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Abstract: Accurate shear load capacity predictions are crucial to achieving the load-bearing re-
quirements of concrete deep beams in a variety of construction structures. Conventional BP neural
networks have the drawbacks of being prone to local optimums and having a sluggish rate of con-
vergence for predicting the shear load capacity of reinforced concrete deep beams. To overcome
this problem, this study incorporated the black widow optimization algorithm (BWO) and prin-
cipal component analysis (PCA) into a BP neural network to create a unique Hybrid Intelligent
Optimization Algorithm (PCA-BWO-BP). Firstly, PCA was used to reduce the dimensionality of
the input variables of the shear load capacity prediction model of reinforced concrete deep beams.
Secondly, BWO was introduced to optimize the weights and thresholds of the BP neural network.
Finally, the four algorithms were compared and validated through the use of five model evaluators.
The results showed that the PCA-BWO-BP model can explore the intrinsic relationship between
member size, bottom longitudinal reinforcement, hoop reinforcement, concrete strength and the shear
load capacity of reinforced concrete deep beams and generate reasonable prediction values, and the
complexity of the prediction model can be effectively reduced by introducing the PCA algorithm,
whereas the BWO algorithm can optimize the weights and thresholds of the BP neural network to
improve the convergence and global search ability of the model. The mean absolute percentage
error (MAPE) of the PCA-BWO-BP algorithm is 5.126, and the Nash efficiency coefficient (NS) is
0.989. The generalization ability and prediction accuracy are significantly better than those of the BP
neural network, which can solve the problem relating to the fact that BP neural networks are prone
to falling into the local optimum. The PCA-BWO-BP model has strong prediction ability, stability,
generalization ability and robustness, which can predict the shear load capacity of reinforced concrete
deep beams more accurately. It provides a new method and case support for further research on the
shear bearing capacity of reinforced concrete deep beams.

Keywords: deep beams; PCA-BWO-BP algorithm; shear bearing capacity; generalization ability; data
dimension reduction; parameter optimization

1. Introduction

Reinforced concrete deep beams are widely used in building transfer beams, bridge-
bearing platforms and pile-bearing foundations, which may suffer brittle shear damage
along the diagonal section under the shear force, leading to potential disasters and huge
losses of life and endangering property. Therefore, the calculation of shear bearing capacity
has been one of the important problems in the field of structural engineering. Many
domestic and foreign scholars have proposed many theoretical models, including truss
theory, plasticity theory, limit equilibrium theory, statistical analysis method and nonlinear
finite element method; however, due to the complex force of concrete beams and many
other influencing factors, it is still very difficult to simply rely on theoretical models to
solve accurate solutions of shear bearing capacity. At present, most of them start from
the principle of force and put forward the basic formula for calculating the shear bearing
capacity of reinforced concrete deep beams, and then determine the empirical formula for
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the shear bearing capacity of deep beams through the use of methods such as parameter
regression using a large amount of test data [1–3].

With the development of the mathematical model of the algorithm, machine learning
(ML) [4,5], as the most successful branch of artificial intelligence, has been increasingly
applied to studying the bearing capacity of reinforced concrete members because of its
excellent self-training ability and processing ability for nonlinear systems. It greatly reduces
the computational cost and is of great significance for the prediction of the bearing capacity
of reinforced concrete members. Mansour et al. [6] used an artificial neural network to
predict the shear capacity of beams with nine variables such as the compressive strength of
cylindrical concrete, yield strength of longitudinal and transverse steel bars, shear span
ratio, beam section size and reinforcement ratio as input parameters and compared the pre-
dicted values with the calculation results of the code and truss theory. The results showed
that the artificial neural network has a strong implementation potential. Abdalla et al. [7]
used six parameters, such as the shear-to-span ratio, concrete strength, longitudinal rein-
forcement, hoop reinforcement, beam depth and beam width, as input variables to build
a neural network model and compared its prediction results with the experimental val-
ues and also performed a sensitivity analysis on the parameters affecting the shear load
capacity of concrete beams, and the results showed that neural networks are a feasible
tool for beam shear load capacity prediction and an analysis of the influencing parameters.
Wakjira [8] proposed 11 prediction models for the shear capacity of fiber-reinforced polymer
concrete beams (FRP-RC) based on machine learning, among which the xgBoost model is
superior to other models in prediction ability. Chou [9] introduced a hybrid model for the
shear load capacity prediction of concrete beams based on the intelligent firefly algorithm
and the least squares support vector regression machine, and the results revealed that
it outperformed the standard single model in prediction accuracy. Erdem [10] proposed
an artificial-neural-network-based load capacity prediction model for reinforced concrete
slabs in the case of fire, and the investigation demonstrated that it has superior prediction
accuracy. Koçer [11] suggested a prediction model based on an artificial neural network
to identify the moment and shear force capacities of reinforced concrete spiral columns
and their displacement ductility values, and the outcomes demonstrated that the model’s
prediction accuracy is superior to the conventional empirical approach. Golafshani [12]
employed an artificial neural network and fuzzy logic algorithm to estimate the binding
strength of steel reinforcing in concrete, and the findings indicated that it can successfully
achieve this goal.

In this study, a new hybrid prediction model for the shear capacity of reinforced
concrete deep beams was established by using principal component analysis, the black
widow optimization algorithm (BWO) and the BP neural network. The model effectively
minimizes the size of the feature space, consequently decreasing the model’s complexity,
improving the model’s generalization ability and robustness, and finally, improving the
shear capacity of reinforced concrete deep beam prediction accuracy.

2. Hybrid Intelligent Algorithm PCA-BWO-BP
2.1. PCA Method

With more variables, there is frequent data noise and redundancy since some of these
variables are related. To solve this issue, principal component analysis (PCA) was used to
minimize the dimensionality of the dataset [13–15].

Through linear combination, PCA can transform the m-dimensional original variable
into an n-dimensional fresh variable (n < m), retaining as much information concerning
the original data variables as is feasible while not correlating them with each other. The
method first computes the covariance matrix of the original variable matrix as well as its
eigenvalues and eigenvectors. Several eigenvalues of the target’s cumulative contribution
are then selected as the principal components. Then, the projection matrix corresponding to
the principal component is multiplied by the principal components. Finally, the dimension
reduction matrix is obtained.



Buildings 2023, 13, 1395 3 of 13

The origin variable X is a group from an m-dimensional matrix and is given by
Equation (1).

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xa1 xa2 · · · xam

 (1)

Normalizing xij to generate the matrix is given by Equation (2).

x∗ ij =
xij − xj

Sj
(2)

where i = 1, 2, . . . , a; j = 1, 2, . . . , m, xj is the means, and Sj is the variances.
Establishing the covariance matrix of S is given by Equation (3).

S = (rij)a×a (3)

rij =

n
∑

i=1
xpixp j

n− 1
(4)

where rij is the correlation coefficient of variable xi and variable xj is calculated by Equation (4).
The cumulative contribution rate ηi is calculated by Equation (5).

ηi =
k

∑
i

λi
n
∑

i=1
λi

(5)

where λi is the eigenvalue of the eigenmatrix.
The first n principal components are obtained according to the target’s cumulative

contribution rate. The principle and procedure of PCA are illustrated in Figure 1.
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2.2. BP Neural Network

The BP neural network model consists of three components: an input, hidden and
output layer, including two processes of forward propagation of signal and backward
propagation of error. The input signal is processed layer-by-layer from the input layer
through the hidden layer and transferred to the output layer in the forward propagation
process, where the state of neurons in each layer only impacts the state of neurons in the
following layer. If the output result is not optimal, the network connection weights and
thresholds are changed by reverse propagation for repeated training to attain the optimal
result [16,17]. The BP net is illustrated in Figure 2.
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2.3. Black Widow Optimization Algorithm

BP neural networks are relatively mature in terms of both network theory and per-
formance, with strong nonlinear mapping capabilities and flexible network structures.
However, BP neural networks also have some drawbacks. As BP neural networks use the
gradient learning method, the convergence speed is inevitably slower, and they also easily
fall into local extremes [18,19]. Studies have shown that the black widow optimization
algorithm (BWO) can effectively avoid such problems [20–22]. BWO is a modern optimiza-
tion method proposed by Vahideh Hayyolalam et al. in 2020, which is inspired by the
unique mating behavior of black widow spiders. The algorithm simulates the life cycle of
black widow spiders and has numerous advantages in terms of convergence speed, fitness
optimization and the avoidance of local optimality. Therefore, this study used BWO to
optimize the weights of each layer of the BP neural network and thresholds to improve
the convergence performance and global search capability. BWO consists of the following
five stages.

2.3.1. Initialization

The initial population is composed of Npop black widows, where each black widow
represents a possible solution, and the black widow spiders can be considered as a one-
dimensional array, as shown in Equation (6):

Widow = [x1, x2, · · · , xMvar ] (6)
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Each variable (x1, x2, · · · , xMvar ) is a random floating number, and xMvar is the dimen-
sion of the optimization problem. Each black widow can calculate the fitness value by the
fitness function f shown, as shown in Equation (7):

Fitness = f (widow) = f (x1, x2, · · · , xMvar ) (7)

When the population is initialized, Npop black widows are generated, and a Npop ×Mvar
black widow matrix is obtained.

2.3.2. Procreation

The procreation phase is a global search phase. First, the population is ranked accord-
ing to fitness, and then the black widows involved in procreation are calculated according
to the procreating rate (PP), and finally, parents are randomly selected for procreation using
Equation (8). In this algorithm, the procreating process is simulated by creating α arrays.{

y1 = α× x1 + (1− α)× x2
y2 = α× x2 + (1− α)× x1

(8)

where x1 and x2 represent the parents and y1 and y2 represent the offspring, and the process
is repeated MVAR/2 times.

2.3.3. Cannibalism

The algorithm includes three kinds of cannibalism: sexual cannibalism, sibling canni-
balism and child-eat-mother cannibalism. Sexual cannibalism means that the female black
widow with an elevated fitness value will eat the male black widow with a low fitness
value during or after mating. Sibling cannibalism refers to when the strong spiderlings
eat their weaker siblings. Child-eat-mother cannibalism is when the child spider eats its
mother. The BWO algorithm achieves sexual cannibalism by destroying the father and
sibling cannibalism by destroying some children according to the cannibalism rate (CR).

2.3.4. Mutation

The mutation phase is a local search phase. The BWO randomly selects multiple black
widows based on the mutation rate (PM), and each black widow randomly exchanges two
eigenvalues in the array to complete the mutation behavior.

2.3.5. Population Update

Black widows with higher fitness values obtained after passing through the above
four stages are used as fresh initial populations for iteration until the termination condition
is satisfied. The schematic diagram of the black widow optimization algorithm is shown in
Figure 3.
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2.4. PCA-BWO-BP Model Construction

PCA-BWO-BP model construction steps:

1. PCA method for data dimensionality reduction;
2. Population initialization and parameter settings for the BWO algorithm;
3. The optimal black widow is updated, and the optimal weights and thresholds are

assigned to the BP model;
4. An error test is performed. If the condition is satisfied, the PCA-BWO-BP model is

successfully constructed; otherwise, it returns to step 3 for recalculation. The specific
steps of which are shown in Figure 4.
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3. Data Collection and Processing
3.1. Data Collection and Processing

A total of 202 sets of shear bearing capacity test data for simply supported deep
beams were acquired through the gathering and screening of domestic and international
literature; the specific parameter ranges and data sources are provided in Table 1. A total
of 15 main parameters, including geometric dimensions, reinforcement information and
concrete strength, are chosen by combining the test data content with the requirements
of the Chinese concrete structure design code (GB 50010-2010) and the American code
(ACI 318) on the calculation formula of shear bearing capacity in concrete structures.



Buildings 2023, 13, 1395 7 of 13

Table 1. Experimental dataset of shear bearing capacity of reinforced concrete simple support
deep beams.

(a) Geometric Dimensions and Longitudinal Reinforcement

Reference Date
Geometric Dimensions Longitudinal Reinforcement

b h a h0 λ l0 n ϕ ρb fby

Clark [23] 44 152~203 381~457 457~892 318~391 1.17~2.34 1828~2438.4 2~3 22.2~32.3 0.98~3.38 321~370
Moody [24] 12 178 610 813 2438.4 1.52 2438.4 4 28.7~35.8 2.72~4.25 302~315
Morrow [25] 15 305~308 406 445~800 356~372 1.21~2.17 1066.8~1900 2~5 15.9~28.7 0.57~3.91 332~471
Mathey [26] 16 203 457 610 403 1.51 1829 1~3 15.9~32.3 0.75~3.05 267~725
Smith [27] 41 102 356 305~457 305 1~1.5 813~1118 3 16 1.94 422

Walraven [28] 19 250 200~800 150~694 160~740 0.94 320~1480 3~8 16~20 1.1~1.51 420~500
Tanimura [29] 40 300 450 200~600 400 0.5~2 800~2000 4 13~29 0.44~2.2 458~1330

Quintero-Febres [30] 12 150 460 320~568 370~380 0.78~1.49 1140~1630 4 19~22 2.02~2.74 427~462
Sahoo [31] 5 100 450 190 400 0.475~0.48 100 4 12 1.13 400

(b) Hoop Reinforcement, concrete strength and shear bearing capacity

Reference Date
Hoop Reinforcement Concrete Shear Bearing Capacity

ρv fyv ρh fyh fc V

Clark [23] 44 0~1.23 0~331 0 0 13.8~47.6 90~436
Moody [24] 12 0 0 0 0 17.2~25 269~438
Morrow [25] 15 0 0 0 0 13.7~47.2 130~902
Mathey [26] 16 0 0 0 0 21.9~26.7 179~313
Smith [27] 41 0.28~1.25 460 0.23~0.91 460 16.1~22.7 104~184

Walraven [28] 19 0~0.65 0~500 0 0 13.5~25.8 207~670
Tanimura [29] 40 0~0.89 0~1051 0 0 22.9~94.5 284~980

Quintero-Febres [30] 12 0~0.32 0~586 0 0 21.3~48.7 196~484
Sahoo [31] 5 0.2~0.32 260~440 0.17~0.3 260~440 36.3~44.9 349~371

Note: b—component width; h—component height; a—shear span length; h0—effective section height; λ—shear
span ratio; l0—calculated span; n—number of bottom longitudinal bars; ϕ—diameter of bottom longitudi-
nal bar; ρb—bottom longitudinal reinforcement ratio; fby—bottom longitudinal reinforcement yield strength;
ρv—vertical web reinforcement ratio; fyv—yield strength of vertical web reinforcement; ρh—horizontal abdominal
reinforcement ratio; fyh—yield strength of horizontal abdominal tendons; fc—compressive strength of concrete;
V—shear bearing capacity of deep beam.

3.2. Dimension Reduction of Input Variable Principal Component

In this article, the shear bearing capacity of the deep beam was used as the output
variable, while 15 parameters, including deep beam geometry, deep beam reinforcement
parameters and concrete strength, were used as input variables. If these 15 influencing
factors were directly used as neural network input variables, the structure of the neural
network would become complicated due to overly numerous input variables. Furthermore,
the network’s training intensity would increase, and the training would easily fall into the
local optimum, resulting in poor generalization ability. As a result, principal component
analysis was used to minimize the dimensionality of the influencing elements and remove
the correlations between them, and then the principal components were used as neural
network input variables.

Principal component analysis was performed on 15 factors affecting the shear bearing
capacity of reinforced concrete deep beams. According to the cumulative contribution of
the principal components, nine principal components were obtained, whose eigenvalues
and contribution rates are shown in Table 2 below. The cumulative contribution rate of the
ninth principal component is as high as 97.044%; therefore, these nine principal components
can fully represent the characteristics of the original variables. The correlation coefficients
between these nine principal components are all 0, so the principal component analysis has
achieved the purpose of eliminating the correlation between the original variables.
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Table 2. Eigenvalues and contribution rates of principal constituents.

Principal
Component Number Eigenvalue Contribution % Cumulative

Contribution %

1 5.338 35.587 35.587
2 2.789 18.592 54.179
3 1.708 11.388 65.567
4 1.422 9.481 75.048
5 1.029 6.858 81.906
6 0.955 6.369 88.275
7 0.680 4.530 92.805
8 0.370 2.469 95.274
9 0.265 1.770 97.044
10 0.248 1.655 98.699
11 0.106 0.709 99.408
12 0.062 0.413 99.821
13 0.018 0.121 99.942
14 0.005 0.032 99.975
15 0.004 0.025 100

4. Prediction Results and Discussion
4.1. Correlation Analysis of Prediction Results and Comparison of Generalization Ability

To increase the credibility of the model evaluation, BP, PSO-BP and BWO-BP models
were selected for cross-sectional comparison analysis with the PCA-BWO-BP model. The
nodes of the four models at the input and output layers were 15 and 1, respectively. The
number of nodes in the hidden layers was chosen after using the network training using
Formula (9) and striving to minimize the training error. The final topology of the neural
network identified in this paper is 15-10-1. The parameters were selected through the
grid search method, and the average value of the MAE of each validation set in k-fold
cross-validation was used as the objective function. The finalized parameters are taken as
shown in Table 3.

h <
√
(i + o) + a (9)

h: number of hidden layers; o: number of output layers; i: number of input layers; a is
[0–10], and adopt constant.

Table 3. Performance evaluation results of BP, PSO-BP, BWO-BP and PCA-BWO-BP algorithms.

Algorithm Parameters

BP η = 0.01; g = 0.001
PSO-BP η = 0.01; g = 0.001; C1 = 2; C2 = 1; N = 40
BWO-BP η = 0.01; g = 0.001; PP = 0.8; CR = 0.5; PM = 0.4; N = 30

PCA-BWO-BP η = 0.01; g = 0.001; PP = 0.8; CR = 0.5; PM = 0.4; N = 30
Note: η—learning rate; g—training goal; Ci—learning factor; PC—crossover rate; PM—variance rate;
PP—reproduction rate; CR—congeneric feeding rate.

In this paper, 80% of the data in the dataset were randomly selected as the training
set and 20% of the data were chosen as the test set for shear load capacity prediction of
reinforced concrete deep beams. Logsig serves as the neural network’s activation function
from the input layer to the hidden layer, while the purlin function serves as its activation
function from the hidden layer to the output layer. The default clearngdm function is a
gradient descent function with momentum weights and bias learning, which can update
the weights and bias of the neural network according to the gradient of the network
performance and can use the momentum factor to improve learning speed and accuracy
when training the neural network. The training function is the default trainlm function,
which combines Newton’s method and gradient descent to improve learning speed and
accuracy when training the neural network. The trained PCA-BWO-BP network model’s
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weights and thresholds are displayed in Appendix A. The four plots in Figure 5 show the
correlation between the predicted data and the actual data of the BP, PSO-BP, BWO-BP and
PCA-BWO-BP models in the training and testing stages, respectively.
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It is clear that the BP neural network performs worse than the other three neural
network models during the training and testing phases, demonstrating that it has the
weakest generalization ability and the worst capacity for making predictions for unknow-
able data. Both the PSO-BP neural network and the BWO-BP neural network performed
better than BP during testing, proving that the mutation and like-eating operations of the
BWO algorithm and the individual and social learning operations of the PSO algorithm
can enhance the BP neural network’s capacity for global search and generalization. The
PCA-BWO-BP neural network outperforms other models in terms of prediction accuracy
during testing, demonstrating that it is the most generalizable model.

The mean square error of the training and test sets of the PCA-BWO-BP neural network
prediction process is shown in Figure 6 as a function of the number of iterations. The mean
square error of the training set keeps going down during the evolution process. The test
set mean square error drops to its lowest value at iteration 14, reaching 6.33 × 10−3, and
then steadily rises at subsequent iterations, demonstrating that the iteration converges at
this generation.
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4.2. Prediction Evaluation and Error Analysis

Figure 7 shows a comparison of the prediction effects of the BP, PSO-BP, BWO-BP
and PCA-BWO-BP models. It can be observed that the BP model’s prediction results vary
considerably from the measured results, and the PSO-BP model’s forecast error was more
than the BWO-BP model’s prediction error. The PCA-BWO-BP model predicted values
that were closer to the actual values, and no severe outliers were identified, suggesting its
excellent dependability in predicting sample data. It was also verified that the PCA method
may reduce the data structure, and that the BWO algorithm’s cannibalism and mutation
procedures better optimize the weights and thresholds of the BP neural network, resulting
in the PCA-BWO-BP model obtaining greater generalization and data prediction capacity.
As a result, the PCA-BWO-BP model can more precisely forecast the shear load capacity of
reinforced concrete deep beams and may be employed efficiently in reality.
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4.3. Predictive Model Performance Evaluation

In this paper, five different evaluation metrics, including absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE), root mean square
percentage error (RMSPE) and Nash efficiency coefficient (NS), are used, and their mathe-
matical expressions are as follows.

MAE =
1
n

n

∑
i=1
|xi − pi| (10)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − pi
xi

∣∣∣∣× 100% (11)

RMSE =

√
1
n

n

∑
i=1

(xi − pi)
2 (12)

RMSPE =
1
n

√√√√ n

∑
i=1

(
xi − pi

xi

)2
× 100% (13)

NS = 1− ∑n
i=1 (xi − pi)

2

∑n
i=1 (xi − x)2 (14)

In the above Equations (10)–(14) xi is the true value, pi is the predicted value and x is
the average of the true value, and the calculation results are shown in Table 4 below.

Table 4. Performance evaluation results of BP, PSO-BP, BWO-BP and PCA-BWO-BP algorithms.

MAE MAPE (%) RMSE RMSPE (%) NS

BP 32.173 8.820 42.408 1.237 0.954
PSO-BP 26.709 7.469 36.184 0.726 0.970
BWO-BP 19.846 5.767 28.485 0.606 0.979

PCA-BWO-BP 17.169 5.126 21.025 0.379 0.989
In the table: the closer the NS is to 1, the higher the confidence that the model has.

The NS of the predicted shear load capacity of reinforced concrete deep beams obtained
using the four prediction models, BP, PSO-BP, BWO-BP and PCA-BWO-BP, are all greater
than 0.90, indicating that the four models can dig out the intrinsic relationship between
member size, bottom longitudinal reinforcement, hoop reinforcement, concrete strength
and shear load capacity of the reinforced concrete. The PCA-BWO-BP model has a better
prediction impact in the five evaluation indexes of MAE, MAPE, RMSE, RMSP and NS.
Furthermore, the predicted values of the PCA-BWO-BP model established in this research
fit better with the real values, while the relative errors are less and more stable than the
three models of BP, PSO-BP and BWO-BP, as shown in Table 4.

5. Conclusions

This paper adopted the principal component analysis algorithm and black widow
optimization algorithm to optimize the structure of the BP neural network, in which the
principal component analysis method reduces the dimension of the input variables, and
the black widow optimization algorithm optimizes the weights and thresholds of the BP
neural network structure. The shear load capacity of reinforced concrete deep beams was
predicted using the optimal model (PCA-BWO-BP) with the three models of BP, PSO-BP
and BWO-BP after reading about and gathering the shear test data of deep beams from the
literature. The research results show that:

(1) The principal component analysis method reduces the dimensionality of the input
variables, which simplifies the construction of the BP network and increases its
capacity for prediction.

(2) In all evaluation metrics, the BWO-BP model performs better than the BP model,
demonstrating that the black widow optimization algorithm can effectively optimize
the weights and thresholds of the BP neural network, enhance the generalizability
and robustness of the prediction model, and consequently, more accurately predict
the shear load capacity of reinforced concrete deep beams.

(3) The PCA-BWO-BP model outperforms the other three models with higher prediction
accuracy and better stability, with a mean absolute error (MAE), mean absolute per-
centage error (MAPE), root mean square error (RMSE), root mean square percentage
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error (RMSPE) and Nash efficiency coefficient (NS) of 17.169, 5.126, 21.025, 0.379 and
0.989, respectively, in predicting the shear bearing capacity of reinforced concrete
deep beams.

In the future, the PCA-BWO-BP model and the AI model can be coupled to offer
helpful references for the design and assessment of reinforced concrete deep beams.
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Appendix A

wij =



1.1164 −1.0133 0.0938 1.1608 −0.2825 −0.2790 −0.2325 −0.3317 −0.9251
−0.6282 0.2700 −0.0687 0.2311 −0.1077 −1.4890 −0.9998 −0.0699 −0.2337
−0.2921 0.7914 0.0145 0.1172 1.8692 0.2938 0.6718 0.2852 0.1917
−0.6310 −0.3090 −1.2558 −0.0136 0.1735 −0.7180 0.4200 −0.9916 −0.7475
−1.3758 0.0101 −0.4300 −0.2050 0.7086 −0.1948 −0.5478 0.1878 −0.5019
−0.3653 −0.5342 −0.0164 −0.7826 −0.5236 0.4304 0.4301 −0.7966 0.9724
0.4630 0.3346 1.3458 0.2900 −0.7697 1.3190 −0.7394 0.3482 −0.3247
−0.8859 1.9121 −0.6414 −1.4756 0.5403 0.7450 0.1514 0.4701 −0.2145
0.1092 0.8973 0.1657 1.4861 0.4352 0.7159 0.7178 −0.6623 −0.8660
0.5019 −0.6109 −0.3375 −0.8788 0.3579 −0.6337 0.2639 0.4494 −0.1143


(A1)

θj =



−1.8600
2.0788
−1.0869
−0.0781

0.4333
−0.3836

0.7787
1.3838
−0.5352

2.3287


(A2)

vik =
[
0.5841 0.7983 0.4704 0.5506 −0.4609 0.0012 0.5708 −0.7608 −0.4910 0.0556

]
(A3)

ok = [−0.2449] (A4)
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