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Abstract: The steel industry is one of the key industries and its use is inevitable in many industries
including construction. In addition to steel, this industry produces massive amounts of electric arc
furnace dust (EAFD) that is classified as hazardous waste. Using this material as an admixture can
improve the characteristics of concrete, neutralize potential risks and be beneficial to the circular
economy. Considering the differences in EAFD between different steel companies, which in turn is
caused by the type and percentage of input materials, the optimal percentage and specific application
of EAFD from steel companies of each region is unique. In the present study, samples from 11 different
sources of EAFD in Khuzestan Steel Company (KSC) were collected. Then, they were classified into
three groups depending on the size and origin (fine and coarse, both obtained by filtering those
particle sizes directly from furnaces, and a third class obtained in the interior of the steelmaking site
close to material handling (MH) belt conveyors) based on their physical and chemical characteristics.
To test the effect of EADF as an admixture, several conventional concrete samples were prepared
by replacing 0% (control), 2%, 5% and 8% of cement with each EAFD group. Finally, the resulting
material was characterized through several tests, namely: (i) compressive strength test at 7, 28 and
90 days, (ii) depth of water penetration under pressure test and (iii) electrical indication of concrete’s
ability to resist chloride ion penetration. The result shows that replacing 2% of the cement with
MH caused the largest improvement in compressive strength of 7 day concrete, but also showed
negative effect on water penetration, while coarse had a negative effect in almost all tests except in
the chloride ion penetration test. The best results were obtained by replacing with 2% of cement
with fine EAFD, showing significant improvements in all tests, as well as in the observed trend of
increasing compressive strength over time.

Keywords: electric arc furnace dust; conventional concrete; compressive strength; water absorption;
chloride ion penetration

1. Introduction

Today’s industry produces large amounts of waste during the material conformation
processes in both manufacturing processes and many sorts of production [1], this being a
significant environmental challenge on a global scale [2–4]. Understanding the potential
effects of waste, whether it is urban or industrial, will help environmental protection
protocols. In turn, new material-recycling procedures add a fundamental economic and
social dimension to the circular economy and environmental health that will enable us
to optimally balance between sustainable development and the environmental interests
of future generations [1,5]. It is widely accepted that most waste materials are inherently
valuable, but it is crucial to fully understand how to best extract such value [6].

Electric-arc furnace dust (EAFD) is an unwanted byproduct substance produced by
the electric-arc furnace (EAF) method during the steelmaking process [2,7–11] at an average
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of 1% to 2% of the overall output of steel [2,11–13]. Many of the elements included in iron
scraps, such as Zn, Fe, Cr, Mn, and Pb, can be volatile at temperatures as high as 1600 ◦C
during the process of melting. This vapor phase generates a significant amount of unde-
sired powder known as electric arc furnace dust (EADF) as the furnace cools [14–17]. This
industrial byproduct is collected using a baghouse dust collection system in contemporary
furnaces. A total of 1808 Mt of crude steel was produced globally in 2018, whereas the over-
all production was 1869.9 Mt in 2019 [18] and 1950 Mt in 2021 [19]. The electric arc furnace
(EAF) method is estimated to account for about 33% of total steel production [12,13,20].
According to estimates, an EAF produces 10–20 kg of dust for every ton of steel made from
iron wastes [14,15,21–24]. Every year, the world produces around 7.5 million tons of EAFD,
only 45% of which is recycled [25,26].

Depending on the particular conditions affecting each EAF process, such as feedstock
composition, furnace temperature, production duration, and the type of furnace employed,
EAFD composition may change on a daily basis [8,22]. EADF substances are categorized as
hazardous waste, so they may be treated [9,13,22,27–30]. After being treated with encap-
sulation, approximately 70% of the EAFD generated worldwide is headed for landfilling,
with the other 30% being used for metal recovery [15,16,31,32]. Monolithic blocks that are
mechanically and chemically stable are the goal of EAFD encapsulation approaches. Due
to the comprehensive knowledge of this material, its availability, and its good long-term
physical and chemical stability, using standard Portland cement is typically the method
that is most frequently suggested in the encapsulation process of EAFD [16,33]. However,
it’s not always chemically possible to immobilize heavy metals from EAFD [16,34]. One
important strategy for achieving integrated ecological and sustainable productivity across
all economic sectors is the conversion of trash into new raw materials. This could mitigate
the detrimental effects of local trash disposal, including landscape degradation, water
contamination, and air pollution [3,4].

Recycling waste materials to make concrete is a reliable and environmentally friendly
way to lower the cement content of concrete. As a result, it reduces greenhouse gas emis-
sions [35,36]. Due to the significant depletion of high-grade iron mineral reserves, together
with the mining of deposits with lower grades and complex compositions, recycling of
iron-containing wastes is an appealing alternative at the moment [25,37]. However, the
additional treatment of the leftovers is challenging and has negative environmental ef-
fects [38]. There are now a number of research contributions published about the potential
use of steel slags as an addition to or replacement for cement in concrete [1,39]. When
compared to the reference concrete mixture, certain investigations have demonstrated
that adding EAFD to concrete has improved mechanical properties and durability ability.
Other research articles examined how introducing EAFD into concrete mixtures influenced
mechanical properties and durability [2,31,40–45]. In this contribution, we quantitatively
investigated the replacement of cement with different percentages of EAFD in concrete.
Changes in concrete’s compressive strength at various ages and differing percentages of
EAFD replacement were analyzed and compared. We also found that all compounds had
controlled rates of chloride and water penetration under pressure. The best percentages
were then characterized, and such dust concentrations can be used for practical purposes.
Therefore, our results can serve as a technological foundation for future investigations into
electric furnace arc dust, as well as for practical applications in construction processes.

2. Materials and Methods
2.1. Material Properties

Every resource used in this contribution was obtained from Iranian local sources.
Type II of Portland cement (OPC) based on ASTM C150 [46] was obtained from Khuzestan
Cement Company. Drinking water was selected to use in mixture preparations, while sand
and gravel were obtained from neighborhood mines. Due to its high amount of EAFD
production (more than 100 tons a day), Khuzestan Steel company (KSC) was selected as
the EAFD source. In that company, there are six furnaces, each of which is connected to
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an industrial dust collection system (baghouse). Consequently, there are six sources of
fine-sized EAFD material related to six furnaces (we name this class of material fine). Table 1
shows the chemical composition of the class. In addition, three furnaces have filters able to
separate coarse-sized particles of EAFD, which introduces an additional class of material
named coarse. Thus, there are three sources of coarse EAFD, whose chemical composition
is shown in Table 2. The source of fine and coarse is the same (close to furnaces) and they
are separated into two sizes by different filters. The third class of EAFD we have used in
this study is obtained far from the furnaces, and its source is located in the interior of the
steelmaking site close to material handling (MH) belt conveyors. Therefore, other factors
such as the dust caused by transporting direct reduced iron (sponge iron) can influence
its composition. There are two MHs that filter the air of the steelmaking plant, and the
compositional analysis obtained from these sites is shown in Table 3. We name this third
class of dust as MH, given the source it comes from.

Table 1. Chemical analysis of fine-size particle samples from six furnaces and the homogenized
sample. The table indicates the chemical composition, expressed as the percentage of each compound
obtained from each furnace, as well as the composition obtained in a uniform mixture of the six
samples from furnaces.

Oxide (%) Furnace 1 Furnace 2 Furnace 3 Furnace 4 Furnace 5 Furnace 6 Average Fine

SiO2 5.77 4.50 5.45 5.51 4.15 6.31 5.28
Al2O3 1.04 0.66 0.83 0.95 0.72 1.19 0.9
Fe2O3 53.43 42.97 40.07 51.98 47.50 48.69 47.44
CaO 9.60 7.40 7.76 8.40 6.62 9.52 8.22
MgO 5.18 3.79 4.24 5.44 4.00 4.72 4.56
SO3 1.16 1.05 0.97 1.37 1.93 1.20 1.28

Na2O 8.45 12.80 14.04 8.55 9.84 9.14 10.47
K2O 6.54 10.95 10.21 6.51 8.69 6.65 8.26
Zn 1.54 3.47 1.90 1.46 2.30 1.72 2.07

P2O5 0.47 0.98 1.34 0.48 0.47 0.52 0.71
TiO2 0.23 0.19 0.21 0.23 0.16 0.28 0.22
MnO 0.50 0.33 0.38 0.84 0.66 0.82 0.59

Table 2. Chemical analysis of coarse samples from three furnaces and the homogenized sample.

Oxide (%) Furnace 2 Furnace 3 Furnace 5 Average Coarse

SiO2 14.46 13.40 12.83 13.56
Al2O3 2.98 2.90 2.97 2.95
Fe2O3 43.94 42.95 41.79 42.89
CaO 22.67 22.17 24.38 23.07
MgO 7.82 8.81 8.40 8.34
SO3 0.15 0.12 0.18 0.15

Na2O 3.24 3.73 3.38 3.45
K2O 1.28 1.68 1.59 1.52
Zn 0.01 0.01 0.01 0.01

P2O5 0.88 0.83 0.70 0.8
TiO2 0.85 0.89 0.83 0.86
MnO 0.36 0.41 0.41 0.39
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Table 3. Chemical analysis of MH samples from two MHs and the homogenized sample.

Oxide (%) MH7 MH8 Average MH

SiO2 3.91 4.03 3.97
Al2O3 0.77 1.09 0.93
Fe2O3 83.62 81.40 82.51
CaO 5.47 6.32 5.90
MgO 1.90 2.70 2.30
SO3 0.15 0.10 0.13

Na2O 0.30 0.27 0.29
K2O 0.17 0.13 0.15
Zn 0.01 0.01 0.01

P2O5 0.17 0.18 0.18
TiO2 0.35 0.30 0.33
MnO 2.01 0.35 1.18

Overall, 11 sources of EAFD were investigated and characterized. Tables 1–3 show
some significant differences in the dust composition between different categories of dust
depending on the size and the source of the dust. For example, the percentage of SiO2 in
fine samples lies between 4.15% and 6.31% (with an average composition of 5.28%), while
in coarse samples it lies between 12.83% and 14.46% (average 13.56%), well beyond the
small-sized values. Furthermore, the average composition of SiO2 in MH samples is 3.97%,
similar to fine samples in composition. Other significant examples are the compositional
analysis of Al2O3, showing average abundances of 0.9%, 2.95% and 0.93% for fine, coarse
and MH, respectively, or the composition of Fe2O3, yielding average abundances of 47.44%,
42.89% and 82.51% for fine, coarse and MH, respectively.

Consequently, based on the different chemical characteristics of the three groups we
have considered, mixing samples from different groups might not be appropriate. However,
based on the similarity of dust sources and their related chemical properties, as well as due
to limitations in laboratory facilities, it was decided that the samples of each group should
be mixed together in equal proportion and the homogenized (average) sample would be
used for the continuation of the experiments.

A remarkable difference in dust composition compared of other studies [2,41,47,48]
is related to zinc abundance. In those references, the proportion of zinc obtained from
samples lay between 10% and 20%. Our samples did not reach such high values of zinc
composition: the amount of zinc found in 5 samples (coarse and MH) was close to zero,
whereas it was between 1.46% and 3.47% in fine samples.

We further characterized the particle size distributions for each group using homoge-
nized samples, as shown in Figure 1 (fine), Figure 2 (coarse) and Figure 3 (MH). Each figure
reports the density distribution function (right vertical axis) together with the cumulative
distribution (left vertical axis). Size distribution of fine samples is bimodal: there is a nearly
uniform bulk of very small particle sizes up to about 80 µm, and a second peak in sizes of
about 200–300 µm, probably due to imperfections in particle filtering. The distribution of
coarse samples is unimodal and contains only this second peak. The size distribution of
MH samples is also very different from the two other classes, because it is unimodal, but
particle sizes are much smaller than the other two (90% of the sample is formed by particles
with less than 20 µm size, whereas the fine sample contain only 50% particles less than
20 µm size).
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Figure 2. Particle size analysis of the average coarse sample. The density distribution function and
the corresponding cumulative distribution (i.e., the curve that reaches the 100%) are shown.

Three different sizes of aggregate were used in mixing composition: coarse gravel
(crushed stone with maximum diameter of 3

4 inches), fine gravel (crushed stone with
maximum diameter of 3

4 inches) and sand (crushed sand) as fine aggregate part.

2.2. Mix Design and Designation

Throughout the study, a conventional concrete mixture with a 350 kg/m3 cementitious
material content was used. The water to cement (W/C) ratio was kept constant at 0.48
for all mixes. Table 4 displays the mixture employed in this study. The concrete mixtures’
cementitious components were listed in Table 5. To create 10 concrete compositions, the
three dosages of 2%, 5%, and 8% were utilized with each of the three homogenized types of
EAFD (fine, coarse, and MH), while 0% was used as a control.
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Table 4. Mix design composition for control.

Description kg/m3

Coarse Gravel 490
Fine Gravel 326

Sand 1029
Cement 350
Water 168
W/C 0.48

Table 5. Mix design for 2, 5 and 8% EADF replacing cement.

Description 2% EAFD
kg/m3

5% EAFD
kg/m3

8% EAFD
kg/m3

Coarse Gravel 490 490 490
Fine Gravel 326 326 326

Sand 1029 1029 1029
Cement 343 332.5 322
EAFD 7 17.5 28
Water 168 168 168
W/C 0.48 0.48 0.48

2.3. Mixing

An electrically powered tilting concrete mixer was used for mixing. The mixing
processes were carried out in compliance with ASTM C192 standard [49]. The mixer’s
drum was cleaned, scrubbed, and emptied of extra water prior to mixing. The aggregates
and a portion of the mixing water equating to the aggregates’ total absorption water were
loaded into the wetted drum mixer. The three different types of homogenized EAFD
and the cement mixture were then added to the aggregates, followed by the water used
for mixing. Three minutes were spent running the mixer, then a three-minute break.
After two minutes, the mixing cycle was restarted to ensure that all the components were
thoroughly combined. The entire mixing process took 8 min. After mixing was finished,
slump flow was estimated [2].
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2.4. Testing Procedures

According to ASTM C143 [50], the initial slump was measured. After capping them
with sulfur in accordance with ASTM C617 [51], 150 mm by 300 mm cylindrical specimens
were subjected to the compressive strength test in accordance with ASTM C39 [52]. Up to
90 days were allotted for the test. At each age, two cylinders were tested, and the average
value is given as the test result.

According to ASTM C1202 [53], a rapid chloride permeability test (RCPT) was con-
ducted. At the curing age of 56 days, cylindrical specimens of 100 mm in diameter and
50 mm in height were subjected to this permeability test. For each mixture, two samples
were used, and the average value is given as the test result. By measuring how much
electrical current went through the specimens in 6 h, the chloride ion penetration test
was carried out. Up to 6 h, the current was measured every 30 min. According to ASTM
C1202 [53], the total charge passed throughout the specimens in a given time interval
is determined in coulombs. The system’s temperature should not rise above 90 degrees
Celsius for safety reasons and to preserve test equipment. The test must be stopped and
declared unsuccessful once this temperature is exceeded.

A test for the depth of water penetration under pressure was performed in accordance
with BS EN 12390 8 standard [54]. For this test, the specimen must be cubic, cylinder-shaped,
or prismatic, with a minimum surface dimension of 150 mm and no other dimensions
smaller than 100 mm. The specimen should be put within the device, and 500 Kilopascal of
water pressure should be applied for 72 h. In order to detect the presence of water during
the test, we frequently checked the surfaces of the test specimen that were not exposed to
water pressure. If any leakage was observed, the result’s validity was taken into account.
For this test, 15 cm cubic specimens were used after curing for 56 days.

3. Results and Discussion
3.1. Effect of EAFD on Slump Test

In order to study the qualities of hardened concrete, regular concrete mixtures with
varying concentrations of 0%, 2%, 5%, and 8% containing all three types of EAFD were
created. The control mixtures slumped by 9 cm. Replacing cement with all types at all
percentages adds slump, except when we replaced a 2% of MH dust type, which reduced
slump size by 1 cm. As demonstrated by Figure 4, replacing cement with more EAFD
dosage in any type has more effect in adding slump of fresh concrete, and the effect is
most important for coarse samples. We observe that replacing 8% of EAFD types could
increase the slump magnitude by between 5 and 7 cm. Lubricants are usually used to
increase the slump effect, which is used for special applications (such as concreting in thin
sections or with a high percentage of reinforcements). Therefore, the addition of EAFD
can be considered as having a lubricant effect for the resulting concrete. The lubricating
function of EAFD has been confirmed in previous studies (see Refs. [2,31]).

3.2. Effect of EAFD on Concrete Compressive Strength (f′c)

We performed a 7-day compressive strength (f ′c) of 150 mm by 300 mm cylindrical
concrete specimens. The output for the control sample was 20.99 MPa. As shown in
Figure 5, replacing 2% of cement with fine and MH types of dust had a positive effect
on the strength, while replacing more EAFD mostly has negative effect (except the 5%
dosage of MH). After 28 days, the trend remains the same: again, the replacement of a 2%
of fine and MH dust has the largest improvement in compressive strength, while an 8%
cement replacement with all EAFDs has negative effect, as shown in Figure 6. The only
difference between the 7- and 28-day points is that the strongest material after 7 days is
the 2% replacement of MH dust, whereas the 2% MH strength value is exceeded by the
value of the 2% replacement of fine dust mixture after 28 days. The long-term compressive
strength (after 90 days) shows the exact same trend as for the 28 days essay, and again,
respectively replacing cement with either 2% of Fine or 2% of MH dust types caused the
largest strength improvement. Moreover, replacing cement with of any type of EAFD at 8%
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dosage had a negative effect, as shown in Figure 7. Previous studies have proven the filler
effect and latent pozzolanic reactivity of EAFD [45,55].
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Buildings 2023, 13, 1526 9 of 15

Buildings 2023, 13, x FOR PEER REVIEW 8 of 15 
 

strength improvement. Moreover, replacing cement with of any type of EAFD at 8% dos-
age had a negative effect, as shown in Figure 7. Previous studies have proven the filler 
effect and latent pozzolanic reactivity of EAFD [45,55]. 

 
Figure 5. 7 days’ cylindrical compressive strength for control and all EAFD dosages and group sam-
ples used in the experiment. 

 
Figure 6. 28 days’ cylindrical compressive strength for control and all EAFD dosages and group 
samples used in the experiment. 

20.99

23.83

25.50

20.69

19.52

24.03

17.85
16.87

19.61

15.20
15.00

17.00

19.00

21.00

23.00

25.00

Fine MH Coarse Fine MH Coarse Fine MH Coarse

Control 2% 5% 8%

𝑓′𝑐(MP
a)

27.95

31.28
30.30

26.87

25.20

29.42

22.95 22.65

26.58

17.85

17.00

19.00

21.00

23.00

25.00

27.00

29.00

31.00

33.00

Fine MH Coarse Fine MH Coarse Fine MH Coarse

Control 2% 5% 8%

𝑓′𝑐(MP
a)
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samples used in the experiment.
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3.3. Effect of EAFD on Rapid Chloride Permeability

A material is substantially more permeable the higher the electrical charge that can
travel through it. It is well known that the intensity of electrical charge going through a
mortar sample is significantly higher than that in the corresponding concrete one [45,56,57].
A larger conductivity in concrete means that more charge can pass per unit time, and it is
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more likely to penetrate chloride, having therefore a negative effect on concrete durability.
As shown in Figure 8, a 2% of EAFD replacement (of any kind) reduces the charge passing
(between 4% and 13.5% in charge reduction). Additionally, replacing cement with 5% of
fine and coarse may help reduce chloride penetration, but replacing with 8% dosage of fine
and MH shows a negative effect, as depicted in Figure 8. According to previous research,
the EAFS-based binder’s denser microstructure accounts for a better resistance to chloride
penetration [58,59].
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3.4. Effect of EAFD on Water Penetration under Pressure

Having less water penetration (WP) in a material means less water permeability, which
implies that concrete can be resistant against some harmful substances soluble in water,
consequently yielding more durability. As Figure 9 shows, replacing cement with all MH
and coarse types and dosages had negative or no effect on concrete water penetration.
The only decrease in water penetration with respect to the control sample was caused by
replacing cement with fine dust, the largest effect being achieved by replacing with 2%
of fine dust (the depth of water penetration decreased by 5 mm, a 25% reduction of the
control value). The decrease in the depth of water penetration obtained in our experiment
by replacing with 2%, 5% and 8% Fine dust is similar to that obtained in reference [60],
while it is much lower than that obtained in [61], and higher than that obtained in [62].

3.5. Comparison of Concrete Compressive Strength over Time

One of the parameters used to predict the compressive strength of concrete in the
future is the ratio of concrete compressive strength. This ratio is different for different types
of Portland cement. Reference values for the ratios for ASTM C150 [46] type II Portland
cement (OPC) are f ′c7/f ′c28 = 0.68 and f ′c90/f ′c28 = 1.2 (see Ref. [63]). Those ratios were
calculated in our experiment for all percentages and all mixing designs, and the results
are shown Figure 10. Here, for different mixing designs, f ′c7/f ′c28 varies from 0.74 to 0.85,
whereas f ′c90/f ′c28 changes from 1.08 to 1.15. This second value is lower to the one reported
in [63], whereas the first ratio is larger than the reference value.
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the experiment.
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4. Discussion

The main purpose of our contribution is to respond to the question of whether the use
of EAF dust can help improve the properties of concrete. In order to do so, we conducted
an experiment to characterize the mechanical and electrical properties of the resulting com-
pounds. Our results show that less cement can be used to meet the characteristics required
in standards for concrete. Moreover, considering that the process of cement production is
a strong driver of environmental pollution, any reduction of cement consumption helps
reduce the negative environmental effects associated with cement production. On the
other hand, due to the toxicity of KSC EAFD, its use in concrete neutralizes the harm-
ful environmental effects of this steel industry byproduct. As a result, the use of this
product prevents environmental damage in the two aforementioned ways. In our experi-
ments, mixed samples were used to compensate for changes in KSC EAFD characteristics
over time.

We obtained the best performance on increasing compressive strength of 28 and 90-day
concrete by replacing cement with 2% fine dust. In addition, this dosage with fine dust
permitted the lowest amount of electric current, thus ensuring the greatest resistance to
the penetration of chlorine ions. Finally, the 2% of fine dust composition had the lowest
penetration depth in the water penetration test under a pressure of 500 KPa for 72 h.
Therefore, we conjecture that this combination creates the densest concrete among all the
types and dosages we have considered. As a consequence, the higher density would help
reduce the permeability of different materials and, at the same time, would increase the
compressive strength.

However, in the 7-day compressive strength test, replacing with 2% of MH caused
the greatest increase in strength, which can be an indication of its short-term effect. In the
7-day compressive strength of concrete, the replacement with 2% of fine dust was the cause
of the second-greatest increase in compressive strength.

Although our results may suggest a positive relation among compressive strength
and water penetration, compressive strength and chloride permeability, and chloride
permeability and water penetration, the correlation coefficient of these linear relations
turned out to be non-significant in any of the three potential relations. Further experiments
would be needed to determine clear relations between these magnitudes.

5. Conclusions

The findings we have reported for our experiments and the discussion above lead
to the following summary of practical implications. (i) In general, KSC EAFD works as
a concrete lubricant, so adding more of the aforementioned material caused more slump.
(ii) Replacing cement with an optimal dosage of KSC EAFD can strongly improve concrete
compressive strength. The most appropriate material and dosage (in the long term) is
replacing 2% of cement with fine dust (the second-best combination is to replace cement
with a dosage of 2% MH dust). (iii) Replacing cement with 2% fine (or, in the second
position, replacing with 2% coarse) are the optimal percentages for reducing chloride
penetration. (iv) The best dosage for reducing water penetration in concrete is the 2% fine
replacement. (v) Replacing cement with 2% fine caused the largest rise in compressive
strength over time. In the light of this summary, we conclude that replacing cement with a
2% fine dust exhibits the optimal mechanical and electrical properties among all kinds of
KSC EAFD dosages and types in the short and long term.
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Abbreviations

ASTM American Society for Testing and Materials
ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
ASTM C143 Standard Test Method for Slump of Hydraulic-Cement Concrete
ASTM C150 Standard Specification for Portland Cement
ASTM C192 Standard Practice for Making and Curing Concrete Test Specimens in The Laboratory
ASTM C617 Standard Practice for Capping Cylindrical Concrete Specimens

ASTM C1202
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist
Chloride Ion Penetration

BS British Standard
BS EN 12390-8 Depth of penetration of water under pressure
EAF Electric arc furnace
EAFD Electric arc furnace dust
KSC Khuzestan Steel Company
MH Material handling
OPC Ordinary Portland cement
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