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Abstract: The ultimate axial bearing capacity (UABC) of a single pile is an important parameter in
pile design. BP neural network (BPNN) has a strong nonlinear mapping ability and can effectively
predict the UABC of a single pile. However, frequent immersion in unstable search results with
local vibration leads BPNN to a less usable solution. The weights and biases of the BPNN model
are optimized using the improved radial movement optimization (IRMO) algorithm in this study,
and a new method named the IRMO-BP neural network (IRMO-BPNN) is proposed to predict the
UABC of a single pile. The IRMO-BPNN model was developed from a database of 196 static load
test (SLT) samples, and model hyper-parameter analysis was carried out to determine the optimal
number of hidden nodes, population size, and the number of iterations. The prediction accuracy and
stability of the IRMO-BPNN model are verified by comparing it with the GA-based ANN model,
ANFIS-GMDH-PSO model, and RBFANN model. The results show that the IRMO-BPNN model
can accurately predict the UABC of a single pile and improves the situation that the BPNN model is
easy to fall into local optimal values and its search results are unstable. The IRMO-BPNN model has
significant advantages over other models.

Keywords: ultimate axial bearing capacity; BP neural network; improved radial movement optimization;
global optimization

1. Introduction

A pile is a foundation form of high bearing capacity, wide applicability, and a long
history of utilization. As infrastructure construction continuously develops, piles are
widely used in high-rise buildings, ports, and bridge engineering. The ultimate axial
bearing capacity (UABC) of a single pile is significant in pile design since it is directly
related to the safety and economy of engineering construction [1]. Over the years, many
scholars have investigated the UABC of single piles using in situ tests [2–4], theoretical
analysis [5–7], and numerical simulation [8,9]. The actual pile–soil interactions are usually
simplified and assumed in the theoretical analysis and numerical simulation methods.
Therefore, their calculation accuracy often cannot satisfy the requirements. The static load
test (SLT) is the most direct and reliable method for determining a pile’s UABC, but it is
time and cost-consuming. As a result, an alternative method for predicting the UABC of a
single pile that can satisfy calculation accuracy with actual pile-soil interactions is required.

As a practical, feasible, and fast method to solve engineering problems, machine
learning provides an approximate solution for predicting the UABC of a single pile and can
consider various influencing factors. The artificial intelligence algorithms used to predict
the UABC of a single pile include, for example, the grey predicted model, the artificial
neural network (ANN), and the support vector machine. Among them, ANN has been
adopted by many scholars due to its strong nonlinear mapping ability and fault tolerance.
Based on the dynamic test data, Chan et al. [10], Lee et al. [11], and Goh [12] developed the
BP neural network (BPNN) to determine the UABC of driven piles. Benali and Nechnech
used ANN to predict the UABC of purely coherent soils under weightlessness [13]. Benali
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et al. combined ANN and principal component analysis and used back-propagation
multilayer perceptron with Bayesian regularization to predict the UABC [14].

However, the traditional ANN has the disadvantages of easily falling into local minima,
having a slow learning rate, slow convergence rate, over-fitting, and poor stability [15,16].
Hence, many scholars combined high-performance optimization algorithms with ANN
to improve its performance. Momeni et al. [17] predicted the UABC of driven piles using
ANN based on a genetic algorithm (GA-based ANN). The findings demonstrated that the
GA-based ANN model is not only a practical and effective tool but also performs better
in terms of accuracy than the conventional ANN model. The most important parameters
discovered by performing a sensitivity analysis on the input variables are the hammer
weight and pile geometrical characteristics. Similarly, Armaghani et al. [18] applied ANN
optimized by particle swarm optimization (PSO) algorithm to predict 132 rock-socketed
piles’ UABC. The coefficient of determination (R2) of the PSO-ANN model is higher than
that of the ANN model. In order to estimate the UABC of driven piles in cohesionless
soils, Moayedi and Jahed Armaghani [16] developed an ANN optimized by the imperialist
competition algorithm (ICA). By comparing the R2, root mean square error (RMSE), and
variance account for (VAF) of the ICA-ANN model and ANN model, it is concluded that
the ICA-ANN model has a faster convergence rate and higher accuracy. For the purpose of
predicting the UABC of driven and drilled piles, Benali et al. [19] created a TLBO-ANN
model using the teaching-learning-based optimization (TLBO) technique. The prediction
accuracy and generalization performance of the TLBO-ANN model are better than the
BPNN model. Among these hybrid algorithms, the global optimization algorithm is used
to enhance prediction accuracy and convergence speed and prevent the ANN model from
entering the local minimum. However, there is a lack of introduction on how ANN avoids
over-fitting and how to improve the search stability, and they were only analyzed in
comparison with ANNs, not with other hybrid algorithms.

The purpose of this article is to introduce the improved radial movement optimiza-
tion (IRMO) [20,21] into the field of pile foundation engineering and combine the IRMO
algorithm with BPNN to establish a new method called IRMO-BP neural network (IRMO-
BPNN) for predicting the UABC of a single pile. The IRMO-BPNN model is developed
based on 196 SLT data and compared with the GA-based ANN model, RBFANN model,
and ANFIS-GMDH-PSO model to verify its superiority. Section 2 introduces the concepts
of the IRMO algorithm and BPNN and analyses the advantages and disadvantages of
both. Section 3 illustrates the synergistic effects of the IRMO algorithm and BPNN and the
implementation of IRMO-BPNN. Section 4 develops the IRMO-BPNN model and conducts
sensitivity analysis on its hyper-parameters based on 196 data sets. Section 5 firstly anal-
yses the prediction results of IRMO-BPNN and its superiority over BPNN, and secondly
compares and discusses the prediction performance of IRMO-BPNN with other hybrid
algorithms. The conclusion of this study is presented in Section 6.

2. IRMO Algorithm and BPNN
2.1. IRMO Algorithm

The improved radial movement optimization (IRMO) is a global optimization al-
gorithm developed based on the radial movement algorithm (RMO) [22]. It benefits
from having a quick convergence rate, a short storage area, a clear data structure, and
strong stability.

The RMO algorithm relies on the continuous generation and updating of particle
positions within the solution range to find the optimum solution. First, the initial particle
groups are randomly generated within the solution range, and the initial optimal position is
determined by comparing the function values of each particle, which is defined as the initial
center. In each subsequent generation, particles are regenerated near the center position.
The contemporary optimal position is the perfect position for each generation, and the
global optimal position is the ideal position for all generations. The center position moves
with the contemporary optimal position and the global optimal position. Once it reaches



Buildings 2023, 13, 1297 3 of 19

the final generation, the solution range converges to a specific point, which is the global
optimal position. Figure 1 is a diagram of the RMO algorithm center position movement.
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The RMO algorithm generates particles iteratively, but excessive reliance on the center
position causes the particles to lose information from earlier generations and produce
random outputs. However, the IRMO algorithm generates pre-position points and deter-
mines whether to update the position information by comparing the function values of
pre-positions with the function values of the previous particles. Moreover, there are two
ways to generate pre-position points; one is dependent on the center position, and the
other is inherited from the previous generation of particle information. How a particle is
generated is determined by two random numbers, p1 and p2. Through the above improve-
ment, the self-feedback of particles can be improved via the IRMO algorithm, allowing the
particle swarm to inherit the superior knowledge of its own particles. While the accuracy
of the result can be guaranteed, the algorithm’s stability can be significantly increased.
Figure 2 shows the flowchart of the IRMO algorithm.

The population generation in the IRMO algorithm iteration process depends on the
value range of the particle variables, and the size of the variable value range is determined
by the inertia weight w. As w increases, the algorithm gets better at global search and worse
at local search. This article employs a basic linear decreasing form of w to balance global
and local searches. The nonlinear decreasing form of w has yet to be explored. The IRMO
algorithm yet has much potential for application in civil engineering and is currently only
used for the calculation of the ultimate bearing capacity of foundation [21], the optimization
search of the critical sliding surface of two-dimensional slope [23], and the prediction of
the UABC of single pile mentioned in this article.

2.2. BPNN

The BPNN [11] is a multilayer feed-forward neural network based on an error back
propagation (BP) algorithm. It is widely used in engineering because of its ability to realize
any nonlinear mapping of input and output [12]. The BPNN is composed of an input layer,
one or more hidden layers, and an output layer; each layer is composed of several nodes
(neurons), and the layers are connected by weights and biases [17].

The BPNN model comprises an input layer, a hidden layer, and an output layer. Each
layer is composed of several nodes (neurons), and the signal is transmitted to the nodes of
the next layer through weight and bias, and then the nonlinear transformation of the signal
is realized through the activation function. Each node goes through a similar process until
the output is generated. The generated output is compared with the target output, and the
error is calculated. If the error does not meet the accuracy requirement, the network will be
back-propagated, modifying the weights and biases to reduce the error until the accuracy
requirement is met. Figure 3 shows a typical BPNN architecture.
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The BPNN can approximate any function and has a strong nonlinear mapping ability;
however, its disadvantages of easily falling into local minima [17] and unstable search
results cannot be ignored. Moreover, a BPNN needs to artificially set parameters such as
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the number of hidden layers, the number of hidden nodes, tolerance, learning rate, and the
maximum number of iterations. The output will have a great discrepancy with the changed
hyper-parameters. Furthermore, considering the sample data provides the network with
all of the knowledge, the representativeness of the sample and the completeness of the
information impact the correctness of the assessment results to a great extent. As a result,
the network can only guarantee its prediction accuracy and generalization ability if it
obtains complete and accurate data.

3. IRMO-BPNN
3.1. The Proposed IRMO-BPNN

With a large amount of data, BPNN on its own can achieve a mapping relationship
of nonlinear functions and hence prediction. However, it is easy to fall into local minima,
slow to converge, and has unstable search results. The IRMO algorithm on its own can
only optimize for specific problems if the fitness function is known. In contrast, when the
IRMO algorithm is combined with BPNN, good predictions can be achieved with only data
available. Moreover, it improves the prediction accuracy, increases the convergence speed,
and ensures the stability of the results while not falling into a local optimum.

Based on the combination of a BPNN and the IRMO algorithm, a new ANN called
IRMO-BPNN is proposed in this article, and it is used to predict the UABC of a single pile.
IRMO-BPNN takes the weights and biases of BPNN as the independent variables of the
IRMO algorithm and the performance function of BPNN as the objective function of the
IRMO algorithm to realize the optimization of the weights and biases of BPNN by the
IRMO algorithm. After the optimization, the optimal weights and biases are assigned to
the BPNN model, and the BPNN model is trained and simulated to obtain the optimal
predicted UABC of a single pile.

If adequate, relevant data is collected, IRMO-BPNN may be utilized to estimate not
just the UABC of a single pile but also the ultimate bearing capacity of pile groups and
foundations. It is important to keep in mind that the sample data must be representative
and thorough, and the data must include both the output and the input factors that have
a significant impact on the output. Although IRMO-BPNN’s prediction performance is
superior to BPNN’s, it still depends on the hyper-parameters. Therefore, when developing
the model, suitable hyper-parameters must be used.

3.2. Implementation Steps of the IRMO-BPNN

The IRMO-BPNN is a combination of the BP neural network and IRMO algorithm,
and its flow chart is shown in Figure 4.

First, a BP neural network needs to be developed. In the first step, as the dataset is
very important for the neural network, a large amount of experimental data needs to be
acquired before the network can be developed. In the second step, the experimental data is
pre-processed to form a dataset, and the dataset is divided into a training set, a validation
set, and a test set. The BP neural network is trained and simulated using the dataset in the
third step, and the prediction output is obtained.

Second, the improved radial movement algorithm is used to optimize the built-in
weights and biases of BPNN. On the one hand, the built-in weights and biases of BPNN
should be used as the particle information of the IRMO algorithm to establish the popu-
lation. The total number M of weights and biases is calculated according to Equation (1),
where I and J are the number of nodes in the input layer and hidden layer, respectively,
and the number of nodes in the output layer is 1. Then, because the weights and biases
are small random nonzero values, the upper Xmax,j and lower Xmin,j limits of variables
(weights and biases) are set to 0.5 and −0.5, as shown in Equations (2) and (3).

M = I × J + J × 1 + I + J (1)

Xmax =
[
0.5 0.5 · · · 0.5

]
1×M (2)
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Xmin =
[
−0.5 −0.5 · · · −0.5

]
1×M (3)

On the other hand, in order to find the optimal weights and biases to increase the
predictive performance of the BPNN, the performance function mean square error (MSE)
of the BPNN is taken as the objective function of the IRMO-BP algorithm. The specific
formula is as follows:

F(·) = 1
L

L

∑
i=1

(yi − ti)
2 (4)

The performance function is obtained by running the BPNN developed above. In the
formula, L is the number of samples, ti is the predicted value of the i-th sample, and yi is
the experimental value of the i-th sample.
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4. Development of an IRMO-BPNN Model
4.1. The Inputs and Outputs of the Model

The UABC of a single pile is the maximum load before the pile reaches the collapse state
under vertical load, or the deformation is not suitable for continuous bearing. Li et al. [24],
Hamed et al. [9], Gu et al. [25], and Chen et al. [26] analyzed the bearing performance and
the influencing factors of a single pile under axial load. The results showed that the factor
affecting the UABC of a single pile includes the geometric size of the pile and the properties
of the soil at the side and tip of the pile.

In this article, pile length L, pile diameter D, the weighted average value (sum) of
the cohesion c and internal friction angle ϕ of the soil around the pile and the ultimate tip
resistance standard value qpk of the pile are selected as the model’s input variables. The
UABC Qu is selected as the output variable of the model.

4.2. Data Collection and Pre-Processing

This article collects data on 196 bored piles in Chenzhou, Hunan Province, including
the physical and mechanical properties of soil, the geometric size of piles, and the static
load test report of piles. Figure 5 shows the indicators and UABC of each pile. The
range of L is from 3.4 to 26.9 m, the range of D is from 0.5 to 1.0 m, the c is from 5.54 to
25.36 kPa, the ϕ is from 20.38 to 31.72◦, the qpk is from 800 to 3700 kPa, and the UABC
is from 3100 to 17,400 kN. The c and ϕ were obtained from the cohesion and the internal
friction angle of the soil layer around the pile by a weighted average of the thicknesses,
respectively. The qpk was obtained by consulting the Technical Code for Building Pile
Foundations (JGJ 94-2008) [27]. The UABC was obtained by static load tests carried out by
different researchers.
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It is noted that this article only collected some data on bored piles in Chenzhou, Hunan,
so the model developed is only applicable to predict the UABC of bored piles in Chenzhou
or with engineering geological conditions similar to those in Chenzhou. If the reader wishes
to predict the UABC of a single pile in other areas or other geological conditions, this can
also be achieved by replacing the data set.

To improve the accuracy of model prediction, the 196 samples collected are processed
as follows:



Buildings 2023, 13, 1297 8 of 19

4.2.1. Outlier Processing

In statistical data analysis, outliers, such as abnormal data, will lead to the incorrect
estimation of parameters and affect the analysis results. Therefore, it is necessary to filter
the outliers in the original data set before analyzing the data. The Mahalanobis distance
method [28] was used to test the outliers. The chi-square statistic with 5 degrees of freedom
and a 0.005 significance index is 16.75 in this study; that is, the samples with Mahalanobis
distance exceeding 16.75 can be determined as outliers. The maximum Mahalanobis
distance in 196 samples is 13.58 according to the calculation results, wherein 13.58 < 16.75,
which indicates that there is no outlier in the data adopted in this study.

4.2.2. Partition of Data Sets

The data is often split into a training set and a testing set for ANNs. As the ANN is
being trained, the built-in weights are adjusted using the training set, and the ultimate
generalization performance of the trained model is assessed using the testing set [13].
However, this dividing method is prone to over-fitting during training. Therefore, this
article uses the cross-validation method [29] to evaluate the performance of the model,
that is, during the training process, the model performance is preliminarily evaluated in
advance by the validation set, and if there is over-fitting, the parameters can be adjusted in
time. In this article, the data were divided into a training set (samples 1 to 116), a validation
set (samples 116 to 156) and a test set (samples 156 to 196) according to the ratio of 3:1:1.
The specific statistics of the data are shown in Table 1.

Table 1. Statistics of the data sets.

Data Set Statistics
Inputs Output

L (m) D (m) c ϕ qpk (kPa) Qu (kN)

Train

Max 25.6 1.0 55.36 31.72 3600 17,400
Min 3.4 0.5 30.54 20.38 800 3100

Average 11.4 0.7 43.12 26.25 2029 8996
StD 4.3 0.2 6.50 2.96 965 2990

Validation

Max 26.4 1.0 55.26 31.35 3600 17,100
Min 3.5 0.5 31.52 20.45 800 3300

Average 11.9 0.7 42.56 26.24 2054 9095
StD 5.1 0.2 6.67 2.83 965 3189

Testing

Max 26.9 1.0 55.25 31.50 3600 17,300
Min 3.9 0.5 31.72 20.43 800 3400

Average 11.9 0.7 43.43 26.45 2047 9040
StD 5.3 0.2 6.94 2.93 967 3139

All

Max 26.9 1.0 55.36 31.72 3600 17,400
Min 3.4 0.5 30.54 2038 800 3100

Average 11.6 0.7 43.07 26.29 2038 9025
StD 4.7 0.2 6.63 2.93 965 3046

4.2.3. Data Normalization

In this study, the data are linearly transformed through min-max normalization [12],
and the original data are mapped into the interval [0,1] to eliminate the dimension of each
variable and speed up the convergence speed.

4.3. Parameter Optimization of the IRMO-BPNN Model

A parametric analysis was carried out to establish the number of hidden layers and
hidden nodes, the population size nop, and the number of iterations g in order to create an
appropriate IRMO-BPNN model to predict the UABC of a single pile.

It has been demonstrated that BPNN can provide precise approximations to any
continuous function with just one hidden layer [12]. Hence, just one hidden layer is
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required. The IRMO-BPNN model with TANSIG and PURELIN activation functions, a
Levenberg–Marquardt training algorithm, and a learning rate of 0.01 was set in advance.
Information on the BPNN hyper-parameters and the effect of the hyper-parameters on the
model can be found in [10] and will not be repeated in this article.

Although some scholars have undertaken extensive studies based on the empirical
formula to determine the hidden nodes, it has not yet been turned into a reasonable and
reliable theory. It is determined in this article using the conventional trial-and-error method,
which costs more to calculate but provides more accurate answers. As shown in Figure 6,
the performance of IRMO-BPNN models with different hidden nodes was assessed through
the statistical parameters of MSE, R2, and mean absolute percentage error (MAPE). These
statistical parameters are determined by Equations (4)–(6).

R2 = 1 − ∑N
i=1(yi − ti)

2

∑N
i=1(yi − y)2 (5)

MAPE =
1
N

I× 100% (6)
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Figure 6. Model performance of different hidden nodes.

Small hidden nodes will lead to underfitting. Large hidden nodes may lead to over-
fitting and increase the training time of the model. As shown in Figure 6, the IRMO-BPNN
model with 11 hidden nodes has the best prediction performance, with an MSE of 0.00036,
R2 of 0.98345, and MAPE of 4.86%.

The number of iterations g and the population size nop must be determined once the
best number of hidden nodes has been chosen. The model with 11 hidden nodes is used to
analyze the effect of g and nop on the model performance. Table 2 shows the performance
of models with different g and nop values, where the calculation formulas of the RMSE
and VAF are shown in Equations (7) and (8).

RMSE =

√
∑N

i=1(yi − ti)
2

N
(7)

VAF =

[
1 − var(y − t)

var(y)

]
× 100 (8)
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Table 2. Performance parameters of models with different g and nop values.

nop g MAPE MSE RMSE R2 VAF

20

20 12.98% 0.00047 0.0217 0.97680 98.91
30 12.63% 0.00047 0.0217 0.97862 99.14
40 10.46% 0.00046 0.0214 0.97913 99.15
50 9.49% 0.00045 0.0212 0.97984 99.24
100 7.91% 0.00041 0.0202 0.98151 99.48

30

20 12.51% 0.00047 0.0217 0.97842 99.08
30 10.36% 0.00046 0.0214 0.97941 99.21
40 8.77% 0.00043 0.0207 0.98048 99.27
50 7.78% 0.00040 0.0200 0.98107 99.31
100 6.81% 0.00039 0.0197 0.98166 99.52

40

20 9.89% 0.00045 0.0212 0.97875 99.15
30 8.64% 0.00043 0.0207 0.98012 99.24
40 7.04% 0.00039 0.0197 0.98111 99.38
50 6.30% 0.00038 0.0195 0.98145 99.46
100 5.69% 0.00037 0.0192 0.98194 99.56

50

20 8.44% 0.00042 0.0205 0.97974 99.23
30 6.81% 0.00039 0.0197 0.98060 99.28
40 6.21% 0.00037 0.0192 0.98123 99.46
50 5.12% 0.00036 0.0190 0.98159 99.50
100 4.86% 0.00036 0.0190 0.98345 99.73

When nop and g are small, not enough position points are captured, resulting in the
model not finding the global optimum. As nop and g rise, the R and VAF, which measure
the correlation between the model’s predicted and desired outputs, increase while the MSE,
RMSE, and MAPE, which measure the model’s error performance, decrease. When nop is
50 and g is 100, the model has reached a steady state, with a MAPE of 4.86%, an MSE of
0.00036, an RMSE of 0.0190, an R2 of 0.98345, and a VAF of 99.73.

In conclusion, as nop and g increase, the smaller the prediction error of the model, the
higher the prediction accuracy, and the faster the convergence rate (as shown in Figure 7).
The performance of a model with more g is better when the multiplication of the nop and g
is the same, which means that the total number of particles produced is equal. For example,
the model with a nop of 40 and g of 50 outperforms the model with a nop of 50 and g of 40.
Thus, it is more effective to increase the g of the model to improve the model’s performance.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 20 
 

Table 2. Performance parameters of models with different g and nop values. 

nop g MAPE MSE RMSE R2 VAF 

20 

20 12.98% 0.00047 0.0217 0.97680 98.91 

30 12.63% 0.00047 0.0217 0.97862 99.14 

40 10.46% 0.00046 0.0214 0.97913 99.15 

50 9.49% 0.00045 0.0212 0.97984 99.24 

100 7.91% 0.00041 0.0202 0.98151 99.48 

30 

20 12.51% 0.00047 0.0217 0.97842 99.08 

30 10.36% 0.00046 0.0214 0.97941 99.21 

40 8.77% 0.00043 0.0207 0.98048 99.27 

50 7.78% 0.00040 0.0200 0.98107 99.31 

100 6.81% 0.00039 0.0197 0.98166 99.52 

40 

20 9.89% 0.00045 0.0212 0.97875 99.15 

30 8.64% 0.00043 0.0207 0.98012 99.24 

40 7.04% 0.00039 0.0197 0.98111 99.38 

50 6.30% 0.00038 0.0195 0.98145 99.46 

100 5.69% 0.00037 0.0192 0.98194 99.56 

50 

20 8.44% 0.00042 0.0205 0.97974 99.23 

30 6.81% 0.00039 0.0197 0.98060 99.28 

40 6.21% 0.00037 0.0192 0.98123 99.46 

50 5.12% 0.00036 0.0190 0.98159 99.50 

100 4.86% 0.00036 0.0190 0.98345 99.73 

In conclusion, as nop and g increase, the smaller the prediction error of the model, 

the higher the prediction accuracy, and the faster the convergence rate (as shown in Fig-

ure 7). The performance of a model with more g is better when the multiplication of the 

nop and g is the same, which means that the total number of particles produced is equal. 

For example, the model with a nop of 40 and g of 50 outperforms the model with a nop 

of 50 and g of 40. Thus, it is more effective to increase the g of the model to improve the 

model’s performance. 

To sum up, to improve the model's prediction performance and increase the con-

vergence speed, this article chose g to be 100, nop to be 50, and the number of hidden 

nodes to be 11. 

0 10 20 30 40 50 60 70 80 90 100
0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

M
S

E

Iterations/epoch

 nop = 20  nop = 30

 nop = 40  nop = 50

 
0 10 20 30 40 50 60 70 80 90 100

0.00035

0.00040

0.00045

0.00050

0.00055

M
S

E

Iterations/epoch

 g=20

 g=30

 g=40

 g=50

 g=100

 
(a) (b) 

Figure 7. (a) The impact of the nop on model performance; (b) The impact of the g on model per-
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Figure 7. (a) The impact of the nop on model performance; (b) The impact of the g on model performance.

To sum up, to improve the model’s prediction performance and increase the convergence
speed, this article chose g to be 100, nop to be 50, and the number of hidden nodes to be 11.
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5. Comparison and Analysis
5.1. Performance of the IRMO-BPNN Model

In order to present the superiority of IRMO-BPNN, a BPNN model and an IRMO-
BPNN model are developed in this article, where the data set and the hyper-parameters
involved in the BPNN model are taken in line with the IRMO-BPNN model. The iteration
process of the BPNN model and the BPNN model optimized by the IRMO algorithm is
shown in Figure 8. It can be seen that the MSEs of the training set, validation set, and
testing set of the two models decrease continuously without over-fitting. Moreover, the
BPNN model optimized by the IRMO algorithm is faster to converge, with a prediction
accuracy of 10−3 after only 8 iterations.
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Figure 8. (a) Iteration process of the BPNN model; (b) iteration process of the BPNN model optimized
by the IRMO algorithm.

A comparison between the predicted value of the two models and the experimental
value Qu of the UABC of a single pile is shown in Figure 9. For the majority of the samples,
the BPNN model’s predicted values were near to the experimental values, but in particular
samples, the relative error between the predicted and experimental values might reach
roughly 20%. The R2 between the predicted and experimental values of the data set reached
0.96, as shown in Figure 10. In contrast, the predicted values of the IRMO-BPNN model
overlap almost exactly with the experimental values, with a maximum relative error of
7.16% and a mean relative error of 4.86%, and an R2 of 0.98345 for its data set (as shown in
Figure 11). In summary of the analysis above, the IRMO-BPNN model outperforms the
BPNN model regarding prediction accuracy and convergence speed.
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Figure 9. Comparison between the experimental values and predicted values.
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Figure 10. Determination coefficient of the BPNN data sets. Figure 10. Determination coefficient of the BPNN data sets.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 20 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Training:R2=0.98911

 Data

 Y=T

 Fit

O
u

tp
u

t 
~=

 0
.9

4×
T

ar
g

et
 +

 0
.0

22

Target

Validation:R2=0.98277

 Data

 Fit

 Y=T

O
u

tp
u

t 
~=

 1
×T

ar
g

et
 +

 −
0.

00
98

Target

Test:R2=0.97030

 Data

 Fit

 Y=T

O
u

tp
u

t 
~=

 1
×T

ar
g

et
 +

 −
0.

00
16

Target

All:R2=0.98345

 Data

 Fit

 Y=T

O
u

tp
u

t 
~=

 0
.9

8×
T

ar
g

et
 +

 0
.0

09
3

Target  

Figure 11. Determination coefficient of the IRMO-BPNN data sets. 

The IRMO-BPNN model with a single hidden layer, TANSIG and PURELIN transfer 

functions, a learning rate of 0.01, nop of 50, g of 100, and the number of hidden nodes of 

11 was repeated 5 times, and the change curve of the MSE during its operation is shown 

in Figure 12. 

0 10 20 30 40 50 60 70 80 90 100

0.00035

0.00040

0.00045

0.00050

0.00055

0.00060

M
S

E

Iterations /epoch

 Operation 1  Operation 2  Operation 3  Operation 4  Operation 5

 

Figure 12. Change curve of the MSE during iteration. 

Overall, the MSE decreases in a "step-by-step" manner. At the beginning of the iter-

ation, the descent rate is fast. As the iteration continues, the search range continues to 

shrink, and the MSE decline rate gradually decreases. Finally, around the 50th genera-

tion, the global optimum is searched and the MSE tends to be stable. Moreover, it can be 

seen from the Figure 12 that the best MSE obtained by operating the model with the 

Figure 11. Determination coefficient of the IRMO-BPNN data sets.



Buildings 2023, 13, 1297 13 of 19

The IRMO-BPNN model with a single hidden layer, TANSIG and PURELIN transfer
functions, a learning rate of 0.01, nop of 50, g of 100, and the number of hidden nodes of 11
was repeated 5 times, and the change curve of the MSE during its operation is shown in
Figure 12.
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Overall, the MSE decreases in a “step-by-step” manner. At the beginning of the
iteration, the descent rate is fast. As the iteration continues, the search range continues to
shrink, and the MSE decline rate gradually decreases. Finally, around the 50th generation,
the global optimum is searched and the MSE tends to be stable. Moreover, it can be seen
from the Figure 12 that the best MSE obtained by operating the model with the same
parameters five times is roughly the same, indicating that the IRMO-BPNN model has
good convergence and stability in the process of global optimization.

5.2. Evaluation and Comparison

In order to further verify the performance of the IRMO-BPNN model, this article
will use the model to train and predict the data in the three pieces of literature [17,30,31].
Comparisons are made between the prediction outputs and those obtained using the GA-
based ANN model, RBFANN model, and ANFIS-GMDH-PSO model, respectively. The
relevant information from the data used in the comparison process is listed in Table 3.
Six statistical parameters, MSE, R2, RMSE, VAF, Error Mean, and Error StD, were selected to
evaluate the model. The specific calculation formulas of the relevant statistical parameters
are shown in Equations (4), (5), and (7)–(10), where Ei is the error value between the
predicted value and the true value.

Error Mean =
∑N

i=1(yi−ti)

N
(9)

Error StD =

√
∑N

i=1
(
Ei − Ei

)
N − 1

(10)

Table 3. Data sets used for model comparison.

Data Set
Cases

Total Training Testing

Data set 1 [17] 50 40 10
Data set 2 [30] 100 65 35
Data set 3 [31] 72 50 22
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5.2.1. Comparison with GA-Based ANN Model

Both the GA-based ANN and IRMO-BPNN use global optimization algorithms to
optimize the weights and thresholds of a traditional ANN or BPNN, but they use different
global optimization algorithms. Global optimization algorithms continuously generate and
update individuals within a specific search scope and eventually find the global optimal or
approximately optimal solution through continuous iterations. The GA algorithm produces
new individuals by mating them in pairs, whereas the IRMO algorithm produces them
randomly from a central location. Figures 13 and 14 display the prediction outputs and
errors of the IRMO-BPNN model and GA-based ANN model trained on data set 1. Table 4
contains a list of the two models’ performances. As can be seen, the IRMO-BPNN model’s
predicted values are closer to the experimental values, and the model’s performance
parameters show its superior prediction. Differences in the way individuals are produced
may explain this result.
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Table 4. Performance of the GA-based ANN model and IRMO-BPNN model.

Model Data Set R2 MSE RMSE VAF Error Mean Error StD

GA- based
ANN

Training set 0.9600 0.0115 0.1072 - * - * - *
Testing set 0.9900 0.0020 0.0447 98.88 21 84

IRMO-BPNN
Training set 0.9948 0.0004 0.0207 99.83 −2 68
Testing set 0.9896 0.0006 0.0236 99.72 8 81

* no available data.
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5.2.2. Comparison with the RBFANN Model

The RBFANN is an ANN that has a radial basis function of the activation function.
It is a local approximation network that trains more quickly than an ANN and avoids
falling into local optima. The prediction results and errors of the IRMO-BPANN model and
RBFANN model trained on data set 2 are shown in Figures 15 and 16. Table 5 shows the
performance of the two models.
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Table 5. Performance of the RBFANN model and IRMO-BPNN model.

Model Data Set R2 MSE RMSE VAF Error Mean Error StD

RBFANN
Training set 0.9976 208444 457 - * 0 460
Testing set 0.9785 2045084 1430 97.89 −9 1451

IRMO-BPNN
Training set 0.9992 72546 269 99.91 −29 270
Testing set 0.9940 553194 744 99.38 31 754

* no available data.
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Overall, the predicted values of the two models are in good agreement with the
experimental values. Nevertheless, the integrated IRMO-BPNN model resulted in fewer
prediction errors than the single RBFANN model, especially for samples with large UABC
(samples 12 and 34). Further evidence that a hybrid method outperforms the single ANN in
terms of prediction performance comes from the fact that the R2 of the hybrid IRMO-BPNN
model is 0.0155 larger than that of the single RBFANN model, and the MSE is almost 1/4 of
that of the RBFANN model.

5.2.3. Comparison with the ANFIS-GMDH-PSO Model

The ANFIS-GMDH-PSO model is an integration of the ANFIS, GMDH, and PSO
algorithms, which firstly combines the adaptive-neuro-fuzzy inference system (ANFIS)
with the group method of data handling (GMDH), and then optimizes the ANFIS-GMDH
with the PSO algorithm. The prediction results and errors of the IRMO-BPNN model
and ANFIS-GMDH-PSO model trained on data set 3 are shown in Figures 17 and 18, and
the performance of each is shown in Table 6. It can be noted that the predicted values of
both models match the experimental values well, and some samples of the IRMO-BPNN
model even have better-predicted values and performance parameters than those of the
ANFIS-GMDH-PSO model. This suggests that for small-scale samples, the optimization
performance of complex hybrid algorithms is not fully explored.
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IRMO-BPNN model.

In summary, the predictive performance of the IRMO-BPNN model is superior to that
of the GA-based ANN model, the RBFANN model, and the ANFIS-GMDH-PSO model in
terms of prediction accuracy. When predicting individual samples with large UABC, the
IRMO-BPNN model produces fewer errors, showing great superiority.
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Table 6. Performance of the ANFIS-GMDH-PSO model and IRMO-BPNN model.

Model Data Set R2 MSE RMSE VAF Error Mean Error StD

ANFIS-
GMDH-PSO

Training set 0.8836 0.0020 0.0480 - * −0.0004 0.0480
Testing set 0.9216 0.0050 0.0690 89.48 −0.0210 0.0670

IRMO-BPNN
Training set 0.9868 0.0003 0.0162 98.68 0.0062 0.0151
Testing set 0.9801 0.0009 0.0298 97.96 −0.0057 0.0299

* no available data.

6. Conclusions

Based on a combination of the IRMO algorithm and a BPNN, a new network called
IRMO-BPNN was proposed to solve the problems of BPNN prone to local optimal values,
over-fitting, and unstable search results. After data processing and parameter optimization,
the IRMO-BPNN model for predicting the UABC of a single pile was developed and
compared with the GA-based ANN model, RBFANN model, and ANFIS-GMDH-PSO
model. The following conclusions can be obtained:

(1) Using a trial-and-error method, the optimal number of hidden nodes is 11 in this
study. Hyper-parameters contribute to the IRMO-BPNN model being more accu-
rate and with less prediction error as the population size and number of iterations
grow. Additionally, increasing the model’s iterations is more effective in enhancing
model performance.

(2) The IRMO-BPNN model has good performance for predicting the UABC of a single
pile. The model did not overfit in the iteration process, and the predicted value of the
model is very close to the experimental value. The MAPE of the model is 4.86%, and
the R2 of the training, verification, and testing sets are 0.98911, 0.98277, and 0.97030,
respectively. During the iterative process, the MSE of the model decreases to stabilize
gradually, and the results obtained from multiple runs are roughly the same, which
indicates the great global optimization ability and search stability of the model.

(3) The hybrid algorithm has been utilized to improve BPNN’s prediction performance.
Compared to other hybrid algorithms, the IRMO-BPNN has a faster convergence rate, a
higher prediction accuracy, and greater stability owing to its distinctive data structure.

The feasibility and superiority of IRMO-BPNN in predicting the UABC of a single
pile are verified in this article. However, the IRMO-BPNN model established in this article
still has geographical limitations and contains fewer data. Thus, the data set is being
continuously enlarged and updated for further studies.
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