# A Bim-Based Automatic Design Optimization Method for Modular Steel Structures: Rectangular Modules as an Example

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Workflow of the Proposed Method

#### 2.1. Initial Structural Modeling

#### 2.1.1. Number of Modules in the Floor Plan

#### 2.1.2. Ground Floor Modules

#### 2.1.3. Modules of Upper Stories and Column Lines

#### 2.1.4. Joints between Modules

#### 2.1.5. Final Grid Frame and Structural Model

#### 2.2. Structural Stress Analysis

#### 2.3. Automatically Optimal Design for Structures

#### 2.4. BIM Visualization

## 3. Case Study

#### 3.1. Structural and Modeling Information

- Modifying module dimensions for single or groups of modules;
- Modifying grid layouts for irregular grid shapes;
- Removing modules for sensitivity analysis/test models;
- Modifiers for finer detail in the analysis model;
- Applying module pre-sets for buildings with room types.

#### 3.2. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Lu, W.; Chen, K.; Xue, F.; Pan, W. Searching for an optimal level of prefabrication in construction: An analytical framework. J. Clean. Prod.
**2018**, 201, 236–245. [Google Scholar] [CrossRef] - Staib, G.; Dörrhöfer, A.; Rosenthal, M. Components and Systems: Modular Construction—Design, Structure, New Technologies; Edition DETAIL; Walter de Gruyter: Berlin, Germany, 2008. [Google Scholar]
- Zhang, J.; Long, Y.; Lv, S.; Xiang, Y. BIM-enabled Modular and Industrialized Construction in China. Procedia Eng.
**2016**, 145, 1456–1461. [Google Scholar] [CrossRef] - MOHURD, Development Outline of Informatization in the Construction Industry 2016–2020. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201609/20160919_228929.html (accessed on 28 May 2023).
- Jaillon, L.; Poon, C. Life cycle design and prefabrication in buildings: A review and case studies in Hong Kong. Autom. Constr.
**2014**, 39, 195–202. [Google Scholar] [CrossRef] - Generalova, E.; Generalov, V.; Kuznetsova, A.A. Modular Buildings in Modern Construction. Procedia Eng.
**2016**, 153, 167–172. [Google Scholar] [CrossRef] - Lawson, R.M.; Ogden, R.G.; Bergin, R. Application of Modular Construction in High-Rise Buildings. J. Arch. Eng.
**2012**, 18, 148–154. [Google Scholar] [CrossRef] - Deng, E.-F.; Yan, J.-B.; Ding, Y.; Zong, L.; Li, Z.-X.; Dai, X.-M. Analytical and numerical studies on steel columns with novel connections in modular construction. Int. J. Steel Struct.
**2017**, 17, 1613–1626. [Google Scholar] [CrossRef] - English, S.; Brown, P.-E.; Brown, B. An Introduction to Steel and Concrete Modular Construction, 1st Residential Building Design & Construction Conference. Bethlehem 2013, 20–21. Available online: https://www.phrc.psu.edu/assets/docs/Publications/2013RBDCCPapers/English-2013-RBDCC.pdf (accessed on 28 May 2023).
- Yin, X.; Liu, H.; Chen, Y.; Al-Hussein, M. Building information modelling for off-site construction: Review and future directions. Autom. Constr.
**2019**, 101, 72–91. [Google Scholar] [CrossRef] - Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev.
**2016**, 62, 1171–1183. [Google Scholar] [CrossRef] - Gibb, A.; Isack, F. Re-engineering through pre-assembly: Client expectations and drivers. Build. Res. Inf.
**2003**, 31, 146–160. [Google Scholar] [CrossRef] - Jaillon, L.; Poon, C.S.; Chiang, Y.H. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Manag.
**2009**, 29, 309–320. [Google Scholar] [CrossRef] - Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod.
**2015**, 109, 131–143. [Google Scholar] [CrossRef] - Chiu, S.T.-L. An Analysis on the Potential of Prefabricated Construction Industry. 2012. Available online: http://hdl.handle.net/2429/42792 (accessed on 28 May 2023).
- Kamali, M.; Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J. Clean. Prod.
**2017**, 142, 3592–3606. [Google Scholar] [CrossRef] - Wai, C.T.; Yi, P.W.; Olanrewaju, O.I.; Abdelmageed, S.; Hussein, M.; Tariq, S.; Zayed, T. A critical analysis of benefits and challenges of implementing modular integrated construction. Int. J. Constr. Manag.
**2021**, 23, 656–668. [Google Scholar] [CrossRef] - Lawson, M.; Ogden, R.; Goodier, C. Design in Modular Construction, 1st ed; CRC Press: London, UK, 2014. [Google Scholar] [CrossRef]
- Lacey, A.W.; Chen, W.; Hao, H.; Bi, K. Structural response of modular buildings—An overview. J. Build. Eng.
**2018**, 16, 45–56. [Google Scholar] [CrossRef] - Gorgolewski, M.T.; Grubb, P.J.; Lawson, R.M. Modular Construction using Light Steel Framing: Design of Residential Buildings. 2001. Available online: https://www.steelconstruction.info/images/2/2f/SCI_P302.pdf (accessed on 28 May 2023).
- Liew, R.J.; Dai, Z.; Chau, Y.S. Steel Concrete Composite Systems for Modular Construction of High-rise Buildings. In Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures—ASCCS 2018; Universitat Politècnica València: Valencia, Spain, 2018. [Google Scholar] [CrossRef]
- Liu, X.; Pu, S.; Zhang, A.; Xu, A.; Ni, Z.; Sun, Y.; Ma, L. Static and seismic experiment for bolted-welded joint in modularized prefabricated steel structure. J. Constr. Steel Res.
**2015**, 115, 417–433. [Google Scholar] [CrossRef] - Park, K.-S.; Moon, J.; Lee, S.-S.; Bae, K.-W.; Roeder, C.W. Embedded steel column-to-foundation connection for a modular structural system. Eng. Struct.
**2016**, 110, 244–257. [Google Scholar] [CrossRef] - Özkılıç, Y.O. Cyclic and monotonic performance of stiffened extended end-plate connections with large-sized bolts and thin end-plates. Bull. Earthq. Eng.
**2022**, 20, 7441–7475. [Google Scholar] [CrossRef] - Özkılıç, Y.O.; Bozkurt, M.B. Numerical validation on novel replaceable reduced beam section connections for moment-resisting frames. Structures
**2023**, 50, 63–79. [Google Scholar] [CrossRef] - Özkılıç, Y.O. Cyclic and monotonic performance of unstiffened extended end-plate connections having thin end-plates and large-bolts. Eng. Struct.
**2023**, 281, 115794. [Google Scholar] [CrossRef] - Lu, N.; Liska, R.W. Designers’ and General Contractors’ Perceptions of Offsite Construction Techniques in the United State Construction Industry. Int. J. Constr. Educ. Res.
**2008**, 4, 177–188. [Google Scholar] [CrossRef] - Said, H. Prefabrication Best Practices and Improvement Opportunities for Electrical Construction. J. Constr. Eng. Manag.
**2015**, 141, 04015045. [Google Scholar] [CrossRef] - Li, X.; Shen, G.Q.; Wu, P.; Yue, T. Integrating Building Information Modeling and Prefabrication Housing Production. Autom. Constr.
**2019**, 100, 46–60. [Google Scholar] [CrossRef] - Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of Building Information Modelling (BIM). Int. J. Proj. Manag.
**2013**, 31, 971–980. [Google Scholar] [CrossRef] - Ernstrom, B.; Hanson, D. The Contractor’s Guide to BIM, 2nd ed; Associated General Contractors of America: Arlington, VI, USA, 2008. [Google Scholar]
- Singh, M.M.; Sawhney, A.; Borrmann, A. Modular Coordination and BIM: Development of Rule Based Smart Building Components. Procedia Eng.
**2015**, 123, 519–527. [Google Scholar] [CrossRef] - Skilton, M.; Hovsepian, F. The 4th Industrial Revolution: Responding to the Impact of Artificial Intelligence on Business; Palgrave Macmillan: Cham, Switzerland, 2017. [Google Scholar]
- Niu, Y.; Lu, W.; Chen, K.; Huang, G.G.; Anumba, C. Smart Construction Objects. J. Comput. Civ. Eng.
**2016**, 30, 04016103. [Google Scholar] [CrossRef] - Chen, K.; Xu, G.; Xue, F.; Zhong, R.Y.; Liu, D.; Lu, W. A Physical Internet-enabled Building Information Modelling System for prefabricated construction. Int. J. Comput. Integr. Manuf.
**2017**, 31, 349–361. [Google Scholar] [CrossRef] - Liu, H.; Singh, G.; Lu, M.; Bouferguene, A.; Al-Hussein, M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom. Constr.
**2018**, 89, 235–249. [Google Scholar] [CrossRef] - Oh, M.; Lee, J.; Hong, S.W.; Jeong, Y. Integrated system for BIM-based collaborative design. Autom. Constr.
**2015**, 58, 196–206. [Google Scholar] [CrossRef] - Ciribini, A.L.C.; Mastrolembo Ventura, S.; Paneroni, M. Implementation of an interoperable process to optimise design and construction phases of a residential building: A BIM Pilot Project. Autom. Constr.
**2016**, 71, 62–73. [Google Scholar] [CrossRef] - Plume, J.; Mitchell, J. Collaborative design using a shared IFC building model—Learning from experience. Autom. Constr.
**2007**, 16, 28–36. [Google Scholar] [CrossRef] - Solnosky, R.; Solnosky, R.; Ramaji, I.J. Structural BIM Processes for Modular Multi-Story Buildings in Design and Construction. In Proceedings of the 2nd Residential Building Design & Construction Conference, State College, PA, USA, 19–20 February 2014. [Google Scholar]
- Manrique, J.D.; Al-Hussein, M.; Bouferguene, A.; Nasseri, R. Automated generation of shop drawings in residential construction. Autom. Constr.
**2015**, 55, 15–24. [Google Scholar] [CrossRef] - Tan, T.; Chen, K.; Xue, F.; Lu, W. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod.
**2019**, 219, 949–959. [Google Scholar] [CrossRef] - Dynamo: Open Source Graphical Programming for Design. Available online: https://dynamobim.org/ (accessed on 28 May 2023).
- Nawari, N.O. BIM Standard in Off-Site Construction. J. Arch. Eng.
**2012**, 18, 107–113. [Google Scholar] [CrossRef] - Chen, Z.; Li, H.; Chen, A.; Yu, Y.; Wang, H. Research on pretensioned modular frame test and simulations. Eng. Struct.
**2017**, 151, 774–787. [Google Scholar] [CrossRef] - Nadeem, G.; Safiee, N.A.; Abu Bakar, N.; Karim, I.A.; Nasir, N.A.M. Connection design in modular steel construction: A review. Structures
**2021**, 33, 3239–3256. [Google Scholar] [CrossRef] - Deng, E.-F.; Zong, L.; Ding, Y.; Dai, X.-M.; Lou, N.; Chen, Y. Monotonic and cyclic response of bolted connections with welded cover plate for modular steel construction. Eng. Struct.
**2018**, 167, 407–419. [Google Scholar] [CrossRef] - Özkılıç, Y.O. The capacities of unstiffened T-stubs with thin plates and large bolts. J. Constr. Steel Res.
**2021**, 186, 106908. [Google Scholar] [CrossRef] - Özkılıç, Y.O. The capacities of thin plated stiffened T-stubs. J. Constr. Steel Res.
**2021**, 186, 106912. [Google Scholar] [CrossRef] - Australia Engineering Database OneSteel 300PLUS. Available online: https://www.libertygfg.com/media/165356/seventh-edition-hot-rolled-and-structural-steel-productsseventh-edition-hot-rolled-and-structural-steel-products.pdf (accessed on 28 May 2023).
- AS 4100: Steel Structures. 2020. Available online: https://www.standards.org.au/standards-catalogue/sa-snz/building/bd-001/as--4100-colon-2020 (accessed on 28 May 2023).
- Krijnen, T.; Tamke, M. Assessing Implicit Knowledge in BIM Models with Machine Learning. In Modelling Behaviour; Springer International Publishing: Cham, Switzerland, 2015; pp. 397–406. [Google Scholar] [CrossRef]

**Figure 1.**Workflow of the proposed method of BIM-based automatic design optimization for modular steel structures.

**Figure 4.**Steps for forming ground floor modules. (

**a**) Position of modules along the x-axis, (

**b**) position of all modules, (

**c**) floors of ground floor modules, (

**d**) position of ground floor modules’ ceilings, and (

**e**) ceilings of ground floor modules.

**Figure 5.**Steps for forming upper stories and columns. (

**a**) Subsequent stories’ modules; (

**b**) corner points of rectangles; and (

**c**) columns of all modules.

**Figure 7.**Rules for creating horizontal joints. (

**a**) Right- and left-side corner points, (

**b**) indices of right- and left-side corner points, (

**c**) back- and front-side corner points, and (

**d**) indices of back- and front-side corner points.

**Figure 16.**Initial structural model of the study project: (

**a**) 3D grid frame and (

**b**) initial structure types given by the supplier.

ROOF | FLOOR | |||
---|---|---|---|---|

Given (kPa) | UDL Calculated (kN/m) | Given (kPa) | UDL Calculated (kN/m) | |

DL | 0.83 | 1.29 | 1.8 | 2.86 |

LL | 0.5 | 0.77 | 2 | 3.09 |

Wall DL | 0.46 |

Floor Long | Floor Short | Ceiling Long | Ceiling Short | |
---|---|---|---|---|

Max. Bending | 250.19 kNm | 14.66 kNm | 84.57 kNm | 4.95 kNm |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kang, J.; Dong, W.; Huang, Y.
A Bim-Based Automatic Design Optimization Method for Modular Steel Structures: Rectangular Modules as an Example. *Buildings* **2023**, *13*, 1410.
https://doi.org/10.3390/buildings13061410

**AMA Style**

Kang J, Dong W, Huang Y.
A Bim-Based Automatic Design Optimization Method for Modular Steel Structures: Rectangular Modules as an Example. *Buildings*. 2023; 13(6):1410.
https://doi.org/10.3390/buildings13061410

**Chicago/Turabian Style**

Kang, Jingliang, Wei Dong, and Yimiao Huang.
2023. "A Bim-Based Automatic Design Optimization Method for Modular Steel Structures: Rectangular Modules as an Example" *Buildings* 13, no. 6: 1410.
https://doi.org/10.3390/buildings13061410