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Abstract: With the development of various metaheuristic algorithms, research cases that perform
weight optimization of truss structures are steadily progressing. In particular, due to the possibility of
developing quantum computers, metaheuristic algorithms combined with quantum computation are
being developed. In this paper, the QbHS (Quantum based Harmony Search) algorithm was proposed
by combining quantum computation and the conventional HS (Harmony Search) algorithms, and
the size and topology optimization of the truss structure was performed. The QbHS algorithm
has the same repetitive computational structure as the conventional HS algorithm. However, the
QbHS algorithm constructed QHM (Quantum Harmony Memory) using the probability of Q-bit and
proposed to perform pitch adjusting using the basic state of Q-bit. To perform weight optimization of
truss structures using the proposed QbHS algorithm, 20 bar, 24 bar, and 72-bar truss structures were
adopted as examples and compared with the results of the QE (Quantum Evolutionary) algorithm.
As a result, it was confirmed that the QbHS algorithm had excellent convergence performance by
finding a lower weight than the QE algorithm. In addition, by expressing the weight optimization
results of the truss structure with an image coordinate system, the topology of the truss structure
could be confirmed only by the picture. The results of this study are expected to play an important
role in future computer information systems by combining quantum computation and conventional
HS algorithms.

Keywords: quantum-bit; quantum-gate; harmony search algorithm; truss structure; weight
optimization; image coordinate system

1. Introduction

Truss structures are widely applied to modern buildings because they can reduce the
weight of the structure and are light. The optimal weight design to reduce the construction
cost of truss structures and maximize the performance of members is of great interest to
many researchers [1]. Weight optimal design is divided into size, shape, and topology
optimization according to the method of selecting design variables. Size optimization
selects the cross-sectional size of the member as the design variable and shape optimization
selects the displacement of the joint of the structure as the design variable. Finally, topology
optimization selects the presence or absence of each member or node as a design variable.
Weight optimization, which was carried out by selecting one design variable, began to be
studied as a combination of design variables such as size and shape, size and phase due to
the development of computers.

Weight optimization of truss structures aims to find the minimum weight under
various constraints. In general, the stress of the truss member, displacement of the node,
and buckling stress of the member were widely used as constraints. However, the dynamic
characteristics of the structure became important, and with the development of engineering,
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the natural frequency of the structure began to be added as a constraint. All structures have
their frequency, and if the natural frequency and the frequency by dynamic load match, the
horizontal displacement is amplified by the resonance phenomenon, posing a great risk
to the safety and residence of the structure. Therefore, to prevent major damage caused
by resonance phenomena, the natural frequency of the structure must be identified at the
design stage [2].

Weight optimization, a combination of size and topology, is widely applied to the
optimal design of structures because it selects the optimal member size in the best topology.
The combination problem of size and phase of truss structures was first performed by Sved
and Ginos [3]. They used a 3-bar truss structure as an example, and only the stress of the
member and the displacement of the joint were used as constraints. Since then, weight
optimization of 9 bar, 10 bar, 22 bar, 28 bar, 37 bar, and 2415-bar truss structures has been
performed by Sheu et al. and Ringertz [4–6]. Nakamura et al. raised the need to add natural
frequencies to constraints to the weight optimization problem of a combination of size
and topology, and performed weight optimization of a 36-bar truss structure and an arch
structure consisting of 55 nodes under only natural frequencies [7]. Since then, the weight
optimization of the truss structure has been steadily carried out by many researchers, but
most of the natural frequencies have not been included as constraint controls [8–16]. Xu
et al., Savsani et al. performed weight optimization of 10 bar, 20 bar, 24 bar, and 72-bar
truss structures using all four constraints [17–19].

Many researchers perform using metaheuristic algorithms for the optimal design of
various engineering problems. The metaheuristics algorithm is an algorithm that mathemat-
ically describes natural phenomena and performs optimization, and typically includes GA
(Genetic Algorithm), SA (Simulated Annealing), PSO (Particle Swarm Optimization), and
TLBO (Teaching-Learning-Based Optimization) algorithms [20–23]. These metaheuristics
algorithms are being combined with quantum computation to create new fields. Unlike
Bit, which is expressed as ‘0’ or ‘1’, quantum computation uses Q-bit, which is expressed
as the probability that ‘0’ and ‘1’ are selected [24,25]. Unlike conventional algorithms that
are determined and derived from a single value, optimization using Q-bit can obtain a
probability through information accumulation of Q-bit, and the probability of Q-bit is
determined as a value through measurement [26]. In addition, it is possible to propose
a new termination condition by accumulating information on Q-bit [27]. Due to these
characteristics, many metaheuristic algorithms are combined with quantum computing,
and algorithms such as Q-GA (Quantum GA), Q-PSO (Quantum PSO), Q-SA (Quantum
SA), and Q-TLBO (Quantum TLBO) algorithms are proposed, and applied to various
optimization problems [28].

There have also been attempts to combine the HS (Harmony Search) algorithm pro-
posed by Geem et al. with quantum computation. The problem of binary form, a basic
study for combining HS algorithms that perform operations based on decimal numbers
with quantum computation, has steadily progressed. Geem proposed a BHS (Binary HS)
algorithm that can solve the On/Off switch problem [29]. Wang et al. proposed a hybrid
BHS algorithm by applying the search mechanism of the ant system [30]. However, since
the BHS algorithm was not easy to express the pitch adjusting process performed using
values in the range of ‘0’ and ‘1’, the most important pitch adjusting process in the HS
algorithm was omitted. Layeb proposed the QIHSA (Quantum Inspired HS Algorithm)
that combines quantum computation and HS algorithms to solve the binary problem [31],
and Alfailakawi et al. attempted to express quantum gates as two-dimensional quantum cir-
cuits [32]. However, QIHSA can only solve problems expressed as ‘0’ or ‘1’, and algorithms
that can solve real or binary variable problems are insufficient.

Therefore, this paper proposes a QbHS (Quantum based HS) algorithm that can solve
real variable problems by combining the conventional HS algorithm with quantum com-
puters. In addition, weight optimization of 20 bar, 24 bar, and 72-bar truss structures with
continuous cross-sectional areas is performed using the QbHS algorithm and compared
with the results of the QE (Quantum Evolutionary) algorithm. Section 2 describes the con-
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ventional HS algorithm, and Section 3 describes the overall theory of quantum computation
and the QbHS algorithm. Section 4 defines the weight optimization problem of 20 bar,
24 bar, and 72-bar truss structures, and Section 5 shows the results of weight optimization.
The final section concludes this paper.

2. The Conventional HS Algorithm

The conventional HS algorithm is an algorithm proposed by Geem et al. and is
an algorithm that performs optimization by describing the process of finding the notes
generated from the instrument in the best harmony [33]. The performers remember the
notes they made and pitch adjusting to find the optimal harmony. HM (Harmony Memory)
is the memory that remembers previously issued notes, and the size of HM is determined
by N (number of instruments) and HMS (Harmony Memory Size). The magnitude of the
note adjustable width is bw (band-width). The variable considered for extraction from HM
for pitch adjusting is HMCR (Harmony Memory Considering Rate), which has a value
between ‘0’ and ‘1’. The variable considered for the extracted note regulation is PAR (Pitch
Adjusting Rate), which allows fine-tuning of the note depending on the width of bw. A
small width of bw allows fine-tuning, which improves the convergence performance but
slows the convergence. Conversely, the larger the width of bw, the faster the convergence
rate, but the lower the convergence performance.

Algorithm 1 is a procedure for finding the best harmony in conventional HS algorithms
and is divided into five steps.

Algorithm 1 Process of conventional HS algorithm

Step 1: Define a problem and set HS parameters.
Step 2: Generate HM and initialize the memory.
Step 3: Create an new harmony by extracting one from HM and pitch adjusting.
Step 4: Update/renewal HM by using candidate harmony set.
Step 5: Repeat steps 3 and 4 until the stopping rules are satisfied.

Step 1. Define a problem and set HS parameters
In Step 1, the optimization problem is defined and the value of the parameter is

determined. The optimization problem can be defined as Equation (1).

minimize f (x)

subject to xiL ≤ xi ≤ xiU , i = 1, 2, · · · , N
(1)

Here, xi means the note generated by the i instrument, and xiL and xiU are the lower
and upper limits of the problem. In addition, parameters that significantly affect the
convergence performance of the conventional HS algorithms: HMS, HMCR, PAR, bw,
tmax (total generations) is set. In general, HMCR and PAR are known to use 0.7–0.95 and
0.1–0.5 [34].

Step 2. Generate HM and initialize the memory
The expression used to generate the note initially is Equation (2), and each note is

stored in HM, such as Equation (3).

xj
i = xiL + r1 × (xiU − xiL) (2)

HM =


x1

1 x1
2 · · · x1

N
x2

1 x2
2 · · · x2

N
...

...
. . .

...
xHMS

1 xHMS
2 · · · xHMS

N

 (3)
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Here, j = 1, 2, · · · , HMS, and r1 is a random number between ‘0’ and ‘1’. That is, the
conventional HS algorithm consists of HM in decimal variables.

Step 3. Create an new harmony by extracting one from HM and pitch adjusting
Step 3 is the step of generating a new note (xj′

i ), and is the most important step in

conventional HS algorithms. xj′
i is generated using HMCR, PAR, and bw, and uses a value

of HM by Equation (4). We take advantage of the value of HM if r2 is less than or equal
to HMCR, and if r2 is greater than HMCR, it is globally explored by Equation (2). r2 is a
random number between ‘0’ and ‘1’.

xj′
i =

{
x′i ∈ HMj

i with r2 ≤ HMCR
x′i ∈ Xi with else

(4)

The xj
i adopted by HM is determined by PAR, according to whether pitch adjusting is

performed. If r3 is less than or equal to PAR, pitch adjusting is performed by Equation (5),
and if r3 is greater than PAR, it is globally explored by Equation (2). ri is a random number
between ‘−1’ and ‘1’.

xj′
i = xj

i + ribw with r3 ≤ PAR (5)

Step 4. Update/Renewal HM by using candidate harmony set
In Step 4, we compare solutions of notes (xj′

i ) belonging to the existing HM with new

solutions of notes (xj
i) to update the better notes to HM. This process is expressed in an

equation as Equation (5).

xj′
i ∈ HMj if f (xj

i) < f (xj′
i ) (6)

Step 5. Repeat steps 3 and 4 until the stopping rules are satisfied
If the t (current generation) is equal to the tmax set initially, the search is terminated,

and if it is not equal, go to Step 3 and repeat until the end condition is satisfied.

3. Background of Quantum Computation
3.1. Expression of Q-Bit

Classical computers (including super-computers) calculate bits expressed as ‘0’ or
‘1’ as the minimum information processing unit, but quantum computers and quantum
computations calculate using Q-bits that express values by overlapping ‘0’ and ‘1’. Bra-
ket notification is used to express Q-bit, and the state of a single Q-bit is expressed as
Equation (7) [35].

|ψ >= α|0 > +β|1 > (7)

α and β are probability amplitudes of |0> and |1>, and α|2 and β|2 are probabilities
that |0> and |1> are chosen [36]. Since the sum of the probabilities must satisfy ‘1’, the
sum of each probability must always satisfy Equation (8), which is called the normalized
Q-bit. If the state of a single Q-bit is expressed as a vector matrix, it can be expressed as
Equation (9).

|α|2 + |β|2 = 1 (8)

q =

[
α
β

]
(9)

If the number of Q-bits is m, the state of m Q-bits can be expressed as a vector matrix
as shown in Equation (10). The sum of the probabilities that |0> and |1> of each Q-bit
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will be selected must likewise satisfy 1, which can be expressed as Equation (11). Here,
i = 1, 2, · · · , m.

q =

[
α1 α2 · · · αm−1 αm
β1 β2 · · · βm−1 βm

]
(10)

|αi|2 + |βi|2 = 1 (11)

Rotation Gate

Quantum operators have been proposed to simulate the spin phenomenon of Q-bit.
Unlike classical logic gates, it has the characteristic of being reversible. To represent a
quantum operator, it must be represented as a unitary transformation matrix, which can be
represented as Equation (12) [37].

UU† = U†U = I (12)

The Q-bit accumulates information about the previous generation based on the current
generation and performs rotation for information accumulation. The i-th Q-bit in the
t-generation rotates using Equation (13).{

αt+1
i

βt+1
i

}
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]{
αt

i
βt

i

}
(13)

Here, θ means the rotation angle for the Q-bit to rotate, and θ is defined by
Equation (14). ∆θ is determined by a lookup-table such as Table 1. Here, x denotes a
binary string in the current generation, and b denotes an optimal binary string in the previ-
ous generation. θp is a variable initially determined by θr, and θp is defined as Equation (15).
θr is a parameter defined by the user.

θ = ∆θ × sign(αiβi) (14)

Table 1. Look-up table for quantum rotation gate.

xi bi f (x) < f (b) ∆θ
sign(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 True 0 0 0 0 0
0 0 False 0 0 0 0 0
0 1 True θP 1 −1 0 ±1
0 1 False 0 0 0 0 0
1 0 True θN

1 1 −1 ±1 0
1 0 False 0 0 0 0 0
1 1 True 0 0 0 0 0
1 1 False 0 0 0 0 0

1 θN = −θP.

θP = θr × π (15)

3.2. Hε Gate

Hε gate helps to actively escape if the solutions of the converged Q-bit fall into the
local optimal solution. The Q-bit fully converges to ‘0’ or ‘1’ as the number of generations
progresses, and the Q-bit is observed to show one solution. However, there is no way to
escape through observation when the Q-bit falls into the local optimal solution with 100%
convergence to ‘0’ or ‘1’. To solve this problem, Han et al. proposed Hε gate [38].

Figure 1 is the concept of Hε gate, and the basic state of a single Q-bit is expressed in
|α|2 and |β|2 axes. Han et al. [38] classified it into three cases, and each case is expressed as
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an equation, namely as Equations (16)–(18). Case 1 and Case 2 beyond the range of ε are
readjusted to ε, and Case 3 within the range of ε has the same value.

That is, Hε gate artificially prevents the phenomenon of full convergence to ‘0’ or ‘1’
by the size of the variable ε. ε has a value in the range of [0 1], and if ε becomes too large,
there is no space for Q-bits to converge, resulting in poor convergence performance [39].

Figure 1. Concept of Hε gate.

[αi βi]
T = [

√
ε
√

1− ε]T (16)

[αi βi]
T = [

√
1− ε

√
ε]T (17)

[αi βi]
T = [αi βi]

T (18)

4. Quantum Based HS Algorithm

The QbHS algorithm performs operations using Q-gate and Q-bit with uncertain
and overlapping characteristics. The QbHS algorithm performs repetitive operations with
basically the same structure as the conventional HS algorithm. Algorithm 2 is a procedure
for performing the QbHS algorithm and is classified into five steps like the conventional
HS algorithm.

Algorithm 2 Process of QbHS Algorithm

Step 1: Define a problem and set QbHS parameters.
Step 2: Generate QHM and initialize the memory.
Step 3: Create an new harmony by extracting one from QHM and pitch adjusting.
Step 4: Update/renewal QHM by using candidate harmony set.
Step 5: Repeat steps 3 and 4 until the stopping rules are satisfied.

Step 1. Define a problem and set QbHS parameters
Like the conventional HS algorithm, the problem is defined in Step 1 and the pa-

rameters used in the QbHS algorithm are set. Like conventional HS algorithms, there
are parameters QHMS (Quantum HMS), QHMCR (Quantum HMCR), QPAR (Quantum
PAR), Qbw (Quantum bw), and tmax, with θr and ε is added. θr is used for the rotation gate
for the rotation of Q-bit, and ε is the variable used for the Hε gate.
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Step 2. Generate QHM and initialize the memory
The QHM (Quantum HM) of the QbHS algorithm has the same structure as the

conventional HS algorithm and can be expressed as Equation (19).

QHM =


x1

1 x1
2 · · · x1

N
x2

1 x2
2 · · · x2

N
...

...
. . .

...
xQHMS

1 xQHMS
2 · · · xQHMS

N

 (19)

HM of the conventional HS algorithm consists of a decimal variable, but QHM
consists of a binary variable represented by the measurement of Q-bit. Each variable can be
expressed as Equation (20), where m represents the number of Q-bits per design variable.

xi
j = {q1, q2, ..., qm} (20)

Q-bit, which operates using probabilities, must determine the initial probability. In
this paper, it was classified into two categories (QbHSHG or QbHSRV algorithm) using the
method of initializing Q-bit. The QbHSHG algorithm initializes the probability of selecting
‘0’ or ‘1’ to 50% each. The QbHSRV algorithm initializes the probability of selecting ‘0’ or ‘1’
by generating random numbers between [0 1]. The probability of the initialized Q-bit is
readjusted by Hε gate. The Q-bit initialized using the above method is stored in the QHM,
and the determined QHM stores information through measurement.

Step 3. Create a new harmony by extracting one from QHM and pitch adjusting
After completing the initialization of QHM, repetitive operations are performed using

the same structure as the conventional HS algorithm. In the conventional HS algorithm,
pitch adjusting is performed in Step 3, and it is the most important step in the calculation
process. The QbHS algorithm performs pitch adjusting similarly, and unlike previous
studies that omitted pitch adjusting because it was expressed in binary, this paper performs
pitch adjusting using the basic state of Q-bit. Figure 2 is a diagram expressing the concept
of pitch adjusting of the QbHS algorithm.

Figure 2. Concept of pitch adjusting using Q-bit basic state.

Pitch adjusting is performed stochastically in the (+) or (−) direction using Q-bit’s
probability information, and the range in which pitch adjusting is performed is [−0.5 0.5]
based on the adopted Q-bit’s probability information |αi|2. The process of performing pitch
adjusting based on |αi|2 is expressed as an Equation (21). Here, r is a random number
between ‘0’ and ‘1’, and Qbw is expressed as an Equation (22). Therefore, the size of Qbw
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gradually decreases as the number of generations progresses, and |βi|2 is determined by
|αi|2 in which pitch adjusting is performed.{

αt+1
i =

∣∣αt
i

∣∣2 + r×Qbw r < 0.5
αt+1

i =
∣∣αt

i

∣∣2 − r×Qbw else
(21)

Qbw = 0.7×

0.9× qbwmax × exp

 log
(

qbwmin
qbwmax

)
0.7

× t
tmax

 (22)

The Q-bits adopted for pitch adjusting are regulated by tolBW and BWQ. Figure 3
shows the Q-bit adopted according to the number of generations and is a figure with
Q-bit, tolBW, and BWQ set to 10, 0.95, and 0.3. Pitch adjusting of the Q-bit performs
probabilistically over the entire region until the probability mean of the Q-bit reaches
tolBW. However, when the probability means reaches tolBW, pitch adjusting is performed
using only Q-bits as much as BWQ. These changes in Q-bit adoption help the entire
area of exploration in the early generation and conduct the role of exploitation in the
latter generation.

Figure 3. Adaption of Q-bit in all generation.

After pitch adjusting is performed, it is readjusted by Hε gate. If the conditions of
QHMCR and QPAR are not met, we randomly generate new information without per-
forming pitch adjusting. The Q-bit of QHM performs rotation on the previous generation
based on the current generation and uses a rotation gate.

Step 4. Update/renewal QHM by using candidate harmony set (Figure 4)
The QbHS algorithm performs operations based on uncertainty data and is also stored

in QHM as information in Q-bit. Therefore, the renewal process of QHM is determined by
the measurement of QHM of the current population and the candidate population. As a
result of the measurement, the Q-bit passes through the rotation gate, and the probability
information of the Q-bit is updated again. As the number of generations increases, the
Q-bit converges to ‘0’ or ‘1’, resembling a state of definitive information. Through this
process, the probability average of the Q-bit can be known indirectly. It can also recognize
how current information has been accumulated.

Step 5. Repeat steps 3 and 4 until the stopping rules are satisfied
Like the conventional HS algorithm, if the t is the same as the tmax, the search process

is terminated. However, if the termination condition is not satisfied, move to Step 3 and
perform a repetitive operation until the termination condition is met.
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Figure 4. Flowchart of QbHS algorithm.

A new termination condition using accumulated Q-bit information has been proposed
when performing operations using quantum computation. The accumulated probability
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mean of the Q-bit can be defined as Equation (23), and termination conditions can be
expressed as Equation (24) [38].

Cb(q) =
1
m

m

∑
i=1
|1− 2|αi|2|

(
or Cb(q) =

1
m

m

∑
i=1
|1− 2|βi|2|

)
(23)

Cav =

(
1
n

n

∑
j=1

Cb(qj)

)
> (1− 2ε)γ (24)

5. Problem Definition

The QbHS algorithm was applied to the weight optimization problem of truss struc-
tures, and the example structures adopted 20 bar, 24 bar, and 72-bar truss structures.
Expressing the weight optimization problem as a mathematical model is equivalent to
Equation (25) [18,19,40].

Minimize F(x) = ρ
n

∑
i=1

Bi AiLi +
m

∑
j=1

bj (25)

Subject to gk(x) ≤ 0, k = 1, 2, 3, 4, 5, 6, 7

g1(x) = |Biσi| − σmax
i ≤ 0

g2(x) = |δj| − δmax
j ≤ 0

g3(x) = |Biσ
comp
i | − σcr

i ≤ 0, σcr
i =

ki AiEi

L2
i

g4(x) = fr − rmax
r ≤ 0

g5(x) = Amin ≤ Ai ≤ Amax

g6 = Check validity o f structure

g7 = Check kinematic stability

(26)

Here, n is the number of elements, m is the number of nodes, ρ is the density, Ai is
the cross-sectional area, Li is the length, bj is the mass of j nodes, σi is the stress, δj is the
displacement of j nodes, ki is the critical buckling, Ei is the Modules of elasticity, fr is the
rth natural frequency of the truss. In this paper, ki for calculating buckling loads used 4.0,
and 5.0 kg of mass was added to each node for calculating the natural frequency. Bi is a
topological bit, where ‘0’ means absent of the ith element, and ‘1’ means present of the ith
element [19].

The constraint g6 checks the validity of the structure by checking whether the node
that should not be erased, such as the node where the load is applied or the node set as
the boundary, has been erased. If the constraint g6 is not satisfied, the penalty is given by
109 [19].

The constraint g7 identifies the kinematic stability of the structure and uses two steps.
In the first step, the degree of freedom is calculated using Equation (27).

Do f = d ∗m− n−mr (27)

Here, d = 2 (for planar truss) or 3 (for space truss), and mr is a limited number of
degrees of freedom. If Do f is negative, it is determined that there is no mechanism. If Do f
is positive, it is determined that there is a mechanism, and penalties are given by 108. The
second step checks the singularity of the global stiffness matrix (K). If eig(K) is greater
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than 10−5, it is judged that it is kinematically stable, and if it is less than 10−5, it is given a
penalty of 107. Penalty values used in the paper were referred to the reference [18,19].

Unpenalized structures identify constraints g1, g2, g3, and g4, and, if all are satisfied,
calculate the weight of the structures by Equation (25). If the constraints g1, g2, g3, and g4
are not satisfied, a penalty is given by 104, which is equivalent to Equation (28).

F(x) =

(
ρ

n

∑
i=1

Bi AiLi +
m

∑
j=1

bj

)
∗ penalty (109 or 108 or 104) (28)

Figure 5 is the initial shape of the truss structure adopted as an example. 20-bar truss
structure in Figure 5a consists of 9 nodes and 20 elements, and an additional load of 200 kg
was applied to the 4th node. 24-bar truss structure in Figure 5b consists of 8 nodes and
24 elements, and an additional load of 500 kg was applied to the third node. 72-bar truss
structure in Figure 5c consists of 20 nodes and 72 elements, and an additional load of
2270 kg was applied to the first to fourth nodes. Truss structures of 20 bars and 24 bars have
design variables equal to the number of elements. However, the 72-bar truss structure con-
sists of 16 groups and has 16 variables: G1(A1 A4), G2(A5 A12), G3(A13 A16), G4(A17 A18),
G5(A19 A22), G6(A23 A30), G7(A31 A34), G8(A35 A36), G9(A37 A40), G10(A41 A48),
G11(A49 A52), G12(A53 A54), G13(A55 A58), G14(A59 A66), G15(A67 A70), G16(A71 A72).

(a) (b)

(c)

Figure 5. Truss structures for weight optimization: (a) 20 bar. (b) 24 bar. (c) 72 bar.
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To compare the results of the QbHS algorithm proposed in this paper, it was compared
with the results of the QE algorithm conducted in previous studies [41]. In addition, the
QbHS algorithm used both methods of initializing the Q-bit. Algorithms that combine
quantum computing were not compared to conventional metaheuristic algorithms because
it was difficult to compare algorithm results of decimal-based algorithms due to the number
of Q-bits and measurements. Table 2 is a parameter used for weight optimization.

Table 2. Parameter for weight optimization of truss structures.

Algorithm Parameters

QbHSA QHMS = 10, QHMCR = 0.9, QPAR = 0.1, Q− bit = 18, ε = 0.01, θr = 0.06, Mea. = 2,
tolBW = 0.95, BWQ = 0.3, qbwmax = 1.0, qbwmin = 0.01

QEA Local group size = 10, Global migration period = 100, Q− bit = 18, ε = 0.01,
θr = 0.06, Mea. = 2

6. Size and Topology Optimization
6.1. 20-Bar Truss Structure

The initial shape of the 20-bar truss structure is shown in Figure 5a. E and ρ of the
truss elements are 69,000 MPa and 2740 kg/m3. The range of the cross-sectional area
that the element may have is [−100 100], and the minimum cross-sectional area is 1 cm2.
The load acting on the 20-bar truss structure is applied to node 4 and classified into two
conditions. The first loading condition assumes that F1 = 500 kN, F2 = 0 kN, and the
second loading condition assumes that F1 = 0 kN, F2 = 500 kN. Table 3 is a constraint for
weight optimization of a 20-bar truss structure. The allowable stress of the element is
172.43 MPa, and the maximum displacement of the y-axis at node 4 is 10 mm. Finally, the
first natural frequency of the structure is more than 60 Hz, and the second natural frequency
is more than 100 Hz. A total of 100 analysis were conducted, and each analysis was set to
1000 generations.

Table 3. Constraints of 20-bar truss structures.

Load σmax
i δmax

4y
Natural Frequency

Case 1 Case 2 (i = 1, . . . , 20) f1 f2

F1 = 500 kN, F2 = 0 kN F1 = 0 kN, F2 = 500 kN 172.43 MPa 10 mm ≥60 Hz ≥100 Hz

Figure 6 is a convergence graph of three algorithms. Solid black, dotted blue and solid
red lines indicate the best weight, mean weight, and probability of the Q-bit. The QbHSHG
algorithm derived 320.445 kg, and the QbHSRV algorithm derived 321.691 kg. The QE
algorithm derived 322.594 kg, and the QbHSHG algorithm derived the smallest weight.
The biggest difference between quantum computation-based and conventional decimal or
binary-based optimization algorithms is that Q-bit has the probability. The Q-bit converges
to ‘1’ as the number of generations progresses. All three algorithms show that the Q-bit is
almost converged on ‘1’, and the reason why it is not fully converged on ‘1’ is because Hε

gate was used. The reason why the probability of the QbHSRV algorithm started near 0.5 is
that the initial value is set randomly when the Q-bit is initialized, so it has a value similar
to 0.5 by the normal distribution.
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(a) (b)

(c)

Figure 6. Convergence graph of 20-bar truss structures: (a) QbHSHG. (b) QbHSRV . (c) QE.

Figure 7 is the size of each cross-sectional area derived as a result of weight optimiza-
tion of a 20-bar truss structure, and the red dot line is the maximum cross-sectional area that
an element can have. Even though the cross-sectional area is different, all three algorithms
adopted 1, 5, 8, 11, 13, 15, 18, and 20 elements. The QbHSRV algorithm additionally adopted
4 elements, and we found that all areas of elements were smaller than the maximum cross-
sectional area. As a result, a total of eight elements were selected for the QbHSHG and QE
algorithms, and a total of nine elements were selected for the QbHSRV algorithms.

Table 4 is a table of weight optimization results of a 20-bar truss structure. The best
weight was 320.445 kg with the QbHSHG algorithm. Similarly, Mean weight and Standard
Deviation (S.D.) was the best QbHSHG algorithms at 381.180 kg and 48.792. That is, the
results of the QbHSHG algorithm were the best for weight optimization of the 20-bar truss
structure. It can be seen that constraints of g1, g2, g3, and g4 are also satisfied with the
results of all algorithms.
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Figure 7. Result area of 20-bar truss structures.

Table 4. Results of 20-bar truss structure.

Variable QbHSHG QbHSRV QE

Best (kg) 320.445 321.691 322.594
Mean (kg) 381.180 404.720 391.383

S.D. 48.792 57.543 54.004
σmax (MPa) 69.66 170.72 65.04
σcr

max (MPa) 348.47 348.46 348.64
δmax

4y (mm) 9.983 9.999 9.993
f1 (Hz) 77.903 77.974 77.684
f2 (Hz) 100.027 105.590 100.147

Figure 8 expresses the weight optimization result of the 20-bar truss structure with
an image coordinate system. In this paper, the topology of the truss structure derived as a
result of weight optimization is expressed using an image coordinate system. The elements
of all structures are made up of two nodes, and each node is given a unique node number.
The two node numbers constituting the element may be expressed as coordinates. For
example, the first element of Figure 5a consists of the node 1 and node 2. That is, it may be
expressed as coordinates of (1, 2) or (2, 1), and the represented figure always has symmetry.
Using this method, the initial topology of the 20-bar truss structure can be expressed as
Figure 8a by expressing the initial topology of the 20-bar truss structure with an image
coordinate system. Figure 5b,c is a figure representing the weight optimization results of
three algorithms with an image coordinate system, and the topology of the structure can be
easily confirmed only by the figure. The truss structures derived as a result of QbHSHG
and QE algorithms have the same topology. The topology of the truss structure, derived
by the QbHSRV algorithm, has an additional element number 4 consisting of node 4 and
node 5. If the topology of the structure is expressed with an image coordinate system, the
difference in topology can be easily determined only by the figure, and the topology of the
structure can be predicted using a neural network structure algorithm in the future.
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(a) (b)

(c) (d)
Figure 8. Image coordinate system of 20-bar truss structure: (a) Basic. (b) QbHSHG. (c) QbHSRV .
(d) QE.

6.2. 24-Bar Truss Structure

The initial shape of the 24-bar truss structure is shown in Figure 5b, where E and ρ
of truss elements are 69,000 MPa and 2740 kg/m3. The range of cross-sectional areas that
the element may have is [−40, 40], and the minimum cross-sectional area is 1 cm2. The
load acting on a 24-bar truss structure is classified into two conditions. The first condition
assumes that 50 kN acts on the x-axis of node 3 and −50 kN on the y-axis of node 6. The
second condition assumes that −50 kN acts on the x-axis of node 2 and −50 kN on the
y-axis of node 5. Table 5 is a constraint for weight optimization of a 24-bar truss structure.
The allowable stress of the element is 172.43 MPa, and the maximum y-axis displacement
of node 5 and node 6 is 10 mm. Finally, the first natural frequency of the structure is
more than 30 Hz. A total of 100 analyses were conducted, and each analysis was set to
1000 generations.

Table 5. Constraints of 24-bar truss structures.

Load σmax
i δmax

5y,6y Natural FrequencyCase 1 Case 2 (i = 1, . . . , 24)

F1 = 50 kN, F2 = 0 kN F1 = 0 kN, F2 = 50 kN 172.43 MPa 10 mm f1 ≥ 30 Hz

Figure 9 is a convergence graph of three algorithms. Solid black, dotted blue and solid
red lines indicate the best weight, mean weight, and probability of the Q-bit. The QbHSHG
algorithm derived 125.833 kg, and the QbHSRV algorithm derived 124.662 kg. The QE
algorithm derived 126.565 kg, and the QbHSRV algorithm derived the smallest weight. All
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three algorithms show that the Q-bit is almost converged on ‘1’, and using Hε gate, the
Q-bit is not fully converged on ‘1’.

(a) (b)

(c)

Figure 9. Convergence graph of 24-bar truss structures: (a) QbHSHG. (b) QbHSRV . (c) QE.

Figure 10 is the size of each cross-sectional area derived as a result of weight optimiza-
tion of the 24-bar truss structure. Elements 7, 8, 13, 15, 16, 22, and 23 were all adopted
by three algorithms. The QbHSRV algorithm additionally adopts the element 4, with all
the adopted elements being smaller than the maximum cross-sectional area. As a result,
a total of eight elements were selected for the QbHSHG and QE algorithms, and a total of
nine elements were selected for the QbHSRV algorithms. The QbHSHG algorithm selected
element 10 additionally, and the QbHSRV algorithm selected element 10 and element 14
additionally. Element 12 was additionally selected for the QE algorithm. In addition,
elements 10, 12, 14, 22, and 23 are not necessary for the load burden of the structure, but
are necessary by the kinematic ability of the structure.

Table 6 is a table of weight optimization results of a 20-bar truss structure. The best
weight was the best with the QbHSRV algorithm at 124.662 kg, and the mean weight was
the best with the QbHSRV algorithm at 159.394 kg. S.D. had the best QbHSRV algorithm
at 27.702. Conversely, the QE algorithm derived the best weight, mean weight, and S.D.
126.565 kg, 176.130 kg, and 31.798, and derived the worst value. The results of the 24-bar
truss structure also show that the constraints of g1, g2, g3, and g4 satisfy all of the results of
all algorithms.
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Figure 10. Result area of 24-bar truss structures.

Table 6. Results of 24-bar truss structure.

Variable QbHSHG QbHSRV QE

Best (kg) 125.833 124.662 126.565
Mean (kg) 162.079 159.394 176.130

S.D. 27.702 31.634 31.798
σmax (MPa) 145.45 145.45 156.60
σcr

max (MPa) 33.78 33.65 33.65
δmax

5y (mm) 3.687 2.611 2.544
δmax

6y (mm) 9.468 9.535 9.494
f1 (Hz) 30.017 30.086 30.027

Figure 11 is a figure representing the weight optimization result of the 24-bar truss
structure with an image coordinate system. The initial shape of the 24-bar truss structure
is expressed as Figure 5a. The weight optimization results of the 24-bar truss structure all
have different topologies depending on the type of algorithm. Based on the topology of the
QbHSRV algorithm with the smallest best weight, the result of the QbHSHG algorithm is
that there is no element 14 composed of node 3 and node 5. As a result of the QE algorithm,
there is no element 14 composed of node 3 and node 5, element 10 composed of node 2 and
node 8, and there is an additional element 12 composed of nodes 2 and 3.

6.3. 72-Bar Truss Structure

The initial shape of the 72-bar truss structure is shown in Figure 5b, where E and ρ of
truss elements are 68,950 MPa and 2767.99 kg/m3. The range of the cross-sectional area
that the element may have is [−30 30], and the minimum cross-sectional area is 1 cm2.
Additionally, 2270 kg of mass is added to nodes 1–4. The load conditions acting on the
72-bar truss structure are classified into two conditions, as in the previous examples. The
first condition assumes that 22.25 kN acts on the x-, y-, and −z-axes of node 1, and the
second condition assumes that 22.25 kN acts on the −z-axis of nodes 1–4. Table 7 is a
constraint for weight optimization of 72-bar truss structures. The allowable stress of the
element is 172.375 MPa, and the maximum displacement of the x- or y-axis at nodes 1–4
is 6.35 mm. Finally, the first natural frequency of the structure is more than 4 Hz, and the
third natural frequency is more than 4 Hz. A total of 100 analyses were conducted, and
each analysis was set to 1000 generations.
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(a) (b)

(c) (d)
Figure 11. Image coordinate system of 24-bar truss structure: (a) Basic. (b) QbHSHG. (c) QbHSRV .
(d) QE.

Table 7. Constraints of 72-bar truss structures.

Load σmax
i δmax

jx or y Natural Frequency

Case 1 Case 2 (i = 1, . . . , 72) (j = 1, 2, 3, 4) f1 f3

F1x = F1y = 22.25 kN,
F1z = −22.25 kN F1z = F2z = F3z = F4z = −22.25 kN 172.375 MPa 6.35 mm ≥4 Hz ≥6 Hz

Figure 12 is a convergence graph of three algorithms. Solid black, dotted blue and
solid red lines indicate the best weight, mean weight, and probability of the Q-bit. The
QbHSHG algorithm derived 445.833 kg, and the QbHSRV algorithm derived 449.190 kg.
The QE algorithm derived 446.018 kg, and the QbHSHG algorithm derived the smallest
weight. It can be seen that all three algorithms have almost converged on ‘1’.

Figure 13 is the size of each cross-sectional area derived as a result of weight optimiza-
tion of the 72-bar truss structure. The groups adopted by all three algorithms are 1, 2, 5, 6,
9, 10, 13, and 14. All algorithms have chosen ten element groups in common, but the total
group selected is slightly different. Excluding the common element groups, the QbHSHG
algorithm chose groups 8 and 11 additionally, and the QbHSRV algorithm chose groups 4
and 15 additionally. The QE algorithm additionally selected groups 8 and 15.
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(a) (b)

(c)

Figure 12. Convergence graph of 72-bar truss structures: (a) QbHSHG. (b) QbHSRV . (c) QE.

Figure 13. Result area of 72-bar truss structures.

Table 8 is a table of weight optimization results of a 72-bar truss structure. Best weight,
mean weight, and S.D. had the best QbHSHG algorithm at 445.833 kg, 484.945 kg, and 21.306.
All constraints of the 72-bar truss structure were also satisfied. The resulting structure of
the QbHSHG algorithm was the best, with a maximum stress of 48.11 MPa, a maximum
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buckling stress of 227.11 MPa, and a maximum displacement of 5.323 mm. In addition, the
first natural frequency was 4.002 Hz and the third natural frequency was 6.000 Hz.

Table 8. Results of 72-bar truss structure.

Variable QbHSHG QbHSRV QE

Best (kg) 445.833 449.190 446.018
Mean (kg) 484.945 498.136 522.369

S.D. 21.306 40.115 46.153
σmax (MPa) 48.11 45.55 41.95
σcr

max (MPa) 227.11 228.03 184.06
δmax (mm) 5.323 4.711 4.430

f1 (Hz) 4.002 4.000 4.014
f3 (Hz) 6.000 6.004 6.148

Figure 14 is a figure representing the weight optimization result of the 72-bar truss
structure with an image coordinate system. The initial shape of the 72-bar truss structure
is expressed in an image coordinate system using a node number as shown in Figure 5a.
The weight optimization results of the 72-bar truss structure have different topologies
depending on the type of algorithm and can be easily determined by the figure alone.

(a) (b)

(c) (d)
Figure 14. Image coordinate system of 72-bar truss structure: (a) Basic. (b) QbHSHG. (c) QbHSRV .
(d) QE.
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7. Conclusions

In this paper, we proposed a QbHS algorithm that can solve real variable problems by
combining quantum computation and conventional HS algorithms and we used the QbHS
algorithm to optimize the size and topology of 20 bar, 24 bar, and 72-bar truss structures.

• The QbHS algorithm maintains the same computational process as the conventional
HS algorithm but performs operations using the characteristics of the Q-bit. The
QHM of the QbHS algorithm consists of the Q-bit and is classified into QbHSHG and
QbHSRV algorithms depending on how the Q-bit is initialized. Pitch adjusting is
performed using the basic state of the Q-bit, and the Q-bit accumulates information of
the previous state. As the number of generations progresses, the Q-bit converges to ‘1’
and converges to one value, and is expressed as binary or real variables through the
measurement of the Q-bit. In addition, new termination conditions can be used using
the accumulated Q-bit information.

• The weight optimization of the truss structure was performed using the QbHS algo-
rithm proposed in this paper. On the 20-bar truss structure, the QbHSHG algorithm
derived the best results at 320.445 kg, and on the 24-bar truss structure, the QbHSRV
algorithm derived the best results at 124.662 kg. Finally, the 72-bar truss structure
derived the best results with a QbHSHG algorithm of 445.833 kg. That is, the results
of the QbHS algorithm proposed in this paper were better than the results of the
QE algorithm.

• The topology result of the truss structure that performed weight optimization was
expressed with an image coordinate system. The unique node number of the ele-
ment was expressed as an image coordinate system using the coordinate, and this
expression could easily compare the phase of the structure. In addition, if a lot of
image coordinate systems are accumulated and used as back data, it is judged that the
topology of the structure can be predicted only with pictures using neural network
structure algorithms.

The QbHS algorithm proposed in this paper is expected to play a very important role
in the expansion of algorithm development and the development of architectural structure
design. The QbHS algorithm can be applied to quantum systems if a quantum computer
is developed, and a new termination condition can be used with the probability of the
Q-bit. However, the number of quantum operations increases due to the measurement of
the Q-bit and the inefficient rotation of the Q-bit. Therefore, it is necessary to propose an
efficient quantum operation process. Also, for the expansion and globalization of quantum
computation-based algorithms, research is needed to apply them to real-world problems
such as domes and cable structures as well as large truss structures.
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