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Abstract: A vulnerability assessment system for rainwater pipe networks, comprising 13 indexes, was
developed to facilitate the rational allocation and timely updating of urban storm drainage systems.
An enhanced Borda combination evaluation method, which considers both the optimal and worst
solutions, was proposed, accompanied by the operation procedure and numerical calculation method.
Five stormwater systems in Central China were selected as case studies, and their vulnerability was
evaluated and compared using five distinct evaluation methods: the entropy weight method, the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), the efficacy coefficient
method, the fuzzy comprehensive evaluation method, and the improved fuzzy Borda combination
evaluation method. The results demonstrated that the correlation coefficients between the fuzzy
Borda combination evaluation method and the four individual evaluation methods were equal to or
greater than 0.88, indicating strong agreement. Additionally, the compatibility of the combination
evaluation method was found to be 0.96. This study holds both theoretical significance and practical
value for preventing urban waterlogging and contributes to the development of more resilient urban
storm drainage systems.

Keywords: urban storm drainage system; vulnerability; fuzzy Borda; combination evaluation

1. Introduction

Urban infrastructure systems have become increasingly vulnerable due to the frequent
occurrence of extreme natural events [1–3]. Rainstorm waterlogging, caused by extreme
climate change, has gradually drawn attention from researchers and policymakers [4–6].
The drainage pipe network is one of the most critical sectors in this context, and a system-
atic evaluation of the rainwater pipe network is necessary to identify vulnerable pipes,
considering the complexity of the system. The research objective of this study is to evaluate
the vulnerability of urban rainwater pipe networks and identify weak pipe sections to
determine the corresponding vulnerability levels of the system. This information can pro-
vide forecasting plans and data support for urban waterlogging emergency management
departments [7,8].

Numerous experts and scholars have assessed vulnerability in various contexts [9–11].
In the realm of water vulnerability [12,13], the focus has primarily been on water re-
sources [14–16] and groundwater [17–19]. Sun and Kato [20] estimated the vulnerability
of the urban water environment by quantifying vulnerability indicators for urban water
resources. Islam et al. [21] constructed a coupled novel framework approach using hydro-
chemical data, ensemble tree-based models (RF and BRT) and a classic model (SVR) through
a k-fold CV approach for delineating the VWR zones in the coastal plain of Bangladesh.
The accuracy of the RF model was 1% higher than the BRT and SVR models. Bibi et al. [22]
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applied the COP and the VLDA to assess the possible groundwater vulnerability to pol-
lution for the HSB. Rahman et al. [23] used the DRASTIC model to predict groundwater
vulnerability using hydrogeochemical data and Geographic Information Systems (GIS).
Thapa et al. [24] implemented four different overlay and index methods, namely, DRASTIC,
modified DRASTIC, pesticide DRASTIC, and modified pesticide DRASTIC, with the aim
of identifying the most appropriate method for predicting vulnerable zones to ground-
water pollution. The DRASTIC model was observed to be the best model for predicting
groundwater vulnerability in Birbhum, with a prediction accuracy of approximately 85%.

The DRASTIC method, proposed by the US Environmental Protection Agency in 1987,
is the most widely applied in groundwater vulnerability assessment. DRASTIC is a simple
and common model used for assessing groundwater contamination vulnerability and has
been optimized and improved by numerous scholars [25]. Voutchkova et al. [26] proposed
a new method, “DRASTIC-N,” for assessing aquifer nitrate vulnerability. Liang et al. [27]
improved the traditional groundwater vulnerability model DRASTIC, creating the DRSTIC-
LE model to assess the specific vulnerability of nitrate. Neshat et al. [28] applied a modified
DRASTIC approach using Geographic Information Systems (GIS) to evaluate groundwater
vulnerability in the Kerman Plain (Iran). The Wilcoxon rank-sum nonparametric statistical
test was applied to modify the rates of DRASTIC, and the analytic hierarchy process (AHP)
method was employed to evaluate the validity of the criteria and sub-criteria of all the
parameters of the DRASTIC model, proposed as an alternative treatment of the imprecision
demands.

Various evaluation methods have also been proposed [29]. Abdullah et al. [30] applied
two different models, the COP and the VLDA, to assess the possible groundwater vul-
nerability to pollution for the HSB. Dong et al. [31] proposed the W–F and PNN methods
to avoid subjectivity by combining the Weber–Fechner (W–F) law in psychophysics with
the Probabilistic Neural Network (PNN). The W–F law is a theory for describing people’s
responses to stimuli, used to calculate the cluster center and determine the assessment
standard, while the PNN is a widely used algorithm for classification, employed to classify
the vulnerability of confined water. Barzegar et al. [32] developed a GALDIT groundwater
vulnerability framework for the Shabestar Plain, NW Iran, using advanced boosting (i.e.,
CatBoost, AdaBoost, XGBoost, and LGBM) and tree-based (i.e., RF) machine learning
models and their corresponding hybrid models while applying the resampling techniques
of BA and DA algorithms. Khashei-Siuki and Sharifan [33] compared two multi-criteria
decision-making (MCDM) [34] methods to determine suitable areas for drinking water
harvest (AHP and FAHP), with results showing that the FAHP method had greater accuracy
than the AHP method. Sahana et al. [35] explored the effectiveness of the conventional fre-
quency ratio, modified frequency ratio, and support vector machine (SVM) models. Ameri
et al. [36] utilized morphometric parameter analysis and various multi-criteria decision
making (MCDM) models [37], such as simple additive weighing (SAW), VlseKriterijumska
optimizacija I Kompromisno Resenje (VIKOR), technique for order preference by similar-
ity to the ideal solution (TOPSIS), and compound factor (CF). Their results revealed that
morphometric parameters were highly effective in identifying erosion-prone areas, and
the VIKOR method had greater predictive accuracy than TOPSIS, SAW, and CF models.
Subsequently, combinatorial models were developed.

Yao et al. [38] introduced a vulnerability evaluation framework that combined Bi-level
Programming (BLP) and Data Envelopment Analysis (DEA) [39] with multiple follow-
ers. The authors of [40–42] developed the combined weight and gray correlation TOPSIS
method, the hybrid CEEMD-RF-KRR model, and a combination of WQIs, CA, PCA, and
SVMR approaches. Hu et al. [43] applied the AHP-PSR model to assess ecological vulner-
ability. Dodangeh et al. [44] suggested novel integrative flood susceptibility prediction
models based on multi-time resampling approaches, random subsampling (RS), and boot-
strapping (BT) algorithms, integrated with machine learning models: generalized additive
model (GAM), boosted regression tree (BTR), and multivariate adaptive regression splines
(MARS). Nguyen et al. [45] proposed a new method for water quantity vulnerability
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assessment using remote sensing satellite data and GIS ModelBuilder. Wu et al. [46] intro-
duced a multi-criteria analysis model combining the analytic hierarchy process and the
entropy weight method (AHP-Entropy). Ekmekcioğlu et al. [47] developed a hybrid fuzzy
AHP-TOPSIS model.

These evaluation methods can be grouped into three categories: expert evaluation
methods, subjective evaluation methods, and objective evaluation methods. Each method
demonstrates good evaluation accuracy for their respective subjects, despite certain limita-
tions. For instance, they primarily rely on expert subjective opinions and establish weight
coefficients accordingly, which may not accurately reflect the degree of indicator bias. Ob-
jective evaluation methods may sometimes overlook the intrinsic importance of indicators.
Data for each index is essential, but some indices cannot be quantified. Combining these
methods can capitalize on their strengths and minimize their weaknesses.

Thus, an improved fuzzy Borda combination evaluation method was introduced in
this paper. First, four single evaluation methods (the entropy weight method, the gray
correlation TOPSIS method, the efficiency coefficient method, and the fuzzy comprehensive
evaluation method) are employed to obtain single evaluation results. Then, the improved
fuzzy Borda method combines two single evaluation methods, considering both the best
and worst solutions. Utilizing an appropriate evaluation index system, the vulnerability of
the rainwater pipe network was assessed. The effectiveness of this method was validated
through examples.

2. Evaluation Index
2.1. Index Selection

The urban rainwater pipe network is a complex system characterized by extensive
pipelines, significant diameter variations, and substantial flow fluctuations. Taking into
account its inherent rainwater discharge properties as well as the economic and social
environment during urbanization, an index system is constructed that encompasses ex-
ternal factors, structural factors, and operational factors [48–50]. External factors include
the impact of geological disasters, human-induced damage, road construction, ground
load, and rainfall. The greater the degree of influence, the higher the vulnerability level.
Structural factors are primarily assessed through aspects such as pipe age, pipe material,
burial depth, pipe diameter, and slope. Operational factors mainly reflect the adjustment
capacity of pump stations, the regulation capacity of storage structures, and SS (suspended
solids) settlement. The specific index system is illustrated in Figure 1.
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2.2. Data Selection Criteria

Referring to the “Standard for Design of Outdoor Wastewater Engineering” (GB50014-
2021) and other relevant norms and standards, the index data level is divided into five
distinct levels. The index value interval or score range for each grade is presented in Table 1.

Table 1. Levels of the evaluation indicator system.

Secondary
Index

Reference Range

Excellent Good Medium Poor Flunk

Very Safe I Safe II Relatively Safe III Dangerous IV Very Dangerous V

Geological disaster No Basically no Seldom More Frequently
Man-made damage No Basically no Seldom More Frequently

Road construction Unexcavated Excavation far away
from the pipeline

Excavation near
the pipeline

Excavation touches
the pipeline

Large-scale
excavation

Ground load Tiny Less Average Larger Very large
Rainfall <7 mm/h 7–17 mm/h 17–22 mm/h 22–33 mm/h >33 mm/h
Pipe age 0–10 a 10–20 a 20–30 a 30–40 a >40 a

Pipe material HDPE Cast iron pipe Reinforced
concrete pipe Concrete pipe Clay pipe

Buried depth >2.5 m 2.0–2.5 m 1.0–1.5 m 0.7–1.0 m <0.7 m
Pipe diameter >DN1000 DN800–DN1000 DN500–DN800 DN300–DN500 <DN300

Slope >10‰ 4‰–10‰ 2‰–4‰ 1‰–2‰ <1‰
Capacity of pump

station >80 m3/s 40–80 m3/s 20–40 m3/s 10–20 m3/s <10 m3/s

Regulation capacity
of storage structures >2000 m3 1000–2000 m3 500–1000 m3 100–500 m3 <100 m3

SS settlement <20 mg/L 20–30 mg/L 30–40 mg/L 40–100 mg/L >100 mg/L

3. The Combined Evaluation Method of Improved Fuzzy Borda

The traditional fuzzy Borda method and the improved fuzzy Borda method are unable
to assign scores to individual drainage system samples. Therefore, an enhanced Borda
method is proposed, taking into account both the best and worst solutions. This new com-
bined method can utilize the evaluation results obtained from other methods. Four single
evaluation methods are selected, including the entropy weight method, the gray correlation
TOPSIS method, the efficiency coefficient method, and the fuzzy comprehensive evaluation
method.

3.1. Single Evaluation Method
3.1.1. Entropy Weight Method

The entropy weight method is used to determine the importance of research objects.
It is an objective evaluation method that eliminates subjective arbitrariness. This method
assigns weights to indicators through calculations. Based on the computed results, a higher
entropy indicates greater uncertainty and a smaller weight, while a lower entropy suggests
less uncertainty and a larger weight. The entropy method is widely used due to its simple
calculations and reliable results. The specific steps for evaluating the entropy weight
method are as follows:

(1) Establish the initial evaluation index matrix and dimensionless processing.

There are m evaluation objects, and each of them has n evaluation indexes. The initial
evaluation index matrix X is established as:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
... · · ·

...
xm1 xm2 · · · xmn

 (1)
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the initial evaluation index matrix X is normalized to eliminate the influence of different
dimensions of each index. The normalized matrix A is as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn

 (2)

for the positive index,

aij =
xij −mj

Mj −mj
(3)

for the inverse index,

aij =
Mj − xij

Mj −mj
(4)

where aij is the normalized value of the initial evaluation index value; Mj is the maximum
value of xij; and mj is the minimum value of xij;

(2) Calculate the information entropy of each index.

ei = −
1

ln n

m

∑
i=1

bij ln bij (5)

bij = aij/
m

∑
i=1

aij; (6)

(3) Calculate the weight of each indicator.

ε j = ϕj/
n

∑
i=1

ϕj (7)

where ϕj is the difference coefficient, ϕj = 1 − ej and e is the base of the natural logarithm;

(4) Calculate the score value of each sample.

Zi = aij × ε j (8)

evaluation results can be obtained by ranking the scores from greatest to smallest.

3.1.2. Gray Correlation TOPSIS Method

The TOPSIS method is a ranking approach that approximates ideal solutions. By
calculating the distance between each evaluation object and the positive and negative
ideal solutions, the relative closeness degree is determined, which is then used to sort and
evaluate the relative merits and demerits of each index [51].

However, this method’s discriminatory power is not very high. The gray correlation
method can effectively address this issue. The calculation process for the gray correlation
TOPSIS method is as follows:

(1) Establish the initial evaluation index matrix and perform dimensionless processing.

The initial evaluation index matrix X (as shown in Formula (1)) is normalized using
the sum of squares to eliminate the influence of different dimensions for each index. The
resulting normalized matrix S is as follows:

S =


s11 s12 · · · s1n
s21 s22 · · · x2n
...

... · · ·
...

sm1 sm2 · · · smn

 (9)
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sij =
xij√
m
∑

i=1
x2

ij

(10)

where sij is the normalized value of the initial evaluation index value;

(2) Calculate the combination weight.

ωi = ληi + (1− λ)εi (11)

where ωi is the combination weight; ηi is the weight calculated by the analytic hierarchy
process; εi is the weight calculated by the entropy weight method; λ is the decision coeffi-
cient, and 0 ≤ λ ≤ 1. The two methods are equally important, so the decision coefficient λ
is taken as 0.5;

(3) Calculate the weighted judgment matrix.

The weighted judgment matrix V is obtained by multiplying the normalized matrix
with the combined weights of each index that have been previously determined.

V =


s11ω1 s12ω2 · · · s1nωn
s21ω1 s22ω2 · · · x2nωn

...
... · · ·

...
sm1ω1 sm2ω2 · · · smnωn

 =


v11 v12 · · · v1n
v21 v22 · · · v2n

...
... · · ·

...
vm1 vm2 · · · vmn

; (12)

(4) Determine the positive and negative ideal solutions.

For the “larger is better” type index, the positive and negative ideal solutions are,
respectively, as follows: {

v+j = max(v1j, v2j, · · · , vnj)

v−j = min(v1j, v2j, · · · , vnj)
(13)

for the “smaller is better” type index, the positive and negative ideal solutions are, respec-
tively, as follows: {

v+j = min(v1j, v2j, · · · , vnj)

v−j = max(v1j, v2j, · · · , vnj)
; (14)

(5) Calculate the distance.


d+i =

√
n
∑

j=1
(v+j − vij)

2

d−i =

√
n
∑

j=1
(v−j − vij)

2
; (15)

(6) Calculate the gray correlation coefficient.



f+ij =

m
min
i=1

n
min
j=1

∣∣∣v+j − vij

∣∣∣+ ρ
m

max
i=1

n
max
j=1

∣∣∣v+j − vij

∣∣∣∣∣∣v+j − vij

∣∣∣+ ρ
m

max
i=1

n
max
j=1

∣∣∣v+j − vij

∣∣∣
f−ij =

m
min
i=1

n
min
j=1

∣∣∣v−j − vij

∣∣∣+ ρ
m

max
i=1

n
max
j=1

∣∣∣v−j − vij

∣∣∣∣∣∣v−j − vij

∣∣∣+ ρ
m

max
i=1

n
max
j=1

∣∣∣v−j − vij

∣∣∣
(16)

where ρ is the discrimination coefficient, which is usually taken as 0.5;
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(7) Calculate the gray correlation degree.


r+i =

1
n

n
∑

j=1
f+ij

r−i =
1
n

n
∑

j=1
f−ij

; (17)

(8) Dimensionless processing formula.



D+
i =

d+i
m

max
i=1

d+i

D−i =
d−i

m
max
i=1

d−i



R+
i =

r+i
m

max
i=1

r+i

R−i =
r−i

m
max
i=1

r−i

; (18)

(9) Calculate the integrated distance.

{
E+

i = α1D−i + α2R+
i

E−i = α1D+
i + α2R−i

(19)

where α1 + α2 = 1, α1 = α2 = 0.5;

(10) Calculate the relative closeness.

Ci =
E+

i
E+

i + E−i
(20)

the evaluation samples are ranked based on the closeness of the different samples. The
higher the Ci value, the closer the evaluation samples are to the ideal solution.

3.1.3. Efficacy Coefficient Method

The efficiency coefficient method is an effective approach for comprehensive evalua-
tion and multi-objective decision-making. It calculates the comprehensive evaluation value
by combining the efficiency coefficients of multiple indicators with their weight coefficients.
The specific calculation steps are as follows:

(1) Calculate the efficiency coefficient for each index.

Due to the presence of both very large and very small index data, the calculations
need to be performed separately.

The efficiency coefficients for very large index data are as follows:

gij =


cij − c′′j
c′j − c′′j

× 40 + 60, cij < c′j

100, cij ≥ c′j

(21)

the efficiency coefficients for very small index data are as follows:

gij =


∣∣∣cij − c′j

∣∣∣
c′j − c′′j

× 40 + 60, cij > c′′j

100, cij ≤ c′′j

(22)

where c′j and c′′j are the upper and lower limits of the allowable value of index j;
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(2) The weight value ηi of each index is determined by the analytic hierarchy process or
combination weight determination method;

(3) The evaluation scores Bi = ∑k
j=1 gij × ηi of each sample are calculated and sorted

according to the score value from large to small.

3.1.4. Fuzzy Comprehensive Evaluation Method

The fuzzy comprehensive evaluation method is a combined evaluation approach that
integrates both qualitative and quantitative analysis. This method divides the membership
degree levels of the evaluated items, performing comprehensive evaluations using multiple
indices from different perspectives based on fuzzy sets. The fuzziness of evaluation criteria
and the uncertainty of influencing factors arising from different hierarchical relationships
among evaluation objects are considered. At the same time, subjective input can also be
taken into account, making the final calculation result more objective and realistic. The
calculation steps are as follows:

(1) Determine the weight of each index and quantify the evaluated object on each index,
Ui. This involves determining the membership degree of the evaluated object in each
level subset (Λ/Ui) from a single factor, and then obtaining the fuzzy relationship
matrix.

Λ =


Λ/U1
Λ/U2

...
Λ/Um

 =


µ11 µ12 · · · µ1k
µ21 µ22 · · · µ2k

...
...

...
µm1 µm2 · · · µmk


m×k

(23)

µij is the element of row i and column j in the matrix Λ. µij represents the membership
degree of the evaluation index rated as grade Vi(j = 1, 2, · · · , k) from the perspective of
facto Ui. The rating proportion is used to determine the membership function of each index
in the model. In other words, µij = φj/φ in the above expression, where φ is the number
of participating experts in the evaluation, φj is the number of experts assigning the first j
evaluation scale Vj for the ith evaluation index, m is the number of evaluation indices, and
k is the judging level (k = 5);

(2) The comprehensive evaluation set of a certain level index is Q = ΩΛ.

where Ω is the weight vector of each factor and Λ is the fuzzy matrix.

3.2. Ante-Test of Combined Evaluation Methods

The results of the selected single evaluation methods need to be checked for con-
sistency to ensure the compatibility of each individual evaluation method. This allows
the single methods to be verified against each other, and the combined evaluation results
can be obtained with high credibility. Since there are four single evaluation methods for
combinations, the Kendall method is used for the preliminary test. For n evaluated objects
and one single evaluation method, the null hypothesis states that the evaluation results of
one single evaluation method are not consistent. Conversely, the alternative hypothesis
states that the evaluation results of the single evaluation method are consistent. The critical
values of the test statistic and Kendall’s consistency coefficient are as follows:Π =

n
∑

i=1
Y2

i − 1/n× (
n
∑

i=1
Yi)

2
, Πα, l < 7

χ2 = l × (n− 1)×W, X2
α(n− 1), l > 7

(24)
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where Π and χ2 are the test statistics for the different numbers of evaluation methods; the
average ranking of any sample,

Xi =
l

∑
z=1

xiz (25)

where xiz represents the ranking of the ith stormwater pipe network system using the zth
method; Πα and X2

α(n− 1) are the critical values of the Kendall consistency coefficient for
different evaluation methods under a known significance level, which can be obtained by
referring to the Kendall consistency coefficient critical value table. W is Kendall’s coefficient
of concordance.

W = (12
n

∑
i=1

X2
i )/(n

2 × l × (l2 − 1))− 3(l + 1)/(l − 1) (26)

The null hypothesis is rejected as Π > Πα or χ2 > X2
α(n− 1). The evaluation results

can be considered consistent, and the combined evaluation can be carried out.

3.3. Back Testing of Combined Evaluation Methods

The Spearman rank correlation coefficient method is typically used to test the validity
of the combined evaluation results. ζ j is the Spearman rank correlation coefficient for each
single evaluation method or combined method.

The null hypothesis proposes that the combined evaluation method is unrelated to
each single evaluation method. The alternative hypothesis is that the combined evaluation
method has a strong correlation with each single evaluation method. The test statistic is
calculated as follows:

ρ =
1
l

l
∑

j=1
ζ j, n < 10

tα = (
1
l

l
∑

j=1
ζ j)

√√√√(n− 2)/(1− (
1
l

l
∑

j=1
ζ j)

2

), n ≥ 10

(27)

where tα is the T-distribution with n-2 degrees of freedom and n is the number of samples.
The null hypothesis is rejected when the statistical value is greater than the critical

value, indicating a strong connection between the combined evaluation method and the
single evaluation method. In this case, the backtesting of the combined evaluation method
is considered successful.

3.4. Improved Fuzzy Borda Combination Evaluation Method

The fuzzy Borda combination evaluation method can synthesize different results from
various evaluation methods. It takes into account both the difference in rankings under
different methods and the scores of various items under the corresponding evaluation
methods. This approach allows for better utilization of single evaluation information,
resulting in higher rationality and superiority [52,53].

The specific steps of the improved fuzzy Borda combination evaluation method are as
follows:

(1) Use each single evaluation method to evaluate objects, and perform a preliminary test
of the combination method using the Kendall method. If the test fails, recombine the
single evaluation methods and test again. If the test is successful, proceed to the next
step;



Buildings 2023, 13, 1396 10 of 16

(2) Calculate the membership degree uij of “excellent” for the ith project using the jth
evaluation method:

uij =
yij −min

i

{
yij
}

max
i

{
yij
}
−min

i

{
yij
} × 0.9 + 0.1(i = 1, 2, . . . , n; j = 1, 2, · · · , l); (28)

(3) Calculate the No. h fuzzy frequency wih of the No. i sample:

Fuzzy frequency : Pih =
n

∑
i=1

δh
ijuij(i = 1, 2, · · · , n; h = 1, 2, · · · , n) (29)

where δh
ij = 1, No.i sample ranks h in the No.j evaluation method

δh
ij = 0, else

if the two samples rank the same, take 1/2, and so on.

Fuzzy frequency : wih =
Pih
Fi

(i = 1, 2, . . . , n) (30)

where Fi = ∑n
h=1 Pih(i = 1, 2, . . . , n);

(4) Calculate the fuzzy Borda number Bi of each process:

Convert ranking to score : Qih =
(n− h)(n− h + 1)

2
(31)

fuzzy Borda number : Bi =
n

∑
h=1

wihQih(i = 1, 2, . . . , n) (32)

sort from top to bottom according to fuzzy Borda number;
(5) Back testing: if passed, go to the next step; otherwise, go to step (2);
(6) Establish the comparison of rainwater system samples: q′ =

{
{qi1, qi2, · · · , qik}|Fqi = max{Fi}

}
and q′ =

{
{qi1, qi2, · · · , qik}|Fqi = max{Fi}

}
. The combination evaluation score is B′ and B′′ .

The final combination score can be obtained according to various gradient differences
in fuzzy Borda numbers between the samples q′ and q′′ . B′ and B′′ are determined as
follows:

Five grade standards are set for index j,

oj =
{

oj(1), oj(2), oj(3), oj(4), oj(5)
}

(33)

the correlation degree between q′ and q′′ at all levels is calculated.
When the evaluation index is “very poor”, the value of ul

j1 can be:

−1|qj ∈
[
oj(0), oj(1)

]
; 1 + 2

qj − oj(1)
oj(2)− x

∣∣∣∣∣qj ∈
[
oj(1), oj(2)

]
; −1|qj ∈

[
oj(2), oj(5)

]
(34)

when the evaluation index is “poor”, the value of ul
j2 can be:

1 + 2
qj − oj(1)
oj(0)− x

∣∣∣∣∣qj ∈
[
oj(0), oj(1)

]
; 1|qj ∈

[
oj(1), oj(2)

]
;

1 + 2
qj − oj(2)
oj(3)− x

∣∣∣∣∣qj ∈
[
oj(2), oj(3)

]
;−1|qj ∈

[
oj(3), oj(5)

]
(35)
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when the evaluation index is “medium”, the value of ul
j3 can be:

−1|qj ∈
[
oj(0), oj(1)

]
; 1 + 2

qj − oj(2)
oj(1)− qj

∣∣∣∣∣qj ∈
[
oj(1), oj(2)

]
;

1|qj ∈
[
oj(2), oj(3)

]
; 1 + 2

qj − oj(3)
oj(4)− qj

∣∣∣∣∣qj ∈
[
oj(3), oj(4)

]
; −1|qj ∈

[
oj(4), oj(5)

]
(36)

when the evaluation index is “good”, the value of ul
j4 can be:

−1|qj ∈
[
oj(0), oj(2)

]
; 1 + 2

qj − oj(3)
oj(2)− qj

∣∣∣∣∣qj ∈
[
oj(2), oj(3)

]
;

1|qj ∈
[
oj(3), oj(4)

]
; 1 + 2

qj − oj(4)
oj(5)− qj

∣∣∣∣∣qj ∈
[
oj(4), oj(5)

]
(37)

when the evaluation index is “excellent”, the value of ul
j5 can be:

−1|qj ∈
[
oj(0), oj(3)

]
; 1 + 2

qj − oj(4)
oj(2)− oj(4)

∣∣∣∣∣qj ∈
[
oj(3), oj(4)

]
; 1|qj ∈

[
oj(4), oj(5)

]
(38)

where oj =
{

oj(1), oj(2), oj(3), oj(4), oj(5)
}

is the boundary value corresponding to the
grade division interval. There is a relationship of oj(0) < oj(1) < · · · < oj(5) with the
benefit type index. There is a relationship of oj(0) > oj(1) > · · · > oj(5) with the cost type
index. qj is the index data to be evaluated. The proportion belonging to each level λ

(
oj
)

is
obtained by normalizing the correlation degree between each index and different levels.
The score gradient of five levels is set as [υj]1×5 = [0, 40, 60, 80, 100]. The score of samples
q′ and q′′ is calculated as follows by combining the index weight yj.

B′ =
5

∑
j=1

υj × λ′q(oj)× yj, B′′ =
5

∑
j=1

υj × λ
′′
q (oj)× yj. (39)

4. Case Study
Case Background

The capital city of Central China is naturally divided into three districts by the
Yangtze River and the Han River. The city features numerous lakes and rivers, result-
ing in over 20 relatively independent drainage systems within the urban area. In this study,
five drainage systems are selected as sample cases for analysis, and the relevant evaluation
index data is presented in Table 2.

The aforementioned five drainage systems were assessed using the single evaluation
method, and the results are displayed in Table 3.

The Kendall method was used for the preliminary test. The null hypothesis H0 was
proposed, suggesting that the evaluation results obtained by the four single evaluation
methods were inconsistent. The significance level was set at 0.01, and the test statistic
was calculated to be 124. The critical value of the Kendall consistency coefficient was
109.3, as found in the table. Thus, the null hypothesis was rejected. The Kendall-W
concordance coefficient was used to further test the significance. When the concordance
coefficient W is closer to 1, the consistency between the data is stronger. The calculated
concordance coefficient, as shown in Table 4, indicates high consistency among the four
single evaluations. They passed the preliminary consistency test.
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Table 2. Index data for drainage systems.

Evaluation Index Drainage System 1 Drainage System 2 Drainage System 3 Drainage System 4 Drainage System 5

Geological disaster Seldom Basically no Seldom Basically no Basically no
Man-made damage More Seldom Seldom Basically no Basically no

Road construction Excavation near the
pipeline

Excavation far away
from the pipeline

Excavation touch
pipeline

Excavation far away
from the pipeline

Excavation far away
from the pipeline

Ground load Average Less Larger Less Larger
Rainfall 7–17 mm/h 17–22 mm/h 17–22 mm/h 17–22 mm/h 7–17 mm/h
Pipe age 30–40 a 10–20 a 20–30 a 10–20 a 20–30 a

Pipe material Concrete pipe Reinforced concrete
pipe Concrete pipe Reinforced concrete

pipe Concrete pipe

Buried depth 1.5–2.0 m 2.0–2.5 m 2.0–2.5 m >2.5 m >2.5 m
Pipe diameter DN300–DN500 >DN1000 DN500–DN800 >DN1000 DN500–DN800

Slope 2‰–4‰ 4‰–10‰ 2‰–4‰ 4‰–10‰ 2‰–4‰
Capacity of the pump

station 10–20 m3/s 40–80 m3/s 20–40 m3/s 40–80 m3/s 20–40 m3/s

Regulation of the
capacity of storage

structures
500–1000 m3 1000–2000 m3 1000–2000 m3 500–1000 m3 500–1000 m3

SS settlement >100 mg/L 20–30 mg/L 30–40 mg/L 30–40 mg/L 30–40 mg/L

Table 3. Evaluation results by four single evaluation methods.

No.
Entropy Weight Method Gray Correlation TOPSIS

Method Efficacy Coefficient Method Fuzzy Comprehensive
Evaluation Method

Evaluation Value Ranking Evaluation Value Ranking Evaluation Value Ranking Evaluation Value Ranking

1 77.30 5 0.557 5 71.28 5 73.97 5
2 84.77 2 0.712 2 85.89 3 86.77 2
3 82.35 4 0.695 3 88.64 2 84.04 3
4 89.28 1 0.774 1 92.47 1 91.35 1
5 83.69 3 0.638 4 78.96 4 83.84 4

Table 4. Kendall correlation coefficient of a single evaluation model.

Kendall Correlation Coefficient Entropy Weight
Method

Gray Correlation
TOPSIS Method

Efficacy Coefficient
Method

Fuzzy Comprehensive
Evaluation Method

Entropy weight method 1
Gray correlation TOPSIS method 0.916 1

Efficacy coefficient method 0.783 0.886 1
Fuzzy comprehensive evaluation

method 0.916 1 0.908 1

The scatterplot of the four single evaluation methods is displayed in Figure 2, and the
histogram can be seen in Figure 3. From Figures 2 and 3, the evaluation results of each
method are consistent and meet the necessary conditions for a combined evaluation. The
correlation coefficient of each single evaluation method was calculated, with the minimum
value being 0.9155. The results obtained by any two evaluation methods exhibited a high
correlation. Based on these results, a combination analysis was performed. The com-
bined scores of each sample were obtained using the improved fuzzy Borda combination
evaluation method, as shown in Table 5.

After obtaining the combined evaluation results, the Spearman rank correlation co-
efficient method should be used for the backtesting. Given that there are five evaluated
samples, the calculated test statistic is 0.975. Under the significance level of 0.05, the critical
value of the consistency coefficient is 0.9, as found in the table. The null hypothesis is
rejected, and the combined evaluation results are considered consistent. They passed the
backtesting. The ranking of samples in the combined evaluation method and each single
evaluation method is shown in Figure 4.
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As can be seen from Figure 4, the results exhibit high consistency. The compatibility of
the five evaluation methods was calculated, as displayed in Table 6.

Table 6. Compatibility between evaluation methods.

Spearman Rank Correlation
Coefficient

Entropy Weight
Method

Gray Correlation
TOPSIS Method

Efficacy Coefficient
Method

Fuzzy Comprehensive
Evaluation Method

Combination
Evaluation

Entropy weight method 1
Gray correlation TOPSIS

method 0.941 1

Efficacy coefficient method 0.884 0.902 1
Fuzzy comprehensive

evaluation method 0.941 1 0.923 1

Combination evaluation 0.941 1 0.923 1 1
Compatibility 0.906 0.9755 0.949 1 1

Table 6 shows that the compatibility of the combined evaluation method is greater than
or equal to that of the other methods, indicating high credibility. The combined evaluation
results in Table 6 reveal that the score of water system 4 is the highest, which is consistent
with the other single evaluation methods. This confirms the principle that the minority is
subordinate to the majority in the fuzzy Borda method.

5. Conclusions

Various methods can be used to evaluate the vulnerability of rainwater pipe networks.
Although there are some differences in the evaluation results of different methods, the
overall evaluation results are similar. The improved fuzzy Borda combination evaluation
method can comprehensively analyze deterministic and uncertain elements in the system
and improve the reliability of the evaluation results. In this case, the compatibility of
the combined method is 0.96, indicating high credibility. By calculating the fuzzy Borda
numbers, positive and negative ideal drainage system samples, and correlation degrees
at all levels, the comprehensive evaluation value of each drainage system sample can be
obtained. Referring to the optimal sample, drainage system parameters can be reasonably
set in the future. Although the proposed model has high credibility, its calculation is more
complex compared to single evaluation methods. Moreover, the dynamic development
of system indicators is not considered in the evaluation process, which requires further
research.
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