
Citation: Chen, Y.; Wei, W.; Song, C.;

Ren, Z.; Deng, Z. Rapid Building

Energy Modeling Using Prototype

Model and Automatic Model

Calibration for Retrofit Analysis with

Uncertainty. Buildings 2023, 13, 1427.

https://doi.org/10.3390/

buildings13061427

Academic Editors: Yiqun Pan,

Mingya Zhu and Yan Lyu

Received: 14 May 2023

Revised: 29 May 2023

Accepted: 30 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Rapid Building Energy Modeling Using Prototype Model and
Automatic Model Calibration for Retrofit Analysis
with Uncertainty
Yixing Chen 1,2,* , Wanlei Wei 1, Chengcheng Song 1, Zhiyi Ren 1 and Zhang Deng 1

1 College of Civil Engineering, Hunan University, Changsha 410082, China; wanleiwei@hnu.edu.cn (W.W.);
scc1996@hnu.edu.cn (C.S.); renzhiyi@hnu.edu.cn (Z.R.); zhangdeng@hnu.edu.cn (Z.D.)

2 Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University,
Changsha 410082, China

* Correspondence: yixingchen@hnu.edu.cn

Abstract: Building performance simulation can be used for retrofit analysis. However, it is time-
consuming to create building energy models for existing buildings. This paper presented and
implemented a rapid building energy modeling method for existing buildings by using prototype
models and automatic model calibration for retrofit analysis with uncertainty. A shopping mall
building located in Changsha, China, was selected as a case study to demonstrate the rapid modeling
method. First, a toolkit named AutoBPS-Param was developed to generate building energy models
with parameterized geometry data. A baseline EnergyPlus model was generated based on the
building’s basic information, including vintage, climate zone, total floor area, and percentage of
each function type. Next, Monte Carlo sampling was applied to generate 1000 combinations for
fourteen parameters. One thousand EnergyPlus models were created by modifying the baseline
model with each parameter combination. Moreover, the 1000 simulation results were compared with
the measured monthly electricity and natural gas usage data to find 29 calibrated solutions. Finally,
the 29 calibrated energy models were used to evaluate the energy-saving potential of three energy
conservation measures with uncertainty. The retrofit analysis results indicated that the electrical
energy saving percentage of chiller replacement ranged from 1.57% to 13.51%, with an average of
8.27%. The energy-saving rate of lighting system replacement ranged from 1.92% to 11.66%, with an
average of 6.43%. The energy-saving rate of window replacement ranges from 0.31% to 1.81%, with
an average of 0.55%. The results showed that AutoBPS-Param could rapidly create building energy
models for existing buildings and can be used for retrofit analysis after model calibration.

Keywords: AutoBPS; shopping mall; model calibration; EnergyPlus; Monte Carlo; uncertainty analysis

1. Introduction

Climate change has been widely recognized as an important issue. The United States
promised to reduce carbon emissions by 50% by 2030 compared to 2005, and the Euro-
pean Union was committed to cutting greenhouse gas emissions by at least 55% by 2030,
compared to 1990 levels. Both of them aim to become carbon neutral by 2050 [1]. In 2020,
China announced the 3060 climate targets involving reaching the carbon emission peak
by 2030 and carbon neutrality by 2060. The building sector is one of the biggest energy
consumers and carbon emitters, and it is responsible for a significant portion of greenhouse
gas emissions. Globally, CO2 emissions from the building operation sector increased to
28% of total global energy-related CO2 emissions in 2020 [2]. Therefore, the mitigation of
greenhouse gas (GHG) emissions from buildings was very important.

Building energy simulation is an efficient way to analyze the energy-saving potential of
energy conservation measures (ECMs). Ye et al. [3] analyzed the sensitivity of nine different
energy-saving measures with EnergyPlus to guide the selection of energy-saving measures
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in different climate regions. Berardi and Soudian [4] simulated the integration of phase
change materials into the envelope with EnergyPlus software to study the energy-saving
potential of a passive latent heat energy storage system. Hart et al. [5] used EnergyPlus to
simulate the potential impact on the thermal performance of replacing the ordinary glass
with triple-thin glass panes and obtained the energy-saving potential in different climatic
regions of the United States. Peng et al. [6] used DeST energy simulation software to verify
the effectiveness and feasibility of different energy-saving measures in an office building.

The difference between the simulated and measured building energy consumption
can range from as high as 250% [7]. In addition, with the increasing use of building energy
simulation in the later stages of the building life cycle, the demand for the accuracy of
building simulation models has increased significantly [8,9]. Therefore, to ensure the
reliability of building simulation models, model calibration has become an important
technology in the construction industry [10]. Hong et al. [11] also regarded the calibration
of the building model as one of the ten challenges for future building energy conservation.

Calibration approaches can be classified as either manual or automated [12]. Auto-
mated calibration approaches involve computerized processes that tune model parameters
by maximizing the fit of the model to observations. In contrast, manual calibration ap-
proaches rely on iterative, pragmatic intervention by the modeler. Additionally, manual
calibration requires a certain level of expertise from the calibration tool, which can be a
labor-intensive task. Advanced mathematical and statistical methods enable the automation
of the calibration process, which is faster and more efficient than manual calibration [13].
As the complexity of building models increases, manual calibration is gradually being
replaced by automated calibration.

Monte Carlo sampling is a class of techniques for randomly sampling a probability
distribution, where the distribution of individual parameters will be the same as the
inputs [14]. It generates a large number of sample points at random locations to obtain the
value that is needed to be calculated. Haarhoff and Mathews [15] presented a simplified
Monte Carlo method for finding an approximation of the temperature distribution inside
a building; the results showed that relatively accurate results could be obtained with
very little data. Chambers et al. [16] used a Monte Carlo model to evaluate the effect of
color-changing glass on energy-saving potential. Sørensen et al. [17] used a Monte Carlo
simulation to model the energy performance and indoor climate of buildings considering
building physical parameters, including properties of facades, walls, and windows, and
sift through thousands of combinations of these parameters to find those that meet design
criteria. This method could optimize the efficiency of the building design. Zheng et al. [18]
proposed a technology-economic-risk decision-making method based on Monte Carlo
simulation, which can realize the optimal screening of multiple technology combination
strategies. It could also predict regional energy-saving effects and quantitatively analyze
energy-saving subsidy policies.

It is a challenging task to manually create a building energy model from scratch.
Therefore, it is important to develop a method that can automatically generate building
energy models with appropriate accuracy and reduce the time and effort required for
model creation while still providing effective analysis. Regarding rapid modeling, part
of the research revolves around modeling based on the 3D recognition of buildings [19].
This approach is simpler in principle but is technically demanding and can only model
existing buildings. Elisa and Marincioni [20] proposed a method for rapid modeling of
end-users connected to the district heating network. The model can be obtained only by
obtaining district heating and building volume measurements. For the measures analyzed,
the average error was less than 5%.

Due to the inherent uncertainty of the usage factors of building energy consumption,
the uncertainty of building energy consumption is inevitable. The more influencing factors,
the greater the uncertainty. Prataviera et al. [21] used the proposed procedure to select
the most influential input parameters and characterize their uncertainty through positive
uncertainty. They conducted measurements on building samples, and the results showed
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that the average heat load distribution obtained was significantly improved compared
to deterministic prototype-based simulations. The overestimation of the peak load of
residential buildings decreased from 80% to 25%, and the deviation in energy demand
calculations decreased from 18% to 10%. Liu et al. [22] conducted a study on typical
high-rise public rental housing buildings in subtropical Hong Kong and found that it was
important to consider future climate uncertainty when determining the optimal values
of building parameters and selecting building energy renovation plans. Wang et al. [23]
investigated the uncertainty of energy consumption caused by actual weather and building
operation practices and conducted a simulation-based analysis on a medium-sized office
building. The results indicated that the impact of annual weather fluctuations on energy
use ranges from −4% to 6%, and good energy use practices have reduced energy use
in the entire city by 15–29%. Lu et al. [24] quantified the uncertainty of building energy
consumption data based on quantitative uncertainty and Monte Carlo uncertainty propa-
gation methods. Brohus et al. [25] used the method of stochastic differential equation to
quantitatively analyze the uncertainty of building energy consumption and conducted two
test cases to establish a new prediction method for building energy consumption, which
enables designers to include random parameters such as residents’ behavior, operation and
maintenance. Chadly et al. [26] conducted an uncertainty analysis of energy storage in a
high-energy building in Seattle, and the results showed that batteries are more suitable
for the uncertainty of building energy consumption. Kong et al. [27] used Monte Carlo
techniques with Latin hypercube sampling to determine the probability distribution of
subway spatial peak load, annual average load, and annual energy demand. They also
compared it with deterministic methods to determine the rationality of the safety factor of
1.2 commonly used in practical programs.

This study developed a rapid building energy modeling method for existing build-
ings with monthly measured electricity and natural gas use data. First, a toolkit named
AutoBPS-Param (Automated Building Performance Simulation with Parameterization) was
developed based on the OpenStudio Software Development Kit (SDK) and EnergyPlus.
The toolkit was used to generate the baseline EnergyPlus model based on the building’s
basic information, including vintage, climate zone, total floor area, and percentage of each
function type. Then, using Monte Carlo sampling, 1000 models and their energy simula-
tion results were output with 14 building parameters in combination. Models that met
the calibration criteria were selected by comparing the simulated and measured monthly
energy consumption data. The calibrated energy models were used to analyze the energy-
saving potential of three ECMs with uncertainty, including windows replacement, chiller
replacement, and lighting system replacement.

2. Methods

A shopping mall building in Changsha, China, was selected for the case study, where
the monthly electricity and natural gas usage data and the detailed layout of each floor
were available. Figure 1 shows the overall workflow of this study. First, the basic building
information was collected via on-site visits, and the monthly energy consumption data were
downloaded from the building management system. Then, a baseline model is generated
using the AutoBPS-param based on limited building information. AutoBPS-Param is
developed to automatically generate an EnergyPlus model based on basic information,
including building type, year built, climate zone, number of stories above and below
ground, floor-to-floor height, window-to-wall ratio (WWR) in each direction, width, height,
and so on. Users can customize the building geometry while the building systems (envelope,
internal zones, heating, ventilation, and air conditioning system) are assigned based on
the building type, year built, and climate zone to meet the local and national standards.
Moreover, a calibration method based on Monte Carlo sampling was conducted to calibrate
the baseline model using measured monthly electricity and natural gas usage data, which
can generate multiple calibrated EnergyPlus models. At last, those calibrated EnergyPlus
models are used to perform retrofit analysis with uncertainty.
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Figure 1. Overall workflow of the study.

2.1. Basic Information of the Case Study Building

Changsha is located in hot summer and cold winter regions with high humidity
throughout the year. The floor-to-floor height of the shopping mall is 4.7 m. The building
has windows on the first floors with windows to wall ratio (WWR) of 0.35 on the east,
0.56 on the south, 0.35 on the west, and 0.3 on the north. The building area is 209,591 square
meters. Figure 2 shows the floor plans of the building. Through on-site visits and the Baidu
map (a web map that is widely used in China), the building is divided into eight functional
types for the interior spaces, including parking, food, office, cinema, corridor, clothing,
supermarket, and entertainment. The area of each function type is shown in Figure 3.

Figure 4 shows the monthly energy usage intensity of electricity and natural gas.
The measured annual electricity consumption of the shopping mall is 25.2 GWh, with
an electricity consumption intensity of 119.8 kWh/m2. The annual natural gas consump-
tion of shopping malls is 14.4 × 103 GJ, and natural gas usage intensity is 68.6 MJ/m2

(19.1 kWh/m2). The electricity consumption intensity of shopping malls shows a parabolic
distribution month by month, with the highest electricity consumption density in summer,
reaching a peak of 3.0 GWh (15.8 kWh/m2) in July, and the lowest electricity consumption
in December, reaching 1.6 GWh (6.1 kWh/m2). The usage of natural gas is opposite to
electricity consumption, with the highest usage in winter and spring, reaching a peak of
1.27 GWh (6.0 kWh/m2) in January. Natural gas is not used in summer and autumn.
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2.2. Development of AutoBPS-Param

The AutoBPS-Param module was developed to generate the geometric model rapidly,
which was based on Automated Building Performance Simulation (AutoBPS). AutoBPS was
a Ruby-based platform developed by Hunan University to automate the building energy
modeling process from single buildings to urban buildings. Deng et al. [28] developed
AutoBPS to generate urban building energy models based on the geographic information
system (GIS) dataset in Changsha, then calculated energy demands and analyzed energy
retrofit and rooftop photovoltaic (PV) potential. Twenty-two building types and three
vintages were identified to represent 59,332 buildings in Changsha [29]. Yang et al. [30]
used AutoBPS to establish a bottom-up model to estimate dynamic carbon emission for
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city-scale buildings in Changsha. Chen et al. [31] developed AutoBPS-BIM to transfer the
building information model (BIM) to the building energy model for load calculation and
chiller design optimization.
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Figure 5 shows the AutoBPS-Param structure for the shopping mall. It relied on
OpenStudio Software Development Kit (SDK) and defined some Ruby classes. Some
methods were defined under each class. The Wall class was used to create a wall and add
windows to the given space. Then, the Space class utilized the Wall class to create a space
based on a polygon. The TwoZoneParking class was used to create the underground floor
with two thermal zones for the shopping mall. The ElevenZoneShoppingMall class was
used to create the standard floor above ground with eleven thermal zones. In addition, the
Story class was utilized to set boundary conditions. At last, the ShoppingMall class was
applied to create the geometric model by calling other classes.

Figure 6 shows the workflow of baseline model generation. To simplify the model,
the shape is rectangular with perimeter, corridor, and core areas. Some required geometric
parameters are input in JavaScript Object Notation (JSON) format, including length, width,
the number of floors, floor height, corridor width, perimeter width, story number of
parking/bottom/top, WWR list, space type, length percentage of the west and east core.
When the JSON file is ready, the AutoBPS-Param module automatically generates the
geometric model. Some non-geometric parameters, such as envelope, internal loads,
HVAC system, and service hot water (SHW) system, are assigned to the building through
the AutoBPS-OSS module. AutoBPS-OSS is a Ruby-based library based on OpenStudio-
Standards (OSS). OSS is developed by the National Renewable Energy Laboratory (NREL)
to create American prototype-building models. The Chinese building standards are added
to set up the Chinese prototype database. Then, the OpenStudio model is output by
two modules.

2.3. Baseline Model Generation

The detailed layout of the shopping mall prototype model is shown in Figure 7. The
length and width of the building were 238 m and 126 m. The width of the perimeter and
corridor were 15 m and 16 m. There were two parking stories below ground. The spaces in
the inner ring were set as the corridor. Other spaces were set up as offices, clothing, food,
entertainment, cinemas, and supermarkets while ensuring the basic consistency of floor
area as the actual floor area. The second and third floors had the same layout, as did the
fourth and fifth floors.
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To ensure that the simplified model was consistent with the actual model, the total
area of the building and the percentage of the area of each space were compared separately.
The actual area of the mall is 209,591 m2, and the area of the simplified model is 209,916 m2,
with a relative error of 0.15%. Figure 8 shows the area ratio of each functional zone before
and after simplification. It can be seen that the area share of the actual building and the
simplified model were consistent. The relative error was between −0.13% and 4.13%.
This also indicated that the simplified model kept the geometric information of the actual
building well and had strong reliability.

The building envelope mainly included exterior walls, roofs, and exterior windows.
Table 1 lists the heat transfer coefficient of external walls, roof, and windows, and the solar
heat gain coefficient (SHGC) of windows, which include the values used in this study and
the required values in the building energy efficiency design standards of “Energy Efficiency
Design Standards for Public Buildings: GB50189-2015” [32].

Table 1. Heat transfer coefficient of the envelope.

GB50189-2015 [32] Study Building

Heat transfer coefficient
(W/m2·k)

Walls <0.6 0.58
Roof <0.4 0.38

Window <2.6 2.5
Window SHGC 0.4 0.4

Since the shopping mall contained different functional areas, the internal load settings
for each functional area were different. Through on-site visits and literature reviews,
the internal loads of each functional type were determined, including equipment power
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density, lighting power density, and occupancy density, temperature setpoints in winter
and summer. Table 2 shows the value of internal gains of each functional type.
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Table 2. Internal load value table of each thermal zone.

Room Type
Equipment Power

Density
(W/m2)

Lighting Power
Density
(W/m2)

Occupancy
Density

(m2/Person)

Heating Setpoint
(◦C)

Cooling Setpoint
(◦C)

Parking 13 5 8 5 37
Supermarket 9 15.5 10 20 25

Corridor 5 9 15 18 28
Food 11 9 10 20 25

Entertainment 9 10 5 20 25
Clothing 13 19 8 20 25
Cinema 11 9 5 20 25
Office 10 10 5 20 25

The shopping mall’s air conditioning system uses a variable air volume (VAV) system.
The building has a central plant with chillers, boilers, and cooling towers. The air condi-
tioning operating hours are from 10:00 to 22:00. The entire air conditioning system consists
of four loops, namely the variable air volume system with reheat, the chilled water loop,
the condenser water loop, and the hot water loop. The relevant parameter settings of the
air conditioning system are referred to in “Building Energy Efficiency Design Guideline:
GB50189-2015” [31]. The Coefficient of Performance (COP) of the chiller unit is 5.17, the
efficiency of the fan motor is 0.6, and the thermal efficiency of the boiler is 0.8. The peak
water flow rate for daily use is 2.3 L/day/person.
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2.4. Monte Carlo Sampling

The baseline model was calibrated based on measured monthly electricity and natural
gas usage data. Monte Carlo sampling can randomly generate lists of parameter combina-
tions where the distribution of each parameter is the same as the initial settings. Monte
Carlo sampling was used to generate representative samples reasonably. The advantages of
Monte Carlo sampling are its ability to handle complex problems, such as high-dimensional
and nonlinear problems, and the reliability and accuracy of its results. Due to the nature
of random sampling, the accuracy of the sampling results increases with the number of
samples, making Monte Carlo sampling a very effective statistical method. The steps of
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applying the Monte Carlo sampling method to building energy consumption calibration
are as follows:

Step 1: Define the research problem. The research problem of Monte Carlo sampling
calibration lies in the final determination of the parameter values of the model. Since
different combinations of parameters may exist to meet the requirements at the same time,
the final parameter values are not definite but a series of values that together constitute the
parameter distribution.

Step 2: Extract the parameters. The parameters needed for Monte Carlo sampling
calibration are the parameters that affect the energy consumption of the building, select the
part of the parameters that need to be studied from all the parameters that affect energy
consumption, and determine the a priori distribution of the parameters through literature
research and so on.

Step 3: Generate random numbers for simulation. For the probability distribution of
each parameter, generate a series of random data for experimental simulations. This process
generates different combinations of parameters, and EnergyPlus models with different
combinations of parameters are run to obtain different energy consumption distributions.

Step 4: Statistical experimental results. The energy consumption results of all sim-
ulated models are counted. The discriminant condition needs to be set to discriminate
the models that meet the conditions in the model by the fitting accuracy of the measured
data and the simulated data. The distribution of parameters is further extracted from the
models that meet the accuracy, and the sampling calibration of the sampled models is
finally completed.

The implementation of the Monte Carlo sampling calibration method is shown in
Figure 9. Firstly, based on the established reference model, the parameters that need to
be calibrated are determined, and the range and prior distribution of the parameters are
established. Next, the number of models to be sampled needs to be set, and the parameters
need to be normalized and processed to generate random numbers corresponding to the
sampling number. The inverse normalization of the random number is used to modify the
actual parameters of the model. The modified EnergyPlus model is run, and the energy
consumption results of all sampled models are collected and compared with the measured
energy consumption data. Models that meet the calibration criteria based on the normalized
mean bias error (NMBE) not exceeding 5% and coefficient of variation of the root mean
square error (CVRMSE) not exceeding 15% are selected as the calibrated models. The
calibrated models are then used to predict the energy consumption of the building.

Use Monte Carlo sampling to calibrate the model. The first step is to determine the
calibration parameters. This paper finally selected 14 Monte Carlo sampling parameters for
the envelope system, internal gain, and air conditioning system, which have a significant
impact on building energy consumption. After selecting calibration parameters, it is neces-
sary to set the parameter range and its initial distribution. The range of parameters first
refers to the study of Chen et al. [14] and the Chinese national building design standards,
including the “GB50189-2005 Energy Efficiency Design Standards for Public Buildings” [33]
and “ GB50189-2015 Energy Efficiency Design Standards for Public Buildings” [31]. In addi-
tion, the United States Department of Energy prototype strip mall models [34] for ASHRAE
90.1-2016 in climate zone 4A were also studied when determining the range of calibration
parameters. In the initial stage of calibration, the maximum value and minimum value of
the 14 calibration parameters were given based on the above four references. Table 3 listed
the parameter ranges of some parameters in the four references.

Monte Carlo methods use parameter-based probability distributions for random
sampling. A Monte Carlo sampling method based on the Latin hypercube (LHS) can
be used to reduce the number of samples while maintaining sampling quality. The LHS
samples the sample space by strata, requiring forced sampling from each stratum, thus
ensuring full coverage of all samples. To ensure that the values of each parameter are
randomly combined, the sample size should be large enough. In this study, a sample size
of 1000 is taken. The sampling first divides the range of each parameter into 1000 parts and
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then randomly selects sample points from each part for random combinations between each
parameter while ensuring that the data in each layer can be taken. The specific sampling
flow chart is shown in Figure 10.
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Table 3. The range of parameter values in the relevant literature.

Parameter Name Unit GB50189-2015 GB50189-2005 ASHER 90.1-2016 Ref [14]

External wall heat transfer coefficient W/(m2·K) <0.6 <1 — —

Roof heat transfer coefficient W/(m2·K) <0.4 <0.7 — —

Window heat transfer coefficient W/(m2·K) <4 — — 1.43~6.98

SHGC of the window none — — — 0.18~0.82

Occupancy density m2/person 8 4 20 3~20

Lighting power density W/m2 10 19 8.5 6.46~27.8

Equipment power density W/m2 13 13 8.07 8.91~19.1

Infiltration air volume m3/h/m2 — — 2.05 1.09~4.08

Fresh air volume m3/h/person 30 20 28.87 20~50

Fan efficiency none <0.65 — 0.61 0.54~0.65

Chiller COP none 4~6 — 5.33 3.07~5.56

Cooling setpoint ◦C 25 — — —

Heating setpoint ◦C 20 20 — —

Boiler thermal efficiency none 0.9 0.89 0.8 0.78~0.93
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After obtaining 1000 uniformly distributed samples, there will be a certain error
between the simulation results and the actual results. Referring to the standard ASHRAE
14 in the United States, the monthly NMBE should not exceed 5%, and the CVRMSE should
not exceed 15%.

CVRMSE and NMBE are calculated using Equations (1) and (2):

CVRMSE = 100 ×

[
∑(yi − ŷi)

2/(n − 1)
] 1

2

y
(1)

NMBE = 100 × ∑(yi − ŷi)

(n − 1)× y
(2)

where yi— measured data;
−
y—mean of measured data;
ŷ—simulated data.
The above formula is only for one-dimensional data for error calculation, and the

building energy consumption data are divided into electricity consumption and gas energy
consumption. These two parts of energy consumption are different in terms of energy use
methods, so they generally cannot be synthesized in one dimension by simple summation.
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Refer to the formula in Energy Savings Analysis: ANSI/ASHRAE/IES Standard 90.1-2016
for source energy consumption [35]. Source energy is calculated using Equation (3):

Source energy (GJ) = 3.167 × Electricity (GJ) + 1.084 × Natural Gas (GJ) (3)

Here source energy is defined as an indicator of building energy consumption, in-
cluding electricity for HVAC (chillers, refrigeration, fans, and pumps), indoor lighting,
indoor equipment, and natural gas for heating. The definition of source energy can be used
to more easily quantify the error between measured and simulated energy consumption
in buildings.

2.5. Retrofit Analysis with Uncertainty

Energy efficiency improvement of buildings can improve energy utilization efficiency
by adopting various energy-saving technologies and management measures to reduce
building energy consumption. Therefore, energy efficiency improvement of buildings
plays an important role in promoting energy saving, environmental protection, economic
development, and social progress. There are several ways to perform energy efficiency
improvement of buildings, including (1) adding insulation to the building, reducing the
heat transfer coefficient of the envelope structure, and reducing the heat loss of the building;
specific measures include adding external and internal insulation to the building envelope
and roof, replacing to double-layered vacuum insulation glass, etc. (2) Connecting the
building to renewable energy resources, such as solar energy and wind energy, for power
generation and heating. Specific measures include adding the photovoltaic system to the
roof. (3) Using more efficient energy-saving lights and appliances to reduce building energy
consumption. With the widespread use of computer technology and various sensors,
implementing energy monitoring and safety management is also a new direction for energy
efficiency improvement. Through systematic analysis of building energy consumption,
problems related to energy consumption can be found and solved more specifically.

After model calibration, the calibrated energy models can be used for retrofit analysis
to evaluate energy saving potential of ECMs. When performing energy efficiency im-
provement of buildings, it is necessary to analyze the energy consumption of the building.
For the convenience of research, the baseline energy model was selected as the research
object to analyze its energy consumption situation. The simulated electricity consumption
result of the baseline energy model is shown in Figure 11. The two highest percentages of
energy consumption are cooling energy consumption for chillers (33%) and lighting energy
consumption (26%).
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Many measures can be taken to reduce cooling energy consumption, such as using
efficient cooling systems, protecting the normal operation of the cooling system, main-
taining good insulation of the cooled space or object, and reducing the time of cooling
system used. Reducing cooling energy consumption can not only reduce energy costs but
also reduce the negative impact on the environment. The main factor affecting the cooling
energy consumption is the COP of the chillers. Therefore, strategy A to improve energy
efficiency is to replace the chillers.

Lighting energy consumption is determined by multiple factors, including the type
of bulb, power, and usage time, as well as the efficiency of the lamp. In general, lighting
is one of the major uses of electricity in ordinary homes and commercial buildings, and
reducing lighting energy consumption is an important means to improve energy efficiency
and reduce energy costs. The size of lighting energy consumption is mainly determined
by the lighting system; therefore, strategy B to improve energy efficiency is to replace the
lighting system.

Roberti et al. [36] conducted an energy retrofit analysis of an old building in northern
Italy, specifically on the building envelope, including the insulation of the exterior walls and
roof and the replacement of windows. The study provides a complete picture of the energy-
saving potential of the building envelope, especially concerning window replacement. This
paper draws on that study for the replacement of windows in shopping malls. Therefore,
strategy C to improve energy efficiency is to replace windows.

There is uncertainty when performing retrofit analysis of ECMs. There are two main
sources of uncertainty in energy efficiency retrofitting consisting of two aspects: First,
the type of building parameters and their range, and since this paper mainly studies the
relationship between building-related parameters and energy consumption, the uncertainty
of building-related parameters leads to the uncertainty of energy consumption. The second
is the calibration process and its sampling quantity. Since this paper uses the measured
energy consumption to calibrate the energy consumption of the sampled models, the
building models that meet the calibration criteria are selected, and these models together
form the calibrated models.

The establishment of the energy efficiency retrofit model in this study is completed
by the modification of relevant parameters in the calibrated shopping mall EnergyPlus
models. The energy savings rate indicates the reduction in energy consumption per unit
area after the energy efficiency retrofit compared to that before the energy efficiency retrofit,
expressed as a percentage. It is a very important indicator to measure the effect of building
energy renovation. The energy efficiency rate is calculated using Equation (4).

η =
Ea − Eb

Eb
× 100% (4)

where η—energy saving rate (%);
Ea—Energy consumption per unit area after retrofit (kWh/m2);
Eb—Energy consumption per unit area retrofit (kWh/m2).

3. Results
3.1. Baseline Model Simulation Results

Figure 12 shows the simulated monthly electricity energy use intensity (EUI) by
end-use. The annual electricity consumption of the shopping mall is 18.9 GWh, with an
EUI of 89.9 kWh/m2. The electricity EUIs of end-users are 20.78 kWh/m2 for lighting,
23.58 kWh/m2 for plug loads, 27.7 kWh/m2 for chillers, 10.4 kWh/m2 for fans and pumps,
and 6.6 kWh/m2 for cooling towers. The monthly natural gas EUI of the shopping mall is
shown in Figure 13. The annual gas consumption of the shopping mall is 11.3 × 103 GJ,
which is 15.04 kWh/m2. Natural gas is used for space heating in winter and domestic hot
water supply in winter. Among them, winter space heating accounts for 92% of natural
gas consumption.
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After establishing the baseline model, the model’s energy consumption was compared
with the measured energy consumption to ensure that the model matched the actual
situation. The errors between measured and simulated monthly energy consumption were
calculated using source energy as the standard for total building energy consumption. After
calculation, the NMBE and CVRMSE of the baseline energy model are 25.1% and 25.7%,
both of which do not meet the requirements. The lighting power density, plug load power
density, chiller COP value, fan efficiency, and pump efficiency are manually calibrated.
Figure 14 shows the source energy consumption of the simulated results of the manually
calibrated model and the measured data. The NMBE and CVRMSE are 1.54% and 14.7%
for the manually calibrated model.

3.2. Model Calibration Using Monte Carlo Sampling
3.2.1. Calibration Parameter Range and Distribution

In addition to setting the parameter range, it is also necessary to set the prior distribu-
tion type of the parameter. The commonly used prior distribution types mainly include
normal distribution, triangular distribution, and uniform distribution. Normal distribution,
also known as Gaussian distribution, is a probability distribution and one of the most
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important distributions in statistics. It is represented as N (µ,σ2), where µ represents the
mean value and σ represents the standard deviation. Uniform distribution refers to the
fact that the measured values have the same chance of appearing everywhere in a certain
interval [a, b]; that is, they are uniform and consistent. Therefore, it is also known as a
rectangular distribution or equal probability distribution. The triangular distribution is a
kind of distribution in probability theory, which is characterized by rising to the maximum
value in a linear change way on the interval [a, b], and then falling to the minimum value
in the same way. The most likely value of the triangular distribution is at the center of the
range, while the less likely value is at both ends of the range. The parameters of triangular
distribution include minimum, maximum, and modulus, which is the maximum point of
probability density function (PDF) in its definition domain. This distribution is typically
used to describe random variables influenced by multiple factors.
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To ensure the randomness of parameter selection, the initial distribution of most
parameters is the normal distribution. In the calibration parameters, the absolute value
of infiltration air volume is relatively small, so the random distribution of infiltration air
volume is chosen as the triangular distribution. The indoor temperature varies linearly, so a
uniform distribution is chosen for the random distribution of indoor temperature. Detailed
information on parameter distribution is shown in Table 4. To more intuitively represent
the range of parameters, a 95% confidence interval is taken as the range of parameters.

3.2.2. Monte Carlo Sampling Results

The Monte Carlo sampling ultimately obtains 1000 random models. The values of
14 parameters in these models are randomly selected within the specified range. The
1000 models are simulated, and 1000 energy consumption results are obtained. The energy
consumption results include the monthly electricity and gas usage. To calibrate the model
with measured data, the monthly electricity and gas consumption of 1000 models are used
to calculate the source energy consumption of each model. The CVRMSE and NMBE values
of the 1000 models are shown in Figure 15. The CVRMSE values range from 10% to 30%,
and the NMBE values range from −30% to 0%.

Models that meet the accuracy requirements are selected based on the criteria of NMBE
not exceeding 5% and CVRMSE not exceeding 15%. The selection results are shown in
Figure 16. The horizontal axis shows the NMBE value, and the vertical axis shows the
CVRMSE value. A red region is established with a target of CVRMSE <15% and M. A total
of 29 models fall within the red region. The CVRMSE values of the 29 models range from
10% to 15%.
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Table 4. The final selected parameter value range.

Parameter Name Unit Parameter Range Distribution Type

External wall heat transfer coefficient W/(m2·K) 0.37~0.56 Normal

Roof heat transfer coefficient W/(m2·K) 0.32~0.4 Normal

Window heat transfer coefficient W/(m2·K) 1.93~3.0 Normal

SHGC of the window none 0.17~0.81 Normal

Occupancy density m2/person 4.2~5.8 Normal

Lighting power density W/m2 10~16.2 Normal

Equipment power density W/m2 9.56~16.4 Normal

Infiltration air volume m3/h/m2 1.21~4.53 Triangular

Fresh air volume m3/h/person 20~50 Normal

Fan efficiency none 0.55~0.65 Normal

Chiller COP none 3.0~5.13 Normal

Cooling setpoint ◦C 23~26 Evenly

Heating setpoint ◦C 19~23 Evenly

Boiler thermal efficiency none 0.81~0.95 Normal
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After filtering, 29 models met the accuracy requirements. Statistical analyses were
conducted on the ranges of 14 parameters after calibration, and the results are shown in
Figure 17. The parameter values after calibration had a greater range than those assumed
before calibration. At the same time, the mean values of the parameters varied slightly
around the assumed mean value, indicating that the range of parameters assumed before
calibration was reasonable. The degree of scatter of different parameters was also greatly
different. The range of parameters such as COP for chiller, fan efficiency, and occupant
density was smaller, indicating that the distribution of these parameters was more con-
centrated and their uncertainty was smaller. The range of parameters, such as heating
temperature and boiler heat efficiency, was larger, indicating that the distribution of these
parameters was more scattered and their uncertainty was larger.
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3.3. Retrofit Analysis with Uncertainty

It is common to modify the COP value of chillers for cooling system retrofit. According
to “GB/T 51350-2019 Technical Standards for Near-Zero Energy Buildings” [37], the COP
of chillers after the replacement is set to 6.0. For each calibration model, the COP value of
the model is modified to 6.0.

It is common to modify the lighting power density of the building for lighting system
retrofit. According to the “GB/T 51350-2019 Technical Standards for Near Zero Energy
Buildings” [37], the lighting density after the replacement of the lighting system was finally
determined to be 10.0 W/m2 for the shopping mall building.

When retrofitting windows for energy efficiency, the original windows are replaced
with more insulated windows. The parameters of windows that affect energy consumption
are mainly the heat transfer coefficient and the solar heat gain coefficient. Therefore,
changing the window strategy in the EnergyPlus model can be simplified by modifying
the heat transfer coefficient and solar heat gain coefficient of the windows. Referring to the
setting of energy-saving windows in Deng et al. [28] on energy-saving measures, the heat
transfer coefficient of the replacement windows was finally determined to be 1.14 W/m2,
and the solar heat gain coefficient of the windows was 0.19.

After the model calibration, 29 calibrated EnergyPlus models were obtained. Three
ECMs are evaluated, including chiller replacement with a COP of 6.0 (Strategy A), LED
lamp replacement with a lighting power density of 10.0 W/m2 (Strategy B), and window
replacement with a heat transfer coefficient of 1.14 W/m2 and SHGC of 0.19 (Strategy
C). The 29 models’ energy saving was extracted and shown in a box plot to show the
uncertainty of model energy saving more clearly. The energy-saving box plots for the three
ECMs are shown in Figures 18 and 19. The blue box indicates Strategy A, the orange box
indicates Strategy B and the green box indicates Strategy C. The energy-saving rates of
chiller replacement range from 1.57% to 13.51%, with an average of 8.27%. The energy-
saving rates of lighting system replacement range from 1.92% to 11.66%, with an average
of 6.43%. The energy-saving rates of window replacement range from 0.31% to 1.81%, with
an average of 0.55%. Overall, the energy savings of window replacement are small as the
window area is small in this building. Replacing the chiller results in a higher average
energy-saving rate compared to replacing the lighting system.
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4. Discussion

Some limitations need to be addressed in future research. Firstly, the method may not
apply to buildings with complex geometries or unique features that are not captured by
the prototype model. Secondly, the proposed method was only tested in a specific area
(Changsha), and its applicability to other regions needs to be further studied.

5. Conclusions

In this paper, AutoBPS-Param, a toolkit to automatically generate building energy
models based on basic building information, was developed. AutoBPS-Param was used to
create the baseline energy model of a shopping mall building located in Changsha, China.
The baseline model was then calibrated based on the measured monthly electricity and
natural gas usage data. And the calibrated energy models were applied to evaluate three
energy-saving strategies with uncertainty. The results showed that the proposed method
could achieve good accuracy in predicting energy consumption and energy savings for
different retrofit strategies.

The proposed approach integrates the prototype building energy model with au-
tomatic model calibration, resulting in streamlined and efficient energy modeling. The
AutoBPS-Param could speed up the modeling process, realizing automatic prototype-
building energy modeling based on limited geometric parameters. This tool is suitable
for designers to carry out energy-saving designs in new buildings and for managers to
evaluate energy retrofit in existing buildings.
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Overall, this paper presents a promising approach for rapid building energy model-
ing using AutoBPS-Param and automatic model calibration. The proposed method has
potential applications in building retrofit projects and can contribute to improving energy
efficiency in existing buildings.
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