduce carbon emissions. In contrast, others might be transitioning
away from carbon-intensive energy sources more slowly due to their reliance on them.
Owing to these differences, a blanket target for carbon emissions reduction may not be
feasible for every province. In such cases, developing and energy-dependent provinces
need stricter reduction targets, whereas developed and energy-efficient provinces may
have looser targets assigned.

Upgrading industrial structures and increasing clean energy use: Upgrading to cleaner
production processes, reducing energy waste, and adopting emissions reduction technolo-
gies all contribute to cutting carbon emissions for less efficient provinces. Additionally,
using cleaner renewable energy sources such as solar, wind, and hydroelectric power, rather
than carbon-intensive sources such as coal, will be important in decreasing emissions. In
less efficient provinces, particularly those that depend on coal and other fossil fuels for
energy, increasing the use of clean energy should be a priority. It is a long-term process;
however, it is necessary to transition towards carbon neutrality in the future.

6.3. Limitations and Future Research

Although this study provides valuable insights into the carbon quota allocation for
urban public buildings, it is important to acknowledge the presence of certain limitations.
Firstly, the study was carried out with limited data, which may not be generalized to a
larger scope, and the results may not be entirely accurate. In future research, more data
could be collected, and the sample size could be increased to improve the study’s validity.
Secondly, the application of the ZSG-DEA model in this study could be improved to refine
the allocation process of CO2 quotas. Researchers can investigate how to set constraints on
intensity variables for each region to ensure fair and reasonable allocation of quotas. Thirdly,
city-level CO2 quota allocation can be prioritized in future research to enable sustainable
development and effective carbon emission reductions. Research on this could consider
how different cities can have unique carbon allocations that align with their respective
circumstances.
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