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Abstract: Sustainable construction should navigate the trade-offs between minimising pressure on
scarce resources and the environment and maximising economic viability and human wellbeing
through the whole building lifetime. In the pursuit of improving the environmental performance of
the construction sector, there is growing interest in substituting conventional materials with bio-based
materials. In the last decade, the use of industrial hemp (Cannabis sativa L.) as an aggregate for bio-
based materials has attracted significant attention because of its ability to sequester carbon dioxide
(CO2) during plant development, its fast-growing nature, the reduced level of agricultural input
requirements and its good technical properties, which could potentially result in better sustainability
performance across their life cycle. This review discusses the outcomes published in the scientific
literature that have dealt with the use of hemp-based construction materials in the global and
Australian construction sectors, with particular emphasis on the evaluation of their sustainability
aspects (i.e., environmental, economic and social) throughout their lifetime. Relevant studies were
identified from a structured keyword search in the Scopus database. The results found that research
on hemp-based materials has mainly focused on assessing the environmental dimension, with an
emphasis on greenhouse gas (GHG) emissions and little consideration for economic and social aspects.
The existing literature showed a strong geographical bias towards Europe; thus, the outcomes of the
life cycle studies conducted may not be representative of Australia. In that line, the development
of a region specific of the life cycle sustainability approach is recommended to evaluate whether
hemp-based construction materials can assist in achieving GHG targets in a sustainable manner
in Australia.

Keywords: sustainable materials; sustainable construction; non-conventional building materials;
greenhouse gas emissions; hemp-based materials

1. Introduction

Increasing population, economic growth, industrialisation and urbanisation have led
to the unprecedented expansion of the construction sector [1]. Buildings improve human
wellbeing by providing infrastructure for economic and social development. Infrastructure
activity, however, has significant detrimental effects on critical processes that regulate the
Earth system and support human progress [2,3].

Construction is a global driver of resources depletion and environmental degrada-
tion [4]. Globally, the sector consumes 30 to 50% of all virgin materials [5], 36% of final
energy [6], 40% of total waste and generates 37% of energy-associated carbon dioxide
(CO2) emissions [7]. In Australia, construction produces 18% of greenhouse gas (GHG)
fluxes [8] and 38% of the national waste [9]. Given the current state of affairs, improving
the environmental performance of the sector is crucial to maintain the carrying capacity of
the planet and to enhance inter- and intra-generational social equity [10].

The sustainability concept advocates for the balance between environmental protection,
economic security and societal welfare [11], especially when it comes to maintaining the
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life support processes of the planet, which is a pre-condition for economic and social
progress [12]. This three-fold approach has been popularised as the triple bottom line (TBL).
As such, sustainable construction should enable the sufficient delinking of the use of nature
from economic activity by embracing the life cycle thinking concept for buildings, i.e., the
extraction of virgin materials, material production, construction, operation, demolition and
end-of-life (EOL) management [13]. The life cycle sustainability assessment (LCSA) has
been the preferred tool to investigate the TBL performance of buildings [14]. LCSA is the
result of the integration of three main life cycle assessment tools: the environmental life
cycle assessment (abbreviated to LCA), life cycle costing (LCC) and the social life cycle
assessment (SLCA) [15].

Life cycle research conducted in construction has mainly focused on environmental
burdens with an emphasis on energy use and related GHG emissions, since they are
seen as the most challenging constraints for the sector [16], with a lack of consideration
for economic [17] and social [18] aspects. Most LCA studies have concluded that the
operation stage (i.e., heating, cooling, ventilation and lighting) contributed the largest
portion of the entire GHG budget of buildings [19,20]. Consequently, the majority of
building policies and research have concentrated on mitigating operational GHG emis-
sions by optimising electrical and thermal efficiency by using energy-saving construction
materials, efficient end-use appliances, building management systems and renewable
energy technologies [21,22]. As a result, energy efficiency improvements are increasingly
being implemented in existing and new buildings [23].

As buildings decrease operational GHG emissions, the relative proportion of embod-
ied emissions (i.e., material manufacturing, transportation, construction and EOL) increases
within the entire life cycle [24]. In new high energy-efficient buildings, the share of embod-
ied carbon can range between 45 and 50% of the total life GHG fluxes [23]. In the case of
existing buildings, the use of new and additional materials to optimise energy performance
can increase the total embodied GHG [25].

The traditional assessment focus on operational impacts is now shifting to embodied
burdens, with reference to the reduction of GHG emissions related to the construction
materials during the building’s pre-use stage, i.e., virgin resource extraction and material
manufacturing [26], and post-use stage, i.e., landfilling, reuse and/or recycling [27]. The
appropriate selection of construction components with improved thermal and durability
properties can mitigate embodied GHG by 30% [24].

The existing literature highlights the choice of construction elements as the most
straightforward pathway towards the building’s sustainability [1]. Sustainable construc-
tion materials are defined as solutions that exhibit lower environmental burdens without
affecting the functional integrity. These materials should also pose less pressure on scarce
resources, be harmless to human health, have a longer life and minimise operation and
maintenance costs throughout the whole building’s life cycle [28,29]. Life cycle assessment
tools such as LCA, LCC, SLCA and the integration of the three into LCSA have assisted
researchers in ascertaining the most sustainable materials with reduced embodied and
operational burdens.

In Australia, Ximenes and Grant [30] performed an LCA study assessing the different
components of a residential house. The authors reported that structural elements, such
as bricks and concrete, accounted for up to 17% and 31% of whole-life GHG emissions,
respectively. They estimated that the use of wood as a replacement for concrete in the
sub-floor could decrease the total GHG fluxes by 31 to 56%. More recently, Jayalath,
Navaratnam [31] compared the entire-life GHG emissions of the cross-laminated timber
and reinforced concrete used as structural elements in mid-rise residential buildings in
Australia. The authors reported that buildings using timber as structural material exhibited
around 30% less carbon emissions compared to reinforced concrete buildings.

In the current market, there is a rich array of non-conventional materials that display
lower impacts than their traditional counterparts [32]. Sustainable alternatives that have
minimised burdens across their lifetime include materials that are or contain reused and/or
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recycled components and bio-based materials. From these options, bio-based materials
present opportunities to mitigate the exhaustion of non-renewable resources [33] and re-
duce both embodied and operational impacts [34]. While traditional materials accumulate
substantial embodied CO2 during manufacturing and have minimal carbon storage capac-
ity [35], their bio-based counterparts generally exert lower embodied GHG emissions and
can sequester carbon during plant growth through photosynthesis [36].

Bio-based construction materials are formed by a plant-origin aggregate (e.g., flax,
hemp, ramie, straw) mixed with an inorganic or organic binder [37]. The plant component
acts as the reinforcing element, whereas the binder is used as a matrix. In the plant world,
there are around 2000 different fibrous crops with the potential to be applied for bio-based
materials [38]. Among them, industrial hemp (Cannabis sativa L.) stands out because of
its fast growth, ability to withstand an array of climatic conditions and good thermal,
hygric and acoustic insulation properties [39]. As a result of continuing research and
industrial development, hemp has become the most used plant in bio-based construction
materials [40], as well as the most studied [41].

Despite the increasing availability of non-conventional sustainable materials in the
market, there are barriers to increasing their demand and use [42]. Adoption barriers
include a lack of understanding of their environmental advantages, potential higher costs,
potential higher use of labour and implications for the occupational health and safety of
workers [43,44].

Australian Context

Australia’s per capita GHG is the largest in the world [45] and the country has recently
pledged a 43% GHG reduction target by 2030 as a pathway to achieve carbon neutrality
by 2050 [46]. It is urgent for Australia’s construction sector to reduce energy and material
consumption to assist in the transition towards a net-zero emissions future [47,48].

Carbon-intensive materials, such as concrete and steel, dominate the Australian build-
ing landscape [43,49]. The majority of the current building stock has followed the Building
Code of Australia (BCA) to achieve the required structural performance, regardless of the
environmental impacts [50]. Since 2003, the National Construction Code (formed BCA)
has adopted energy efficiency policies to reduce operational GHG emissions, neglecting
mechanisms for mitigating the embodied impacts [8,20,51].

2. Research Motivation and Research Objectives

Under a business-as-usual scenario, Australia’s built environment is expected to
reduce the total life cycle GHG emissions by almost 80% by 2050, with embodied emissions
contributing to 85% of the total fluxes [52]. In addition, there is no indication from the
government that it will change this scenario through the implementation of enforcing
instruments or incentives that address embodied GHG emissions [53]. The governance of
embodied burdens requires promoting the use of sustainable materials to turn Australia’s
net-zero pledges into reality [8,43,48]. As such, hemp-based materials could offer several
benefits to the Australian construction sector to meet the emission targets by reducing
embodied emissions. In addition, hemp-based materials can help to alleviate the pressure
over scarce non-renewable resources [54].

This context generated the question as to whether the hemp industry can improve the
sustainability performance of the Australian construction sector. Research objectives have
been defined to warrant a thorough review that addresses the research question. The first
objective is to develop a detailed and concise examination of the advantages, drawbacks
and latest progress of the use of hemp as an aggregate for construction materials at a
global and national level. The second objective is to review the application of sustainability
assessment tools for hemp-based construction materials and their main results. The third
objective is to determine the research gap(s) so that key objectives can be developed for
Australia’s hemp industries to further reduce their GHG emissions from the infrastructure
sector in a sustainable manner.
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3. Review Methodology

To accomplish the objectives of this article, a scoping review of the existing literature
was conducted using predefined keywords in the Scopus database. The data range was
set for studies published between January 2000 and May 2023. The search was performed
for keywords including ‘hemp’ AND ‘construction material’ OR ‘building material’ within
their title, abstract or keywords; a following search was performed within the previous
results with the keywords ‘sustainability’ OR ‘life cycle assessment’; and in the same
manner, another search was conducted within the previous results using the keyword
‘Australia’ (see Figure 1). A total of 470 publications were obtained for the first set of terms,
129 for the first following search and zero results for the second following search. Then, a
new search was performed with the keywords ‘Hemp’ AND ‘Australia’. After evaluating
the title and abstract of the retrieved articles, 96 studies were considered and 409 were
excluded because they failed to match with the objectives of this review.
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Figure 1. Flowchart of the review methodology.

Figure 2 shows the publication years of the studies retrieved according to the keywords
used in the searches. Of the 505 studies obtained in total, 77% were published in the last
decade, which highlights the growing interest in this topic globally and in Australia.



Buildings 2023, 13, 1504 5 of 17
Buildings 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 
Figure 2. Time distribution and number of studies retrieved according to the keywords used in the 
search. 

4. Industrial Hemp 
4.1. Global Hemp Industry 

Hemp, an annual herbaceous high-yielding crop native to central Asia [55], has been 
grown in an ample range of geographical zones and climatic conditions for centuries [56]. 
In contrast to other hemp varieties with a high content of psychoactive compounds (delta-
9 tetrahydrocannabinol—THC), industrial hemp contains minimal quantities of THC and 
traditionally has been cultivated for fibre, seeds and medicine [57,58]. 

Hemp is one of the first fibre crops [59], as well as the main cash crop until the 19th 
century [60]. The introduction of cotton and synthetic fibres, and the prohibition of hemp 
in many countries due to its association with biotypes containing a high content of THC, 
led to a rapid decline in industrial hemp cultivation [61]. In the 1970s, the European Union 
(EU) reintroduced the legal cultivation of hemp varieties with a psychotropic content 
lower than 0.3% [62]. Along with legislative support, the EU has encouraged its hemp 
industry through economic aid for hemp growers and processors [63], generating re-
newed interest in this crop from various countries and industries [64]. Over the 1990s, the 
research and development of industrial hemp contributed to changes in the perception of 
this controversial plant [65]. 

During the following years, other industrialised economies, including Canada in 
1998, Australia in 2017 and, more recently, the USA in 2018, reauthorised and reintro-
duced hemp cultivation with low THC content as an agricultural commodity, marking a 
renaissance in the emerging global hemp market [57]. Almost 50 countries now grow 
hemp legally for commercial and/or scientific purposes [38,66]. Globally, it is estimated 
that the area under hemp cultivation for grain is 11,422 hectares (ha) and 74,307 ha for 
fibre in 2021, with an increase of 117% and 63% compared to the levels recorded in 2010, 
respectively [67]. 

Australian Hemp Industry 
Cannabis sativa cultivation is not novel in Australia [66]. The plant landed in the coun-

try with the first European colonisers at the end of the 18th century, and it was sold legally 
for textile and medicinal use until the beginning of the 20th century, when it was classified 
as a noxious weed [68]. During the 1980s and 1990s, some states modified their legislation 
to allow hemp cultivation for research and/or commercialisation [44]. In the 1990s, a 

Figure 2. Time distribution and number of studies retrieved according to the keywords used in
the search.

4. Industrial Hemp
4.1. Global Hemp Industry

Hemp, an annual herbaceous high-yielding crop native to central Asia [55], has been
grown in an ample range of geographical zones and climatic conditions for centuries [56].
In contrast to other hemp varieties with a high content of psychoactive compounds (delta-9
tetrahydrocannabinol—THC), industrial hemp contains minimal quantities of THC and
traditionally has been cultivated for fibre, seeds and medicine [57,58].

Hemp is one of the first fibre crops [59], as well as the main cash crop until the 19th
century [60]. The introduction of cotton and synthetic fibres, and the prohibition of hemp
in many countries due to its association with biotypes containing a high content of THC,
led to a rapid decline in industrial hemp cultivation [61]. In the 1970s, the European Union
(EU) reintroduced the legal cultivation of hemp varieties with a psychotropic content
lower than 0.3% [62]. Along with legislative support, the EU has encouraged its hemp
industry through economic aid for hemp growers and processors [63], generating renewed
interest in this crop from various countries and industries [64]. Over the 1990s, the research
and development of industrial hemp contributed to changes in the perception of this
controversial plant [65].

During the following years, other industrialised economies, including Canada in 1998,
Australia in 2017 and, more recently, the USA in 2018, reauthorised and reintroduced hemp
cultivation with low THC content as an agricultural commodity, marking a renaissance in
the emerging global hemp market [57]. Almost 50 countries now grow hemp legally for
commercial and/or scientific purposes [38,66]. Globally, it is estimated that the area under
hemp cultivation for grain is 11,422 hectares (ha) and 74,307 ha for fibre in 2021, with an
increase of 117% and 63% compared to the levels recorded in 2010, respectively [67].

Australian Hemp Industry

Cannabis sativa cultivation is not novel in Australia [66]. The plant landed in the
country with the first European colonisers at the end of the 18th century, and it was sold
legally for textile and medicinal use until the beginning of the 20th century, when it was
classified as a noxious weed [68]. During the 1980s and 1990s, some states modified their
legislation to allow hemp cultivation for research and/or commercialisation [44]. In the
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1990s, a formal distinction between industrial hemp and biotypes with high psychotropic
content was introduced.

Tasmania started the first hemp trials in 1991 [68]. New South Wales, South Australia
and Victoria followed in 1995, Queensland in 1996 and Western Australia (WA) in 1997.
Over time, trials have examined several varieties of industrial hemp under different regional
conditions and have reported promising results regarding this profitable crop [69–71].

As of November 2017, hemp foods were legalised nationwide [44]. In 2020, around
100 licensed hemp growers cultivated an estimated 2000 hectares [72], with Tasmania
contributing the largest share of planted area [73]. Most hemp crops are harvested for grain
and only 3% are used for hurds and fibre, which are mainly produced in WA (80 ha) and
Victoria (30 ha) (see Figure 3).
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4.2. Industrial Applications of Hemp

Hemp is a multipurpose crop that produces three main components: fibre, seeds
and phytochemical compounds [57]. Hemp can be used as a phytoremediator for soils
contaminated by heavy metals [74,75]. Because all plant parts (stem, seeds, leaves
and flowers) find application in a myriad of end-use products [38,58], hemp is con-
sidered a valuable alternative material for the circular economy transition of various
industries [37,76,77].

Recent developments in the areas of breeding, morphology and pathology have
augmented hemp production to meet the demand for new industries. Today, hemp is used
in carbon sequestration, bioplastics [39], cosmetics [78], bioenergy [79], automobile [80]
and construction industries [61]. Currently, the paper, textile, food and construction sectors
are the dominant markets for industrial hemp [58]. It is estimated that this versatile crop
can be used for over 25,000 different products [81].
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4.2.1. Hemp Production and Processing

Industrial hemp belongs to genetically diverse plants, both in terms of morphological
and chemical features [82]. For this reason, hemp has been able to adapt to almost every
geographical and climatic condition, even in contaminated soils [75,76]. Hemp is a tall,
high-yielding, summer annual crop with a relatively short cropping period, usually from
70 to 140 days [39,83]. Hemp’s ideal cultivation temperature ranges between 15 and 27 ◦C,
albeit it can tolerate temperatures outside this range [79].

Industrial hemp is frequently touted as an ecological [77] and low cost crop [58] despite
the fact that in many regions, it requires intensive fertilisation [84] and irrigation to obtain
optimal biomass [66]. Although, hemp fertilisation requirements can be smaller than other
commercial grains, such as maize [64]. Similarly, hemp usually has less problems with
regard to pests and diseases, and generally outgrows most weeds; therefore, it requires
comparatively less pesticide and herbicide application, which can help to alleviate both
environmental impacts and costs to some extent [38]. Nevertheless, the specific characteris-
tics of the production and processing of this fast-growing crop depend on the component
to be produced [85] and the local conditions.

4.2.2. Hemp Fibres

Hemp stalks contain two main parts: fibres and hurds. Typically, the hurds comprise
60 to 70% of the stem dry matter [59,86]. To separate the fibres from the hurds, the stems
undergo a four-step process: retting, breaking, scutching and hackling [39]. The quality
of the hemp fibre is affected by various factors such as the crop production method,
environmental conditions, crop maturity at harvest and the retting process [87].

Hemp is one of the strongest plant-based fibres [38]. Additionally, compared to its
synthetic counterparts, hemp exhibits greater hygroscopicity, thermal and aseptic proper-
ties, better UV defense and fewer allergenic effects. These characteristics have amplified
the application of hemp fibres further than the traditional textile and paper production [58].
Nowadays, the automobile, bioplastic and construction sectors have replaced some syn-
thetic fibres with hemp elements to manufacture composites and other bio-based products.

Hemp hurds, which are considered a by-product with little commercial value [88],
are usually used for mulch and livestock beddings [58]. Since the 1990s, the construc-
tion sector has been using hemp hurds for the manufacturing of building materials,
including hemp concrete and hemp concrete blocks [89], in a textbook example of in-
dustrial symbiosis, where wastes of the hemp fibre industry are used as raw products
for other high-earning industries, such as construction, allowing the full utilisation and
valorisation of biomass resources.

4.2.3. Hemp Seeds

Hemp seeds have a high nutritional value [90], typically containing 25–35% oil, 20–30%
protein and 20–30% starch [39], along with a broad range of vitamins and minerals [38,91].
Because of its nutritional content, hemp grains are often regarded as a rich source of
plant-based protein, gaining popularity as food for humans and animals [87]. The quality
of the seeds is determined by the content of oil, fatty acids and protein, which can vary
according to the cultivar [66]. The seed oil can be used for cooking or as a raw product
for the cosmetic [92] and biofuel industries [57]. The residual grain cake is usually used as
protein rich fodder.

Research in hemp breeding is fostering the development of dual-purpose hemp vari-
eties: grain and fibre [56,83]. However, both seed and biomass productivity depends on
the species grown under a particular regional climate and soil conditions [93]. Despite the
increasing availability of dual purposes varieties, hemp growers mainly set their production
systems for a single purpose [66].
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4.2.4. Phytochemicals

There are more than 100 known bioactive compounds found in hemp inflorescences
and many more that are still under investigation [82]. These compounds have applications
in cosmetic and therapeutic industries [66]. The two most abundant and known hemp
phytochemicals are THC, which produces a psychotropic effect, and cannabidiol (CBD),
which is non-intoxicating [90] and can be used for the treatment of various medical condi-
tions [57]. Nowadays, CBD is the main active ingredient for many innovative products for
medicinal and non-medicinal purposes [38].

5. Hemp-Based Construction Materials

Recent advances in hemp components are widening their field of application in the
construction sector [94,95]. As a result, there is an ample range of different materials formed
by hemp fibres and hurds mixed with binders and other additives that, according to their
composition, are used in different building applications and are mainly divided in hemp
concretes and insulation mats [37,85].

5.1. Hemp Concretes

Hemp concrete is the most common bio-based material used in construction and one
of the largest studied [96], with the majority of research conducted in Europe [89]. Only a
few studies have investigated the characteristics of hemp hurds farmed under Australian
conditions as aggregates for hemp concretes, which obtained similar results to the research
conducted in Europe [97].

Hemp concrete, also known as ‘hempcrete’, is a mixture of hemp hurds, binder
(usually lime) and water [89,98], requires the use of gloves and respiration equipment
to work with lime, and is considered Category 3 organ systemic toxicity classification
for single exposure [99]. Hempcrete exhibits good technical characteristics, presents an
alternative to conventional materials and can help to improve the comfort of residents [100].
Nevertheless, its performance strictly depends on the characteristics of the hemp hurds,
the type of binder and their proportions in the mixture.

5.1.1. Thermal and Acoustic Insulation Properties

The high porosity of the hemp hurds provides low thermal conductivity to the
hemp concrete, which translates to a high thermal insulation ability [89,101]. Lawrence,
Fodde [102] compared the thermal performance of an experimental hemp concrete building
against a timber framed building with walls insulated using mineral wool. The study
reported that the external temperature variations for the hemp-derived building were
significantly moderated internally compared to the performance of the wool-insulated
building. Haik, Peled [86] investigated the thermal performance of test cells made with
hemp concrete and cells produced with mineral-based materials (autoclaved aerated con-
crete, hollow concrete blocks and expanded polystyrene). The hemp concrete cells yielded
better thermal performance compared to the cells made of conventional materials during
summer. Yet, during winter, the cells made with autoclaved aerated concrete presented
a slightly better thermal performance than the hemp-based cells. The high porosity of
hemp hurds also has an impact on the acoustic properties of the hemp concrete [103].
Glé, Gourdon [104] concluded that hemp concretes made with lime binders and small hurd
particles are good acoustic absorbents.

5.1.2. Hygroscopic Properties

Another characteristic of the hemp hurds is that they are made from different hy-
drophilic macromolecules, which translates to high hygroscopic behaviour [103]. Lawrence,
Fodde [102] compared the humidity levels of the hemp concrete building with a mineral
wool-insulated building. Their results showed that the internal relative humidity in the
hemp-derived building is maintained at a remarkably stable level with respect to the anal-
ogous product. More recently, Asli, Brachelet [105] assessed the ability of hemp concrete
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to regulate indoor humidity conditions and suggested that it is a much better regulator
than traditional materials, including cellular concrete, plaster and cement concrete. The
high porosity of hemp hurds also has an impact on the acoustic properties of the hemp
concrete [103].

5.1.3. Mechanical Properties

Hemp concrete is a lightweight material (dry density ranging from 250 to 400 kg/m3)
that shows low compressive strength [106]. Therefore, it is primarily used to construct
non-load-bearing walls of timber-frame residential houses [37,96]. Despite the mechanical
strength limitation, the use of hempcrete has rapidly spread over hundreds of low- and
medium-rise buildings since the 1990s in a number of European countries, such as France,
Great Britain, Germany and Italy [107,108], and lately is gaining popularity in Canada [89]
and Australia [71].

5.2. Hemp-Based Insulation Mats

In construction, hemp fibres are used for manufacturing mats with good thermal
and acoustic insulation properties [58]. Torres-Rivas, Palumbo [109] suggested that hemp-
sourced insulation products can compete with their conventional counterparts in terms of
thermal conductivity (around 0.040 W/m·K). Santoni, Bonfiglio [29] investigated ways to
enhance the acoustic performance of hemp fibres through different chemical and mechanical
processes. Their results showed that the sound absorption of hemp fibres can match the
performance of traditional petroleum-based fibres after an alkaline treatment followed by
combing processes.

6. Sustainability Implications of Hemp-Based Construction Materials

There is an increasing body of literature assessing the sustainability implications
of hemp-based materials; however, this is still significantly lower than the number of
publications evaluating their technical performance [95]. Most of the research has been
conducted in European contexts and under climate zones different to Australia.

6.1. Hemp Concretes
6.1.1. Environmental Implications of Hemp Concretes

LCA-based studies have consistently reported hempcrete as a climate positive con-
struction material, because the amount of CO2 sequestered during plant growth and lime
binder carbonation tends to be higher than the CO2 released during the material manu-
facturing, transport and construction stages combined [36,110–114] (Table 1). It is worth
mentioning that the production of lime and its application to neutralise Western Aus-
tralia’s acidic soil was found to increase the carbon footprint of crop production [115]. As
such, hempcretes usually exert substantially lower embodied GHG emissions compared to
traditional materials.

Table 1. Comparison of the life cycle CO2 emissions of existing LCA studies on hemp concretes.

Location
of the Study

Thermal
Conductivity,

W/m·K

U-Value,
W/m2·K

Carbon Footprint,
kg CO2-Equivalent Reference

United Kingdom 0.057 0.19 −36.08 [111]
France 0.086 0.36 −1.6 [112]
Italy 0.067 0.27 −12.09 [110]

Latvia 0.075 0.18 −19.28 [113]
Canada 0.05–0.06 0.15 −15.27 to −8.92 [36]

Shang and Tariku [116] applied the LCA method to perform a comparative assessment
of a residential hemp concrete building against a conventional split-insulated timber-
frame building with the same thermal conductivity in Canada. The authors reported that
the use of a hempcrete enclosure resulted in a reduction of embodied GHG emissions
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between 10 and 23%. Similarly, Di Capua, Paolotti [37] compared a hempcrete wall against
a traditional wall with similar thermal insulation performance formed by perforated brick
blocks with polystyrene insulation in Italy. The study concluded that the use of the
hempcrete wall reduces CO2-equivalent emissions by 86%.

In addition to measuring GHG emissions, some authors have assessed other envi-
ronmental indicators associated with the life cycle of hemp concretes. LCA studies have
shown that the farm stage, which serves as the primary stage of these materials, can exhibit
higher impacts in terms of eutrophication, eco-toxicity [85], ozone layer depletion [117]
and land use [37] compared to traditional materials.

6.1.2. Economic Implications of Hemp Concretes

The economic aspects of hemp concretes have received less attention. Agliata,
Marino [54] compared the costs involved with the use of gypsum and hemp mixed with
lime to be used as plasters during the refurbishment of an Italian house. The hemp
plaster involved 37.5% more costs compared to the use of the gypsum-based plaster.
Colli, Bataille [118] applied the eco-efficiency framework to assess the environmental
and economic aspects of different insulation materials, including hemp concrete, cellu-
lose, glass wool, polystyrene and polyurethane, throughout their life cycle. The study
evaluated refurbishment scenarios for a family house in France, and found that in terms
of environmental performance, the best scenario was the one using hempcrete, whereas
the use of polyurethane showed the worst environmental performance. Conversely,
hempcrete exhibited the worst economic performance due to its higher price, while
polystyrene had the best cost performance. The eco-efficiency matrix resulted in a group
of eco-efficient scenarios using different insulating materials that excluded hempcrete.

6.2. Hemp-Based Insulation Mats
6.2.1. Environmental Implications of Hemp-Based Insulation Mats

Compared to hemp concretes, the number of studies assessing the environmental
aspects of hemp-based insulation materials across their life cycle is much smaller, but
interestingly, they have reported similar results. Zampori, Dotelli [119] applied the LCA
method to calculate the embodied CO2 equivalent emissions of an insulation panel with
a U-value of 0.2 W/m2·K, made by hemp fibres (85%) and polyester fibres (15%) in Italy.
The study suggested that the hemp panel involved −4.28 kgCO2-equivalent emissions.
More recently, Hult and Karlsmo [120] conducted LCA and LCC assessments to compare
a hemp-based insulation mat against glass wool in a one-storey house in Sweden. They
reported that the GHG emissions associated to the hemp insulation were estimated to be
10% lower than the glass wool, with 20% higher costs than the latter.

6.2.2. Economic Implications of Hemp-Based Insulation Mats

The articles evaluated have consistently reported that hemp fibre insulation materi-
als usually involve higher costs compared to their traditional counterparts [109]. Schulte,
Lewandowski [33] indicated that traditional insulation materials, such as polystyrene
and mineral wool, have a considerable cost advantage over hemp fibres in Germany.
Similarly, Dickson and Pavía [34] investigated the cost performance (manufacturing cost
and annual space heating cost) of a wide range of 21 insulation materials in Ireland.
The study reported that rock wool, phenolic foam and glass mineral wool are cheaper
options than hemp-based solutions.

7. Future Directions: Application of Sustainability Assessment Tools for Hemp-Based
Construction Materials in Australia

As alluded to in the Section 1, Life Cycle Sustainability Assessment (LCSA) tools can
be used to assess the performance of construction materials and identify the key factors
affecting the TBL aspects of infrastructure projects. Hence, LCSA can assist in addressing
adoption barriers for hemp-based construction materials, such as a lack of understanding
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of their environmental advantages, potential higher costs, potential higher use of labor and
implications for the occupational health and safety of workers [43,44].

Except for an increasing number of LCA studies and a still limited number of LCCs
for hemp-based construction materials, researchers have not yet utilised Social Life Cycle
Assessment (SLCA) for determining their social implications. In a country such as Australia,
where the hemp industry is still in its infancy but has tremendous potential in building
applications, the use of TBL assessment tools is important to discern the strategies for
designing hemp-based materials that are environmentally friendly, cost-competitive and
improve social wellbeing.

An eco-efficiency framework has been used for assessing the environmental and
economic aspects of sustainability using LCA and LCC, which can provide a basis for
the adoption of environmentally friendly and cost-effective hemp-based materials [121].
The eco-efficiency framework, however, does not contemplate the social dimension of
sustainability. This characteristic has been considered a weakness of this approach, as
cost-competitive and environmentally friendly technologies could result in negative social
consequences, such as job losses, human rights and poor working conditions [122].

Kloepffer [123] introduced a life cycle method that integrates the three dimensions
of sustainability through the following scheme for a LCSA: LCSA = LCA + LCC + SLCA.
Janjua, Sarker [14] has successfully implemented this framework for selecting sustainable
building(s) for WA. Similarly, a LCSA approach that integrates the TBL objectives could
assist in the decision-making for selecting hemp-based construction materials with the
highest sustainability score.

Another important aspect of the LCA of plant-based products is that their environmen-
tal impacts vary across regions due to differences in the soil and climatic conditions. For
example, the carbon footprints of biodiesel production were 37 kg CO2 eq and 115 kg CO2
equivalent for WA and South Africa, respectively [124]. Therefore, hemp production in the
semi-arid climate of WA could markedly be different to its production in other parts of
the world.

Figure 4 shows the future direction of the hemp-based research focusing on the con-
struction materials (e.g., plaster board), where the social, economic and environmental data
of pre-, on- and post- farm data will be converted into social, economic and environmental
indicators, which will then be integrated into a single sustainability score for comparison
with the competing products.
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8. Conclusions

Progressively, the environmental impacts associated with construction materials are
gaining attention as their contribution to the whole-life cycle burdens of the global construc-
tion sector is increasing, and Australia is no exception. As such, there is growing interest in
the substitution of conventional construction materials with sustainable alternatives, such
as bio-based materials. Among a myriad of plants with the potential to form construction
materials, industrial hemp presents a promising solution because of its ability to sequester
CO2 through plant development, its fast growth, the reduced level of agricultural input
requirements and its good technical features.

The reviewed literature showed that hemp-based construction materials, including
hemp concretes and insulation mats, exhibit good thermal and acoustic insulation perfor-
mance compared to conventional mineral-based alternatives. Hemp concretes, however,
present low mechanical strength, which can be a limitation to the scalability of these prod-
ucts as structural components. This review also found that research on the sustainability
implications of hemp-based materials is still limited and has mainly focused on assessing
the environmental pillar, with an emphasis on GHG emissions across their life cycle and
little consideration for economic and social dimensions. The results show that the use of
hemp-based materials can help to alleviate the environmental impacts of the Australian
construction sector and assist in achieving climate targets. However, they can involve
higher costs. While these alternatives are not currently widespread in the country, a region-
specific LCSA approach is needed to evaluate and understand the environmental, economic
and social implications of their potential production and use in Australia, which can further
assist in addressing adoption barriers.
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