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Abstract: Awkward kneeling in sloped shingle installation operations exposes roofers to knee mus-
culoskeletal disorder (MSD) risks. To address the varying levels of risk associated with different
phases of shingle installation, this research investigated utilizing machine learning to automatically
classify seven distinct phases in a typical shingle installation task. The classification process relied on
analyzing knee kinematics data and roof slope information. Nine participants were recruited and
performed simulated shingle installation tasks while kneeling on a sloped wooden platform. The knee
kinematics data were collected using an optical motion capture system. Three supervised machine
learning classification methods (i.e., k-nearest neighbors (KNNs), decision tree (DT), and random
forest (RF)) were selected for evaluation. The KNN classifier provided the best performance for
overall accuracy. The results substantiated the feasibility of applying machine learning in classifying
shingle installation phases from workers’ knee joint rotation and roof slope angles, which may help
facilitate method and tool development for automated knee MSD risk surveillance and assessment
among roofers.

Keywords: machine learning; computer-based methods; construction safety; roofing industry;
automated assessment; musculoskeletal disorders

1. Introduction

About 33% of cases of days away from work and physical disabilities in the construc-
tion industry are due to work-related musculoskeletal disorders (WMSDs) [1]. WMSDs
cause immense losses to injured workers, their employers, and also to society, as workers’
compensation is partially shared by society [2]. Postures that are awkward, prolonged,
or repetitive are generally considered a major contributor to increases in MSD risks [3].
Residential roofers typically perform repetitive tasks on sloped surfaces ranging from 10◦

to 26◦ (sometimes as steep as 45◦) for a long time. As a result, this population has the
second-highest incidence rate of WMSDs among all construction trades [4].

Roofers often experience a considerable amount of knee joint rotation because of
prolonged and repetitive awkward kneeling during shingle installation on sloped rooftops.
Awkward knee joint rotation includes knee flexion, abduction–adduction, and internal–
external rotation. Deep flexed kneeling postures generate significant net quadriceps mo-
ments at the knee and increase the stress on the patellar tendon [5]. Increased knee
adduction and abduction create additional stress and force on the inner part of the knee,
specifically the medial compartment, leading to an elevated risk of osteoarthritis develop-
ment [6]. Similarly, when the tibia rotates internally or externally in relation to the femur it
exerts stress on the ligaments of the knee joint, particularly the posterior cruciate ligament

Buildings 2023, 13, 1552. https://doi.org/10.3390/buildings13061552 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13061552
https://doi.org/10.3390/buildings13061552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-3032-5466
https://orcid.org/0000-0002-8868-2821
https://orcid.org/0000-0001-7929-7887
https://doi.org/10.3390/buildings13061552
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13061552?type=check_update&version=1


Buildings 2023, 13, 1552 2 of 18

(PCL) and medial collateral ligament (MCL) [7]. At sloped rooftops, residential roofers’
knees encounter higher abduction and internal rotation during shingle installation [8].
Previous research conducted by the authors revealed that roofers face an elevated risk
of knee musculoskeletal disorders (MSDs) during various phases of shingle installation
on sloped surfaces [9]. The research findings indicated that certain phases carry a higher
risk of awkward knee joint rotation compared to others. Specifically, the placement and
nailing of shingles were identified as the two phases with the greatest amount of awkward
knee joint rotation. Consequently, these phases are considered the most risky in shingle
installation and have the potential to contribute to the development of knee MSDs [9].
Without any training and/or wearable protective devices, residential roofers frequently
experience persistent harm to their knees due to incorrect operations during phases. To
avoid potential injuries or disorders, it is crucial to ensure that roofers adopt the correct
postures over different phases during the shingle installation.

The current practice primarily relies on ergonomists to observe and assess undesirable
postures in roofing jobsites. Such a procedure is manual and tedious, and the results
can be subjective and error-prone. As a result, it is plausible to create techniques that
automate this observation and assessment process via the use of advanced sensing and data
analytics [10]. As such, the jobsite safety performance can be improved by alerting roofers
with warnings of potential hazards in a timely manner [11]. It is envisioned that a roofer
will be monitored through a surveillance system using sensors while installing shingles
on a slanted rooftop, and the sensors will collect the needed data to inform the system in
real-time about the roofer’s posture and position and the duration of each posture in which
s/he has been. To enable such a system, it is essential to identify different phases of shingle
installation automatically so that this identification result can be further used to improve
the surveillance system towards automation.

2. Background
2.1. Severity of Knee MSDs among Residential Roofers

MSDs among residential roofers are a major contributing factor to reduced phys-
ical functioning and may result in an early departure from the workforce and even
disability [12–14]. In the state of Washington, the insurance premium composite base
rate for roofers is the highest among all building construction trades [15]. The U.S. Bureau
of Labor Statistics (BLS) indicated that the median number of days away from work due to
knee injuries is 16 days, the second highest among all industries after shoulder injuries [1].
Safe Work Australia published that injuries to knees are ranked the third highest among all
body parts of workers in the construction industry [16]. According to the Health and Safety
Executive, the median number of days lost due to lower-limb-related musculoskeletal
disorders in the United Kingdom is 17.8 days, which accounts for 24% of all other body
parts [17]. During residential roofing shingle installation, roofers’ knee joints undergo a sig-
nificant amount of rotation repeatedly, sometimes near the end range of motion. Awkward
kneeling postures and repetitive motions have been proven to be associated with knee
MSDs [7]. Awkward kneeling postures can additionally alter the force that the muscles
are normally able to generate, which can further overload the muscle and lead to knee
MSDs generated by heightened muscular activation. As the roofing occupation demands
high kneeling requirements, roofers have the uppermost likelihood of knee MSDs [18].
Besides awkward posture, the unique work setting of roofing work, i.e., slanted rooftops, is
another contributing factor to knee MSDs among construction roofers [8,19]. As the length
of muscles deviates from the optimal resting length during shingle installation on a slanted
rooftop, the ability to produce the maximum active tension in the muscles decreases. As
a result, the muscle activation is triggered by the nerve stimulation, which promotes the
recruitment of more motor neurons that, in turn, stimulate the muscle fibers and results in
the generation of the required muscle force to perform the shingle installation task.
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2.2. State of Research on WMSD Problems among Roofers

There have been studies regarding the assessment of WMSD risks among roofers. A
laboratory assessment was conducted, and the findings indicated roofers experience greater
pain in their lower extremities during shingle installation on sloped roof surfaces [20]. Sev-
eral more assessments were performed to investigate the effects of laterally slanted ground
on trunk biochemical responses [21] and on lumber flexion–relaxation responses [22]. The
results of both of these studies suggested that the uneven ground surface could increase
pressure on the spine and the lower extremities of the body, which can increase the risk of a
WMSD. Another study, while focusing on low back disorders among roofers, assessed the
influences of roof slope, working technique, and working pace in kneeling and stooped
postures [2]. Effects of factors such as posture variance and a slanted roof surface on the
roofers were assessed to determine the association of these factors with low back disorders
(LBDs), and the results asserted that unfavorable conditions like these have significant
effects on LBD development [23]. A laboratory assessment was conducted on roofers to
determine the factors affecting their knees causing knee MSDs, and the results showed that
the working posture on a sloped surface during shingle installation might have significant
impacts on developing knee MSDs via measuring the indicators, such as knee flexion,
abduction, adduction, and axial rotation [8]. Another laboratory study was conducted to
assess the effects of working postures and roof slopes on the major knee postural muscles of
roofers during shingle installation, and the results indicated an increased risk of developing
knee MSDs among residential roofers [19].

A typical shingle installation operation can be divided into seven phases: (1) reaching
for shingles, (2) placing shingles, (3) grasping the nail gun, (4) moving to the first nailing
position, (5) nailing shingles, (6) replacing the nail gun, and (7) returning to the upright
position [9], as illustrated in Figure 1. Different phases are associated with different levels
of risks depending on the criteria of (a) the duration of the awkward knee joint rotation
that roofers encounter in a phase, (b) the forceful exertion generated within the phase,
which relates to the maximum knee joint rotation, and (c) the number of repetitions of
the awkward knee joint rotations within a phase. Recently, the authors investigated the
shingle installation work conditions at an operational level and examined the risks of the
seven phases involved in the process of shingle installation task to knee MSD development
among roofers [9]. It was revealed that over the course of roofing shingle installation, based
on the awkward knee rotations and repetitive motions considering flexion, abduction,
adduction, and internal and external knee rotations of roofers, different phases during
shingle installation expose roofers to different levels of knee MSD risks. In particular,
Phases 2 and 5 (i.e., placing and nailing shingles) were found to cause the highest awkward
rotation, repetition, and forceful exertion and are deemed to be the riskiest phases for
developing knee MSDs among roofers [9].
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2.3. State of Research on Machine Learning in Postural-Recognition-Related Tasks for
Jobsite Applications

The use of machine learning for classifying human activities and associated postures
in occupational tasks has seen a rise in recent studies. For instance, supervised machine
learning techniques have been employed within the construction industry to recognize and
differentiate the awkward postures adopted by construction workers [24,25]. To monitor
and evaluate MSD risks, studies have explored machine learning classification to iden-
tify inadequate postures of workers during their tasks [26] and assess ergonomic risks
in occupational activities that involve overexertion [27]. During manual material han-
dling tasks, machine learning was used for classifying correct and incorrect postures to
measure the biomechanical risk in lifting loads [28], to distinguish between high-risk and
low-risk lifting [29], and to observe and analyze the handler’s foot placement strategies
while lifting loads [30]. In addition, machine learning classification has been explored to
identify healthy and efficient body postures for mason workers [31] as well as to predict
injury types, energy types, and affected body parts during construction tasks [32]. In
the field of gait and biomechanics research, machine learning has been utilized to detect
lying postures [33], sitting postures [34], alterations in gait patterns due to aging [35],
disparities in walking related to surface conditions and age [36], and changes in gait
parameters following physically demanding occupational tasks [37]. These works demon-
strated the potential of applying machine learning in postural-recognition-related tasks for
jobsite applications.

3. Problem Statement and Research Objective

Roofing postures can be recorded and quantified to assess the possibility of developing
knee MSDs. However, the assessment procedure may face technical challenges thanks to
differences in individual behaviors in performing the shingle installation tasks. To alleviate
this situation, it is attractive to leverage the postural data to determine the working phases
in which an individual is currently involved considering the evidence that different phases
are associated with different risk levels in shingle installation. As a result, risk assessment
can be performed by observing the amount of time a roofer is spending in a particular
phase. With the rapid advancement in the field of sensors and monitoring technologies, it
is envisioned that the collection of roofers’ postural data in an automatic and inexpensive



Buildings 2023, 13, 1552 5 of 18

manner will become viable. This will enable obtaining the knee joint rotation angles from
the roofers’ postural movement. However, the existing literature does not currently provide
evidence of successfully using knee joint rotation angles to accurately identify the specific
activities associated with the phases of shingle installation. Whether machine learning
methods can perform such identification is also unknown.

In this research, the authors proposed to examine the feasibility of utilizing machine
learning to automatically identify the various phases involved in a residential roofing task
of shingle installation by harvesting the combination of knee joint rotations and roof setting
information. Previously, the authors presented the preliminary findings in a conference
to demonstrate the potential of this subject matter [38]. However, the prior work did not
examine the impacts of different features on learning efforts or provide in-depth analyses
of the learning performance. This paper presents a comprehensive design, implementation,
analysis, results, and discussion of the present research.

4. Methodology

Figure 2 provides a schematic view of the research methodology. To collect data, nine
participants were recruited to simulate a roofing shingle installation task on a sloped plat-
form mimicking an actual roof surface in a controlled laboratory setting. Using an optical
motion capture system with retroreflective markers, trajectory data of the participants were
collected during the simulation. These markers’ coordinates were then processed to calcu-
late knee joint rotation angles along the sagittal (flexion), coronal (abduction–adduction),
and transverse (internal–external rotation) planes. Together with roof slope angles, the
obtained rotation angles were used as features to classify the various phases of the task.
The feature data were then separated into training, validation, and testing sets. The training
and validation sets were used to develop three supervised and non-parametric machine
learning classification models, while the testing set served as a hold-out set comprising
never-seen-before data (i.e., the data that was never used in training) to evaluate the per-
formance of the models. Finally, the performances of the three classification models were
compared to identify the most accurate classifier.
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4.1. Data Collection and Processing
4.1.1. Participants

Nine male participants with no prior roofing experience were included in this study.
The average age, height, and body mass of the participants were 26.1 years (standard
deviation of 5.6 years), 180.2 cm (standard deviation of 6.1 cm), and 99.7 kg (standard
deviation of 27.6 kg), respectively. Exclusion criteria included a previously known MSD
or the presence of neurological diseases. The research protocol was approved by both the
Institutional Review Boards (IRB) of the National Institute for Occupational Safety and
Health (NIOSH) and West Virginia University.

4.1.2. Instruments

A VICON optical motion capture system, equipped with 14 MX Vicon cameras (Oxford,
UK), was used to collect the segment endpoint data of the participants. Forty-two (42)
retroreflective markers for motion capture were placed bilaterally on the lower extremities
of the participants, including feet, heels, toes, ankles, shanks, knee joints, thighs, and hip
joints, following the approach discussed in [39]. The results were three-dimensional (3D)
coordinates of the markers placed on the participants, leading to the trajectory data, which
were then utilized to calculate the knee joint rotation angles.
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A custom-made adjustable wood platform measuring 1.2 × 1.6 m was employed
to replicate the surface of a residential roof for shingle installation. The platform had a
battery-powered lift mechanism that allowed for adjusting the slope angle within a range
of 0◦ to over 30◦. To secure the desired slope, two sets of wooden legs were used to lock
the platform into position. For more detailed information regarding the data collection
procedure, please refer to [8].

4.1.3. Procedure

The experiment took place in the Biomechanics Lab at NIOSH. Upon arrival, the
participants were equipped with motion markers to ensure accurate calibration of their
movements and to gather data. To initiate the data gathering process, the participants
assumed a deep kneeling posture on the residential roof simulator. Then, they simulated
the entire shingle installation process consisting of seven distinct phases, as illustrated in
Figure 1. Following instructions to begin, they initially grabbed two shingles and positioned
them in front of themselves. They then proceeded to their right side to retrieve a nail gun.
Mimicking the shingle installation process, they affixed six nails (three nails in each shingle)
into the two adjacent shingles on the roof simulator, following a left-to-right movement.
Upon completion, the participants returned the nail gun and went back to their resting or
initial position. Three varying slope angles of the roof simulator, 0◦, 15◦, and 30◦, were
configured for the participants to carry out the simulated shingle installation task. They
performed the assigned task five times for each slope angle, resulting in a total of 45 trial
data points (5 trials multiplied by 9 participants) for each slope angle. All data were
sampled at a rate of 100 Hz.

4.1.4. Data Processing

Trajectory data captured by VICON were filtered in Visual 3D (Version 6, C-Motion,
Germantown, MD, USA) using a fourth-order Butterworth filter with a 6 Hz cutoff. Using
these trajectory data, knee joint flexion (FL), abduction–adduction (AB_AD), and internal–
external rotation (IN_EX) were calculated in Visual 3D using the method provided by [40].

4.1.5. Preparation of Features

Three knee joint rotation angles and the roof slope were used as features for training
the classifiers, as described in Table 1.

Table 1. Features and their description.

Features Unit Variable Type Description Range/Value

Flexion (FL) Degree (deg) Numerical
Rotation angle of the lower leg about the

medio-lateral axis that runs from the left to
the right of the leg through the knee joint.

77◦ to 163◦

Abduction–adduction
(AB_AD) 1 Degree (deg) Numerical

Rotation angle of the lower leg with respect
to the anterior–posterior axis that runs

from the front to the back of the leg
through the knee joint.

−18◦ to 18◦

Internal–external
rotation (IN_EX) 1 Degree (deg) Numerical

Rotation angle of the knee joint about the
longitudinal axis that passes vertically

along the leg in an upright
standing position.

−22◦ to 32◦

Roof slope (S) Degree (deg) Categorical

The slope of the roof at which the roofers
operated the shingle installation. A coded

value was assigned for each slope. The
value 1 was for 0◦, 2 was for 15◦, and 3 was

for the 30◦ slope.

0◦, 15◦, and 30◦

1 For AB_AD and IN_EX, negative values indicate adduction and external rotation, respectively.
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To investigate whether using a subset of features could improve the phase classification
performance of the classifiers, input feature subsets using all possible combinations of the
four features, as depicted in Table 2, were considered for investigating the effects on the
classification accuracy of the classifiers.

Table 2. Feature combinations.

No. of Input Features in a Subset Input Feature Subsets

1

FL
AB_AD
IN_EX

S

2

FL + AB_AD
FL + IN_EX

AB_AD + IN_EX
FL + S

AB_AD + S
IN_EX + S

3

FL + AB_AD + IN_EX
S + FL + AB_AD
S + FL + IN_EX

S + AB_AD + IN_EX

4 S + FL + AB_AD + IN_EX

4.2. Selection of Classifiers

The classification problem involved the identification of the previously mentioned
seven phases of a shingle installation task. The seven phases are denoted in Table 3.

Table 3. Class labels for the seven phases.

Phase Class

Reaching for shingles P1
Placing shingles P2

Grasping the nail gun P3
Moving to the first nailing position P4

Nailing shingles P5
Replacing the nail gun P6

Returning to an upright position P7

Since the performance of a classification algorithm is highly dependent on the used
dataset and the features, three classifiers that are generally thought to function best for
multiclass classification problems were selected and tested in this study: the random forest
(RF), the decision tree (DT), and k-nearest neighbors (KNNs). The KNN classifier performs
well when the number of features is low [41]. The RF classifier is well applicable to handle
both numerical and categorical features and imbalanced datasets with a non-uniform
distribution of class labels [42,43]. The DT classifier is used for handling non-linear datasets
effectively [44].

This study included only four features—three numerical features (FL, AB_AD, and
IN_EX) representing human activity time series sensor data, which are non-linear in char-
acter [45], and one categorical feature representing roof slope angles (S). Moreover, placing
and nailing shingle phases (classes P2 and P5) had more observations than the others
due to the relatively higher durations involved in these two specific phases, resulting in a
non-uniform distribution of class labels and, hence, an imbalanced dataset. Due to these
particular properties of the dataset that was included in this study, the above-mentioned
three classifiers were used, which were identified to be most suitable for effective classifi-
cation. These three classifiers have been extensively employed for recognizing awkward
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postures and classifying activities. They have demonstrated a plausible performance in
classification tasks, achieving an accuracy level ranging from 83% to 98%.

4.3. Training and Evaluation of Classifiers

From the experiment, 148,574 time series data points were utilized for training and
evaluating the classifiers. Figure 3 outlines the overall procedure followed in the training
and evaluation process for each classifier. In this process, 90% of the feature data were used
for training and validation, while the remaining 10% (hold-out) were set aside for testing
purposes. To minimize the bias, variance, and overfitting during the construction of the
classification models, a 10-fold cross-validation technique was employed. This involved
randomly assigning all observations in the training and validation set to ten separate folds,
with each fold representing 10% of the data. Then, the classifier was trained using nine
folds of the data and validated using the remaining fold. This procedure was repeated ten
times, with each time using a different fold as the validation set. The final accuracy
(i.e., the mean cross-validation accuracy) was calculated by averaging the accuracies
achieved from the ten resulting folds.
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validation process.

During learning, each classifier’s specific parameters were tuned to obtain the optimal
performance. The DT classifier builds classification models in the form of a tree structure
that can be used to predict the class or value of the target variable by learning simple
decision rules inferred from training data [46]. For the DT, the quality of the split of the
dataset by a node during tree construction was measured by computing ‘Gini impurity’,
which measures the likelihood of the incorrect classification of a new instance if that was
randomly classified according to the distribution of class labels from the dataset [47].

The RF is an ensemble of decision tree classifiers where each tree is generated using a
random vector independently sampled from the input feature vector. Each tree classifier
contributes a single vote for the most popular class to classify the input feature vector, and
the class with the most votes becomes the model’s prediction [48]. In the RF approach,
a number of trials were carried out to select the optimal number of trees. To find the
optimal performance of the RF classifier, a range of values, 100, 200, 500, 600, 800, 900,
and 1000, were tested for the number of trees, and, finally, the number of trees was set
to 100, as increasing the number of trees did not significantly improve the mean cross-
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validation accuracy of the classifier in this study but increased the computational time.
This was consistent with a previous study that showed that this is sufficient for obtaining
high-accuracy solutions to similar classification problems [49].

The KNN classifier predicts a class based on the features of known observations that
are close to it. In KNN classification, k-nearest training data points from a testing data point
are identified by measuring the Euclidean distance between the test data point and each of
the training data points [50]. The choice of k can significantly affect the performance of the
KNN algorithm. In this study, different values of k, ranging from 1 to 40, were attempted to
see the impact on the cross-validation accuracy of the classifier (Figure 4). With the increase
in the value of k, a decreasing trend in the cross-validation accuracy was observed. Based
on this, k = 1 was identified to provide the highest mean cross-validation accuracy and was
therefore chosen for constructing the KNN classifier.
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For each classifier, after parameter tuning, the best-performing model was determined
by the highest mean cross-validation accuracy. All input feature subsets (Table 2) were
tested for each classifier to analyze the effects of the number of features on the mean
cross-validation accuracy. The input feature subset that provided the best cross-validation
performance was used for subsequent analysis.

The testing dataset (hold-out) was utilized to assess the predictive performance of
each classifier on new, untrained data, using the following five performance metrics:

(a) The overall accuracy, which represents the ratio of correctly predicted observations to
the total number of observations.

(b) The precision score, calculated as the number of observations correctly predicted
divided by the total number of observations predicted.

(c) The recall score, determined by dividing the number of observations correctly pre-
dicted by the actual number of observations that should have been predicted correctly.

(d) The F1 score, which is the harmonic mean of precision and recall, providing a balanced
measure of the model’s performance.

(e) The Kappa index, a weighted average of precision and recall that indicates the level
of agreement between the predicted observations and the ground truth observations.

An F1 score reaches its best value at 1 and worst value at 0. The Kappa index value 1
means a perfect agreement. These metrics were processed using the Python scikit-learn
module, with the average parameter set as ‘weighted’, which means metrics were calculated
for each class, then their average was obtained, weighted by support (i.e., the number of
ground truth observations for that class) and thus better accounting for class imbalance.
The following equations were used to compute the above-mentioned metrics:

Overall accuracy : ∑n
i=1

mi,i

N
(1)



Buildings 2023, 13, 1552 10 of 18

Precision : ∑n
i=1

mi,i

Ci
× Gi

N
(2)

Recall : ∑n
i=1

mi,i

N
(3)

From Equations (1) and (3), it is understandable that the overall accuracy is equal to
the recall score, although these two metrics have different meanings. Please note that the
recall score was calculated using a weighted average method to account for class imbalance.
For a multiclass imbalanced classification problem, the values of these two metrics are
generally equal.

F1 score : ∑n
i=1

2× (Precisioni × Recalli)
(Precisioni + Recalli)

× Gi
N

(4)

where Precisioni =
mi,i
Ci

, Recalli =
mi,i
Gi

, i ∈ [1, 7]

Kappa index :
N ∑n

i=1 mi,i − ∑n
i=1 Gi Ci

N2 − ∑n
i=1 Gi Ci

(5)

Here, mi,i is the number of observations belonging to the ground truth class i, which has also
been predicted as a class i (i.e., values found along the diagonal of the confusion matrix).

Ci is the total number of predicted observations belonging to class i.
Gi is the total number of ground truth observations belonging to class i.
N is the total number of classified observations that are being compared to ground
truth observations.

For each of the three classifiers, the training and evaluation process outlined earlier
was conducted. The implementation of each classification algorithm was performed using
Python (version 3.6.4).

4.4. Performance Comparison of Classification Methods

After the values of the performance metrics were calculated for all classifiers, by
comparison, the classifier that exhibited the highest values for these metrics was considered
to provide the most accurate phase classification results. Therefore, it was selected as the
best-performing phase classification model among the three classifiers.

5. Results

The mean cross-validation accuracies obtained from the three approaches for a number
of input features in a subset are depicted in Figure 5. Please note that for each number of
input features in a subset, presented in Table 2, only the result of the input feature subset
that provided the highest mean cross-validation accuracy has been presented. For all three
classifier types, the highest mean cross-validation accuracies were obtained when all four
features were used; therefore, the classifiers trained on all four features were selected for
further analysis.

Table 4 displays the average cross-validation accuracy along with the corresponding
standard deviation for each classifier. Additionally, the table presents the lowest cross-
validation accuracy achieved by each classifier.
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Table 4. Mean cross-validation accuracy of phase classification.

Classifier
Mean Cross-Validation
Accuracy ± Standard

Deviation

Lowest Cross-Validation
Accuracy (%)

DT 87.00 ± 0.0058 86.63
RF 90.87 ± 0.0041 90.55

KNN 92.16 ± 0.0041 91.79

Mean cross-validation accuracies are also summarized in Table 5 for different classifiers.
The mean cross-validation accuracy was at best 92.16% when both knee kinematics (FL +
AB_AD + IN_EX) and the residential roof slope were used in the KNN inputs; however,
the mean cross-validation accuracy rate dropped to 89.68% when only kinematic data were
used to train the KNN classifier. A similar pattern was also observed for the DT and RF
classifiers. These results confirm that adding roof setting information along with knee
kinematics variables improved the classification performance of the classifiers.

Table 5. Mean cross-validation accuracy of phase classification using different types of variables.

Classifier
Variables

Kinematics Only (%) Kinematics + Slope (%)

DT 83.61 87.00
RF 87.42 90.87

KNN 89.68 92.16

Table 6 shows the time taken to train and test different classifiers. All classifiers were
very quick at both training and testing instances of data.

Table 6. Training and testing time of three classifiers.

Classifier Training Time (s) Testing Time (s)

DT 1.632 0.007
RF 31.146 0.400

KNN 0.104 0.401
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Table 7 presents the overall performance of the different classifiers in terms of their
overall accuracy, F1 score, precision score, recall score, and Kappa index.

Table 7. Resulting performance of three classifiers.

Classifier Overall
Accuracy (%) F1 Score Precision Score Recall Score Kappa Index

DT 87.29 0.8729 0.8730 0.8729 0.8407
RF 91.12 0.9106 0.9107 0.9112 0.8880

KNN 92.62 0.9260 0.9220 0.9262 0.9020

In this study, the KNN classifier demonstrated the best performance among all the
classifiers. In Table 4, it achieved the highest mean cross-validation accuracy of 92.16%.
In Table 7, the KNN classifier outperformed the other classifiers in all metrics. It had
the highest overall classification accuracy of 0.9262, as well as the highest scores for F1,
precision, recall, and the Kappa index, with values of 0.9260, 0.9220, 0.9262, and 0.9020,
respectively. The F1 score, which is close to 1, indicates the KNN classifier’s ability to
correctly identify the phases better than just relying on any standard classification’s accuracy
alone. A high precision score suggests a low false positive rate, while a high recall score
indicates a low false negative rate in the predictions. The high Kappa index value suggests
excellent agreement between the test data and the predicted data, as values ranging from
0.81 to 1.00 indicate almost perfect agreement.

In terms of overall accuracy, it was also observed that the RF classifier achieved a
classification accuracy of 91.12%, which is comparable to that achieved by KNN. This
classifier also performed well in phase classification in terms of its precision, recall, F1 score,
and Kappa index.

To gain insights into the accuracy of classifying each phase, a detailed analysis of the
classification results for each phase was conducted. This involved examining the confusion
matrices generated by the KNN and RF classifiers, which are presented in Tables 8 and 9,
respectively. These matrices provide precision and recall values to determine per-class
classification accuracies. The elements on the diagonal of the confusion matrices indicate
the number of instances where the predicted class aligns with the actual class. Conversely,
the off-diagonal elements indicate the classifier’s incorrect predictions. Higher values along
the diagonal indicate a better performance, indicating that the classifier made a higher
number of correct predictions. For instance, in Table 8 a Precision1 value of 0.943 for class
P1 signifies that 94.3% of the observations classified as P1 were accurate. Similarly, a Recall1
value of 0.930 signifies that 93% of the observations belonging to class P1 were accurately
identified as P1.

Table 8. Confusion matrix by KNN (k = 1) classifier using four features.

Class
Actual

Total Precisioni
P1 P2 P3 P4 P5 P6 P7

Pr
ed

ic
te

d

P1 1534 25 1 5 9 10 43 1627 0.943
P2 35 4878 79 79 49 30 32 5182 0.941
P3 3 63 661 34 9 3 4 777 0.851
P4 4 51 35 1153 38 23 11 1315 0.877
P5 12 59 9 46 2933 49 20 3128 0.938
P6 9 24 3 15 40 1054 26 1171 0.900
P7 52 20 7 5 8 17 1549 1658 0.934

Total 1649 5120 795 1337 3086 1186 1685 14,858
Recalli 0.930 0.953 0.831 0.862 0.950 0.889 0.919
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Table 9. Confusion matrix by RF classifier using 4 features and 100 trees.

Class
Actual

Total Precisioni
P1 P2 P3 P4 P5 P6 P7

Pr
ed

ic
te

d

P1 1556 25 4 4 11 7 57 1664 0.935
P2 58 4805 85 95 72 39 44 5198 0.924
P3 4 60 646 35 8 10 3 766 0.843
P4 5 39 41 1105 42 24 13 1269 0.871
P5 8 82 15 69 2929 73 20 3196 0.916
P6 22 22 7 14 44 974 21 1104 0.882
P7 64 11 9 17 8 28 1524 1661 0.917

Total 1717 5044 807 1339 3114 1155 1682 14,858
Recalli 0.906 0.953 0.800 0.825 0.941 0.843 0.906

RecalliTable 10 represents the performances of different classifiers to classify the
seven phases in terms of F1 scores. In Figure 6, the performance of different classifiers in
classifying the phases has been illustrated with F1 scores.

Table 10. F1 scores obtained from the three classifiers applied during training sessions.

Classifier
Classes

P1 P2 P3 P4 P5 P6 P7

DT 0.890 0.905 0.732 0.785 0.894 0.816 0.871
RF 0.920 0.938 0.821 0.847 0.928 0.862 0.911

KNN 0.936 0.947 0.841 0.869 0.944 0.894 0.926
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Table 10 and Figure 6 suggest that the KNN classifier also outperformed the other two
classifiers in a per-class prediction accuracy assessment.

6. Discussion

This study investigated the use of machine learning to classify roofers’ activities
in the shingle installation process. Knee kinematics data and residential roof setting
information were used to classify seven different phases of shingle installation operation,
applying machine learning techniques. Given the high prevalence of knee MSDs among
roofers, as well as the lack of knowledge in understanding postural differences among
different phases of sloped shingle installation roofing tasks, this study examined if machine
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learning can be used to differentiate the seven phases of shingle installation using knee joint
rotation (kinematics) and roof slope information. Meanwhile, this study investigated if the
combination of knee kinematics and roof setting information as machine learning mode
inputs are more effective than knee kinematics only for the classification of the shingle
installation phases.

Three classifiers (i.e., decision tree, random forest, and k-nearest neighbors) were
tested in this study. The results reported in Table 5 showed that the highest testing accuracy
of 92.62% was obtained by the KNN classifier. The RF classifier also achieved a testing
accuracy of 91.12%, which was comparable to that achieved by the KNN classifier. For
the KNN classifier, the number of neighbors k plays an important role in the classification
performance of the classifier, i.e., k is the key tuning parameter of the KNN classifier. In
this study, k values from 1 to 40 were examined to identify the optimal k value for all
training sample sets. Although the collected data were post-processed to attenuate noise
and remove outliers, the robustness of the KNN classifier to noisy data and outliers is still
in question [51]. One advantage of RF over KNN is the ease of parameter tuning during
the training of the classifier. Tuning the number of trees in the forest often leads to good
accuracy. Oshiro et al. [49] suggested that it is possible to obtain a good balance between
accuracy, processing time, and memory usage with a range between 64 and 128 trees in a
forest. Using more than the required number of trees may be unnecessary, but this does not
harm the model except by increasing the computation time [48].

From Table 5, it can be observed that the complete set of all four features provided
the best phase classification results (KNN 92.62%, RF 91.12%). These findings indicate
that knee kinematics and roof slope information complement each other when detecting
the risky phases of a shingle installation process. Moreover, residential roof slopes can
significantly affect the knee joint rotation angles during sloped shingle installation [8]. As a
result, a better phase classification performance by the classifier can possibly be attributed
to more useful information generated by the combination of knee kinematics variables and
the roof slope compared to the knee kinematics variables only.

Per-class classification results (F1 scores) presented in Table 10 and Figure 6 suggested
that relatively risker phases (P2 and P5) could be identified more accurately using knee
kinematics variables and roof setting information as input to the training algorithms, com-
pared to the moderate and least risky phase. This is evident from the higher F1 scores
(~95%) of these two phases compared to the other phases. F1 scores were considered as
they enable the measurement of the balance between precision and recall scores. Moreover,
the F1 score is a useful measure to deal with imbalanced datasets with a non-uniform
distribution of class labels, as is the case in this study. The authors’ previous study found
that, among the seven phases, the placing and nailing shingle phases (P2 and P5) required
more repetition of extreme and awkward movements of the knees for placing and in-
stalling shingles compared to the other phases. More specifically, roofers experienced
extreme flexion, abduction, adduction, and internal and external rotations in their knee
joints during placing shingles (P2), and hence P2 could be deemed as the riskiest phase
in terms of awkward knee rotations during the sloped shingle installation. As to flexion,
abduction, and external rotation, the next riskiest phase was nailing shingles (P5), when
the participants faced extreme adduction as well. Moreover, the durations of these two
phases were relatively higher compared to other phases. Therefore, each classifier was well
able to distinguish these two riskiest phases from the other ones. However, further inves-
tigation is needed to substantiate this finding. From the confusion matrices presented in
Tables 6 and 7, it is observed from the recall and precision scores that the highest areas
of confusion using the KNN and RF classifiers were P4, P6, and P3. This lies in the small
variations in the flexion, abduction–adduction, and internal–external rotations of knee joint
rotation angles, which were the least extreme in these phases, as suggested in the authors’
previous study [9].

While previous research has explored the recognition of awkward postures, there is
limited knowledge regarding their identification within a work context. Roofers, who fre-
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quently experience awkward postures and repetitive movements while installing shingles,
are particularly vulnerable to MSDs, with knee MSDs being the most prevalent. Accurately
identifying these factors during roofing operations can help minimize roofers’ exposure
and reduce the knee MSD risks. This study successfully illustrated the ability of machine
learning in identifying high-risk phases of shingle installation by leveraging knee joint rota-
tion angles and information regarding the specific residential roof settings where roofers
carry out their tasks. To the authors’ best knowledge, this paper is the first that exploits
machine learning to classify task-specific risky phases using knee kinematics data and roof
setting information.

The importance of proactive safety measures over reactive ones is widely acknowl-
edged. The present study, which focuses on automating the classification of work phases
in roofing operations, has significant implications for researchers, practitioners in the
occupational safety and health field, and the construction industry. The integration of
machine learning with non-invasive biomechanical devices or inertial measurement units
(IMUs) that can capture knee rotational kinematics during dynamic movements presents
significant potential. This combination could lead to the development of an automated
activity monitoring and risk identification system as an intervention for roofers. Such
a system would enable the continuous monitoring and evaluation of roofers’ postures
throughout the entire process of sloped shingle installation. Furthermore, it shows promise
in identifying instances where a worker spends an excessive duration in a specific phase,
particularly in high-risk phases involving awkward rotations and repetitive motions, such
as shingle placement and nailing. Currently, there is no standardized procedure for shingle
installation in residential roofing. This information could be beneficial to designing a
well-documented and standardized residential roofing procedure that can help reduce
MSDs among roofers. Automated machine-learning-based classification may also facilitate
the process of MSD-risk-related data collection. Additionally, the productivity of workers
may also be analyzed through the automated identification of the phases and, thereby, the
determination of their working durations at each identified phase.

This study has several limitations. First, ground truth data were collected from an
experimental study performed in a controlled laboratory setting, not from a real construc-
tion site. Second, only knee kinematics and roof slope information were used as features
to analyze the phase classification performance of the classifiers. Activations of the knee
postural muscles (i.e., electromyography signals from different muscles) were not con-
sidered. Awkward postures can make a muscle less efficient in producing the required
amount of force to accomplish a task, which results in higher muscle activation and muscle
overloading. Hence, knee postural muscle activation data might yield more useful dis-
criminative features, which could further improve phase classification performance of the
classifier. Third, only three feature-based models (i.e., KNN, DT, and RF) were tested in the
current study. A results comparison from a deep learning model, such as a deep neural
network, might provide more insights into the underlying classification mechanisms, but
it was outside the scope of the current investigation. Fourth, this study employed indi-
viduals without professional roofing experience as participants. Kinematically speaking,
distinctions may exist between professional and non-professional roofers. Nevertheless,
all subjects in this research were physically active and possessed relevant experience in
activities such as home remodeling. It is hypothesized that their biomechanical responses
during the experiments closely resemble those of professional roofers. However, further
scientific investigation is required to substantiate this assumption [8]. Lastly, the dataset
included only roofing phase data. Real-life scenarios will include non-roofing phases as
well, such as standing, resting, and walking. In such cases, those non-roofing phase related
data should be removed before applying the classification method.
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7. Conclusions and Future Extension

Construction roofers are exposed to awkward knee joint rotations in different phases
of shingle installation roofing tasks, which contributes to the development of knee MSDs
among them. Some of the phases involve extreme knee joint rotation and hence impose the
greatest risk of knee MSDs. This study suggested that machine learning can automatically
detect and classify the phases of a typical sloped shingle installation task with a high accu-
racy based on the roofer’s knee joint rotation angles and the information of the roof slope at
which they operated. Seven different phases, namely reaching for shingles, placing shingles,
grasping the nail gun, moving to the first nailing position, nailing shingles, replacing the
nail gun, and returning to an upright position, were performed in a simulated shingle
installation task to examine the feasibility of the automated detection and classification of
the phases. The classification performances of three types of supervised machine learning
classifiers (i.e., DT, KNN, and RF) were compared in order to select the best classifier.
Cross-validation and overall prediction accuracy results showed that the KNN classifier
obtained the best results with 92.16% and 92.62%, respectively. The recall and precision
performance of correctly classifying the phases were above 92% for this classifier. The
results of the current study show that machine learning can be used to accurately recognize
the different phases of a shingle installation task. The findings of this study highlight
the feasibility and potential of the application of a machine-learning-based automated
phase classification method for assessing the MSD risk, productivity, and efficiency of
residential roofers.

In future studies, the focus will be on investigating the effects of knee postural muscle
activation on the classification of shingle installation phases. The aim is to ascertain whether
muscle activation can offer more informative features for a deeper comprehension of postu-
ral disparities among phases and the associated risk of knee MSDs in roofing. Additionally,
more insights into the underlying mechanisms of classification can be obtained through an
exploration of deep neural network learning models. It is important to note that personal
protective equipment, such as fall protection harnesses and lifelines, were not utilized in
the simulated roofing tasks conducted for this study. Future research is needed to examine
how the implementation of these safety measures affects the performance of roofers during
their tasks. Furthermore, the models developed in this study will be extended to real-life
settings, incorporating the use of wearable sensors, to assess the feasibility of automated
recognition with the involvement of professional roofers. Additionally, the extension of
the models to other body parts of roofers, such as the lower back, which are susceptible to
MSDs, may also be explored.
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