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Abstract: The rapid growth of traffic load and volume has put forward higher requirements for
road durability. To extend the service life of roads, this work investigated the feasibility of using
polyolefin elastomers with a two-phase molecular structure to simultaneously improve the high
and low-temperature performance of asphalt. The characteristics of the polyolefin modifier were
evaluated by differential scanning calorimetry first. Following evaluation, the storage stability, work-
ability, and rheological properties of modified polyolefin-modified asphalt were measured through
softening point difference, rotary viscosity, dynamic shear rheometer, and bending beam rheome-
ter. Additionally, the engineering performance of modified asphalt mixtures was also investigated
through Marshall stability, wheel-tracking, and three points bending experiments. The results show
that polyolefin has two glass transition points which facilitate the simultaneous improvement of
the high and low-temperature properties of asphalt. Meanwhile, no concerns are found about the
storage stability and workability of polyolefin-modified asphalt. Furthermore, the results of rheo-
logical properties indicate that polyolefin can significantly enhance the deformation resistance at
high-temperature and cracking resistance at low-temperature of asphalt binders. While the fatigue
performance of the polyolefin-modified asphalt is slightly reduced, the residual Marshall stability,
dynamic stability, and ultimate tensile strain of the asphalt mixture containing 8% polyolefin are
1.05 times, 1.31 times, and 1.17 times those of the control sample, respectively. The results of infrared
spectroscopy demonstrate that there is no chemical reaction between the polyolefin-modified and
the virgin asphalt. The improvement of polyolefin on asphalt performance can be explained by the
existence of both “rigid” and “flexible” structures in polyolefin.

Keywords: modified asphalt; polyolefin elastomer; performance characterization; modification
mechanism

1. Introduction

Transportation is a basic, leading, and strategic industry of the national economy.
The favorable economic situation has prompted the rapid development of the highway
industry in China since the beginning of the new century [1]. By the end of 2021, the total
mileage of highways in China reached 5.28 million km, and the total mileage of high-grade
highways exceeded 160,000 km [2]. Asphalt pavement has been extensively employed in
high-grade highways due to its advantages, including comfortable driving, skid resistance,
wear resistance, and easy maintenance [3,4]. However, asphalt materials are susceptible
to aging due to long-term exposure to coupled environments such as light, heat, oxygen,
and water during service, resulting in the deterioration of pavement performance [5,6].
Additionally, modern traffic with large flow, heavy load, and vehicle channelization has
greatly shortened the lifespan of asphalt pavement [7–9]. To meet the increasing traffic
demand, polymer-modified asphalt technology has been proposed and has become a
productive method to enhance the durability of asphalt pavement [10,11].
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Polymers commonly applied in asphalt modification include polyethylene (PE) [12,13],
polypropylene (PP) [14], polyethylene terephthalate (PET) [15,16], polyurethane (PU) [17],
styrene butadiene styrene (SBS) [18], etc. Plastic wastes made of PP and PE are common in
daily life, and their application to asphalt modification has a significant cost advantage and
economic benefits [19]. However, both PP and PE are non-polar polymers, which have poor
compatibility with asphalt [20]. PET and PU as asphalt modifiers have been hot research
topics in recent years. However, the anti-cracking properties of PET or PU-modified asphalt
cannot always be guaranteed effectively [21]. Given the above issue, researchers began
to explore polymer modifiers with both rigid and flexible structures in their molecular
composition. The special two-phase molecular structure gives modifiers the ability to
improve the high and low-temperature properties of asphalt concurrently [22]. SBS, as a
typical block copolymer, is representative of this kind of polymer and has become one of
the most mature asphalt modifiers in highway engineering [23].

However, Cao et al. found that SBS molecular structure contains unsaturated double
bonds, which are easy to break and oxidize under the action of ultraviolet light and high
temperature, leading to the deterioration of asphalt pavement performance [22,24,25].
Therefore, some researchers use montmorillonite with SBS to compound modified asphalt,
which enhances the anti-aging ability of SBS-modified asphalt to some extent [26]. However,
the results also revealed that the above inorganic material was not ideally compatible with
asphalt. Meanwhile, the expensive cost makes it difficult to popularize this method on a
large scale. Therefore, there is still room for asphalt modifiers to be improved. Polyolefin
elastomer is a polymer material made of ethylene and octene by in situ polymerization
with metallocene as the catalyst, which usually has the dual characteristics of plastic and
rubber [27]. Polyolefin elastomers are very similar to SBS in terms of molecular structure.
They can also strengthen the high and low-temperature behavior of asphalt simultaneously.
In addition, polyolefin does not have unsaturated bonds and few tertiary carbon atoms,
which makes their heat resistant oxygen aging and ultraviolet aging ability particularly
outstanding [28].

Therefore, asphalt modifiers to cope with modern traffic still have more room for
development. To face the research gap, the primary objective of the research is to further
promote the development of high-performance asphalt pavement by investigating the
performance and improvement mechanism of polyolefin elastomer-modified asphalt. For
this goal, modified asphalt binders with different polyolefin contents were prepared by
the melting blending method first. Next, the rheological properties of modified asphalt
were studied, along with storage stability and workability. Additionally, the engineering
performance of modified asphalt mixtures was also determined through Marshall stability,
wheel-tracking, and three points bending experiments. In the end, the enhancement mech-
anism of polyolefin elastomers on asphalt properties was verified by infrared spectroscopy
and differential scanning calorimetry. The finding of this work can provide a novel strategy
for improving the durability of asphalt pavement.

2. Materials and Methods
2.1. Virgin Asphalt, Aggregate, and Polyolefin Elastomer

The virgin asphalt selected in this research is 70# petroleum asphalt. The performance
parameters of virgin asphalt were measured based on JTG E20-2011 [29], and the values
are listed in Table 1. The aggregate used for the asphalt mixture is basalt purchased from
a stone factory in Jingshan City, Hubei Province, and its physical indexes are all in line
with the application requirements. Polyolefin 8003 was purchased from Dow Chemical
Company, Beijing, China. Its performance parameters were measured with reference to
ASTM standards, and the values are displayed in Table 2. All parameters of raw materials
were tested three times in parallel.
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Table 1. The basic parameters of virgin asphalt.

Items Results Units Standard (JTG E20-2011 [29])

Penetration 67 0.1 mm T 0604
Ductility >100 cm T 0605

Softening point 49.7 ◦C T 0606
Density 1.024 g/cm3 T 0603

Brittle point −11.0 ◦C T 0613

Table 2. The performance parameters of polyolefin elastomer.

Items Values Units Standard

Melt flow rate 1.1 g/10 min ASTM D1238-04 [30]
Tensile strength 18.2 MPa ASTM D638-14 [31]

Flexural modulus 33.7 MPa ASTM D6272-17 [32]
Hardness 84 - ASTM D2240-03 [33]
Density 0.902 g/cm3 ASTM D792-00 [34]

2.2. Sample Preparation
2.2.1. Modified Asphalt Binders

The polyolefin elastomer-modified asphalt binders were prepared by the melt blending
method. The specific steps follow. First, the polyolefin elastomer was heated to 120 ◦C
for 30 min to remove water first. Second, the polyolefins of 2%, 4%, 6%, and 8% of the
asphalt mass were added into the molten virgin asphalt at 170 ◦C. After the polyolefin
elastomers were completely immersed into the asphalt, the speed of the shear machine was
set at 6000 r/min for continuous shear for 1 h to obtain polyolefin modified binders. The
modified asphalt samples were named P-0, P-2, P-4, P-6, and P-8 according to the content
of polyolefin elastomer.

2.2.2. Modified Asphalt Mixtures

The AC-13 polyolefin modified asphalt mixtures were prepared regarding the Marshall
design method in this work. The gradation composition of AC-13 is listed in Table 3. The
ratio of asphalt to aggregate was set at 4.5% according to the preliminary experiments. The
modified asphalt mixtures are named AM-0, AM-2, AM-4, AM-6, and AM-8 according to
the content of polyolefin.

Table 3. Sieve passage rate of asphalt mixture.

Sieve Size (mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing ratio (%) 100 96.1 74.3 43.5 26.6 21.1 17.4 13.6 10.2 5.9

2.3. Measurement and Characterization

The glass transition temperature of polyolefin elastomer was determined by differen-
tial scanning calorimetry (DSC). The heating rates and cooling rates were set to 10 ◦C/min.
Nitrogen as protective gas was continuously swept at a rate of 50 mL/min. Two cycles were
performed for each experiment: the first cycle was used to eliminate the thermal history of
the sample; the result of the second cycle was used for analysis.

The storage stability of polymer modified asphalt should receive attention since it will
directly affect the durability of asphalt pavement. Softening point difference (SPD) tests
were performed in this work to evaluate the storage stability of polyolefin modified asphalt.
Three repeated tests were carried out on each sample to ensure the reliability of the results.

The workability of polyolefin-modified asphalt with different dosages was character-
ized through rotary viscosity tests, which were carried out at five different temperatures
including 120 ◦C, 135 ◦C, 150 ◦C, 165 ◦C and 180 ◦C. Three parallel experiments were
conducted for each sample at each test temperature.
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A dynamic shear rheometer was used to measure the rheological properties of the
modified binders at high temperatures. The experimental temperature was set in the range
of 46~70 ◦C with 6 ◦C intervals. The complex modulus and phase angle was determined
through high-temperature scanning experiments using a plate with a diameter of 25 mm. In
addition, the temperature of the fatigue performance test was set in the range of 16~34 ◦C
with 3 ◦C as the interval. The diameter of the plate used was 8 mm. The angular frequency
and strain values were set at 10 rad/s and 12%, respectively. Each sample was tested once
because of the high reproducibility of DSR on rheological properties of asphalt.

The low-temperature behavior of modified binders with different polyolefin contents
was determined by the bending beam rheometer (BBR) experiment. The test was carried
out at −12 ◦C. In addition, three parallel experiments were conducted on each specimen to
ensure experimental accuracy.

Residual Marshall stability (RMS) was employed to estimate the moisture stability
of polyolefin-modified asphalt mixture; the wheel-tracking experiment was employed to
evaluate the high-temperature stability of the asphalt mixture; and the three points bending
experiment was performed to determine the anti-cracking of the asphalt mixture under
cold conditions. The above experiments were performed according to JTG E20 (2011).
Three replicate experiments were conducted for each sample to ensure the reliability of
the results.

The functional group information of modified asphalt was tested by infrared spec-
troscopy to confirm whether chemical reactions occurred between polyolefin elastomer and
virgin asphalt. The samples were prepared by the potassium bromide tableting method.
The wave number scan range was set as 4000~400 cm−1. The baseline correction and peak
identification were achieved through the OMMIC software. In addition, repeat experiments
were performed on all samples.

2.4. Research Plan

The research plan of the work is summarized in Figure 1.
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3. Results and Discussion
3.1. Characteristics of Polyolefin Elastomer

The glass transition temperature is the lowest temperature of polymer chain segment
movement. The more flexible the molecular chain is, the lower the glass transition tempera-
ture is. The more rigid the molecular chain is, the higher the glass transition temperature
is [35]. The DSC curve of polyolefin elastomer is shown in Figure 2.

Buildings 2023, 13, x FOR PEER REVIEW 6 of 16 
 

3. Results and Discussion 
3.1. Characteristics of Polyolefin Elastomer 

The glass transition temperature is the lowest temperature of polymer chain segment 
movement. The more flexible the molecular chain is, the lower the glass transition tem-
perature is. The more rigid the molecular chain is, the higher the glass transition temper-
ature is [35]. The DSC curve of polyolefin elastomer is shown in Figure 2. 

 
Figure 2. DSC curve of polyolefin elastomers. 

Two glass transition points can be observed from the DSC curve of polyolefin elasto-
mer in Figure 2 according to the isometric method. This transition occurs because poly-
olefin is a copolymer of ethylene and octene and has the properties of both plastic and 
rubber. Figure 2 shows that the first glass transition temperature of polyolefin is around 
−43.7 °C, which can be attributed to the excellent flexibility of uncrystallized ethylene and 
octene segments in polyolefin at low temperatures, very similar to rubber. The second 
glass transition point of polyolefin elastomer is around 43.1 °C, which is related to the 
crystalline vinyl plastic segment in polyolefin. In conclusion, the presence of glass transi-
tion points was detected for polyolefins in both the high and low-temperature intervals, 
suggesting that polyolefin has the capacity to enhance the high-temperature and low-tem-
perature performance of original asphalt concurrently. 

3.2. Storage Stability 
Qualified storage stability is the prerequisite for the successful application of modi-

fied asphalt, which also guarantees improving the durability of pavement. In general, the 
smaller the result of the softening point difference test, the better the storage stability of 
modified asphalt. It can be seen from Figure 3 that the softening point difference of mod-
ified asphalt gradually increases with the increase of polyolefin content. The softening 
point difference of modified asphalt is 0.2, 0.5, 0.7, 1.3, and 1.5 when polyolefin content is 
2%, 4%, 6%, and 8%, respectively. In other words, the storage stability of polyolefin-mod-
ified asphalt prepared in this work meets the requirements of the industry (SPD < 2.5 °C) 
because polymer-based modifiers can generally be dissolved in molten asphalt to develop 
a stable state, especially at high shear rates and temperatures. Additionally, the density of 
the polyolefin modifier selected in this work is very close to that of base asphalt, which 
can prevent the settlement of the modifier in the asphalt. Furthermore, polyolefin elasto-
mers catalyzed by metallocene are more polar than ordinary polyethylene or polypropyl-
ene, which also enhance compatibility with virgin asphalt. From the perspective of storage 
stability, it is feasible to use polyolefin as a modifier to improve asphalt quality and 

Figure 2. DSC curve of polyolefin elastomers.

Two glass transition points can be observed from the DSC curve of polyolefin elastomer
in Figure 2 according to the isometric method. This transition occurs because polyolefin
is a copolymer of ethylene and octene and has the properties of both plastic and rubber.
Figure 2 shows that the first glass transition temperature of polyolefin is around −43.7 ◦C,
which can be attributed to the excellent flexibility of uncrystallized ethylene and octene
segments in polyolefin at low temperatures, very similar to rubber. The second glass
transition point of polyolefin elastomer is around 43.1 ◦C, which is related to the crystalline
vinyl plastic segment in polyolefin. In conclusion, the presence of glass transition points
was detected for polyolefins in both the high and low-temperature intervals, suggesting
that polyolefin has the capacity to enhance the high-temperature and low-temperature
performance of original asphalt concurrently.

3.2. Storage Stability

Qualified storage stability is the prerequisite for the successful application of modified
asphalt, which also guarantees improving the durability of pavement. In general, the
smaller the result of the softening point difference test, the better the storage stability of
modified asphalt. It can be seen from Figure 3 that the softening point difference of modified
asphalt gradually increases with the increase of polyolefin content. The softening point
difference of modified asphalt is 0.2, 0.5, 0.7, 1.3, and 1.5 when polyolefin content is 2%,
4%, 6%, and 8%, respectively. In other words, the storage stability of polyolefin-modified
asphalt prepared in this work meets the requirements of the industry (SPD < 2.5 ◦C) because
polymer-based modifiers can generally be dissolved in molten asphalt to develop a stable
state, especially at high shear rates and temperatures. Additionally, the density of the
polyolefin modifier selected in this work is very close to that of base asphalt, which can
prevent the settlement of the modifier in the asphalt. Furthermore, polyolefin elastomers
catalyzed by metallocene are more polar than ordinary polyethylene or polypropylene,
which also enhance compatibility with virgin asphalt. From the perspective of storage
stability, it is feasible to use polyolefin as a modifier to improve asphalt quality and prolong
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the service life of asphalt pavement. However, the specific amount of polyolefin in asphalt
needs to be further determined based on other experiments.
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3.3. Workability of Modified Asphalt

The viscosity of asphalt modified with different polyolefin contents at different tem-
peratures is shown in Figure 4. Three parallel experiments were conducted for each sample
at each test temperature, and the experimental error was within acceptable limits. Figure 4
indicates that the viscosity of bitumen decreases significantly as the test temperature in-
creases, which can be attributed to the fact that asphalt is typically a temperature-sensitive
material. On the other hand, it can be found that the polyolefin elastomer can significantly
increase the viscosity of asphalt at the same temperature. Specifically, the viscosity of
modified bitumen with 2%, 4%, 6%, and 8% polyolefin is 1.17, 1.31, 1.66, and 1.93 times that
of the base asphalt at 180 ◦C, respectively. This result can be explained by the melting of
the polyolefin increasing the consistency of asphalt, which can prevent asphalt pavements
from suffering from rutting during the hot season. In addition, to control the construction
performance of the modified asphalt, the technical requirement that the viscosity of the
modified asphalt shall not exceed 3 Pa.s at 135 ◦C is put forward in the SHRP asphalt
binder performance specification. Figure 4 shows that, although the polyolefin content
designed in this work increases the viscosity of asphalt, it does not damage the workability
of asphalt. It is expected to continue to increase the content of polyolefin to improve the
binding strength of modified asphalt without destroying other properties of asphalt.
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3.4. Rheological Properties
3.4.1. Complex Modulus and Phase Angle

Asphalt as a typical viscoelastic material has both elastic and viscous characteristics,
which can be represented by its complex modulus and phase angle. Asphalt with a
higher complex modulus has a higher resistance to permanent deformation. Meanwhile,
asphalts with higher phase angles are at less risk of fatigue cracking [36]. In this study, the
complex modulus and phase angles of asphalt with different polyolefin contents at high
temperatures are presented in Figure 5. Many previous studies have shown that DSR has
strong repeatability in testing asphalt rheological indexes. Therefore, only one standard
test was performed on each sample.
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Figure 5a indicates that the complex modulus of asphalt decreases sharply with
increasing temperature, meaning that the high-temperature environment weakens the
deformation resistance of asphalt. Consequently, asphalt roads are more prone to rutting in
the summer. Correspondingly, Figure 5b illustrates that phase angle is positively related to
ambient temperature, meaning that the asphalt gradually changes from elastic to viscous
as the temperature rises. Therefore, asphalt pavement has less risk of fatigue cracking in
the summer.

Additionally, Figure 5 shows that the introduction of polyolefin improves the complex
modulus of asphalt but weakens the phase angle of asphalt. In other words, the resistance
of the modified binders to permanent deformation is improved. For example, the complex
modulus values of the modified binder with 8% polyolefin at 46 ◦C, 52 ◦C, 58 ◦C, 64 ◦C,
and 70 ◦C are 17,400 Pa, 7739 Pa, 3539 Pa, 1613 Pa, and 685 Pa higher than that of the
virgin asphalt, respectively. This difference may be caused by the crosslinking of polyolefin
elastomers in virgin asphalt. In short, the introduction of polyolefin changes asphalt from
viscous to elastic, which helps improve the asphalt’s resistance to deformation at high
temperatures.

3.4.2. Rutting Factor

The rutting resistance of asphalt at high temperatures is usually evaluated by the
rutting factor [37]. Generally, the greater the rutting factor is, the better the rutting resistance
of asphalt is [38]. Figure 6 indicates that the rutting factor of all modified binders decreases
with increasing temperature, suggesting the shift of asphalt from the rubbery to the viscous
state. Additionally, all modified binders’ rutting coefficient increases with the increase of
polyolefin dosage, suggesting that the resistance to rutting deformation of asphalt modified
by polyolefin has been greatly improved. This change is caused by the hardening effect of
the rigid structures of polyolefin molecular chain on virgin asphalt.
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The rutting factor of asphalt should be not less than 1000 Pascal when grading by
rutting critical temperature. The rutting factor values of all modified binders in this work
at 64 ◦C and 70 ◦C are displayed in Table 4. Table 4 demonstrates that the rutting factor
of all samples exceeds 1.0 kPa at 64 ◦C, but when the experimental temperature is 70 ◦C,
only the rutting factors of P-6 and P-8 meet the requirement. This result confirms that the
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elastic properties of polyolefin can significantly strengthen the high-temperature behavior
of asphalt. Nevertheless, the specific content of polyolefin in asphalt needs to be further
determined based on fatigue and low-temperature properties.

Table 4. Rutting factor of all modified asphalt at 64 ◦C and 70 ◦C.

Samples
Results/Pa

64 ◦C 70 ◦C

P-0 1226.66 602.57
P-2 1509.61 819.44
P-4 1910.71 957.66
P-6 2315.95 1101.65
P-8 2844.55 1288.70

3.4.3. Fatigue Factor

The fatigue factor is usually employed to characterize the fatigue cracking resistance
of asphalt materials at intermediate temperatures. The smaller the fatigue factor of asphalt
is, the stronger its anti-fatigue ability is [39]. Fatigue factors of all modified asphalt binders
in this study are shown in Figure 7.

Figure 7 demonstrates that the fatigue factor of all specimens decreases with increasing
temperature, indicating that the risk of fatigue cracking of asphalt pavement is smaller
under high-temperature environments. However, it can be observed from the figure that,
at the same temperature point, the fatigue factor of the polyolefin-modified binder is larger
than that of virgin asphalt, suggesting that introducing polyolefin compromises the anti-
fatigue ability of the asphalt to some degree. This compromise can be explained by the fact
that the rigid chain in polyolefin improves the stiffness of virgin asphalt and damages the
flexibility of asphalt, to a certain extent. Nevertheless, due to the existence of relatively
flexible rubber chain segments in polyolefin, the influence of polyolefin elastomer on the
fatigue property of asphalt is very weak at a low dosage. However, it also found that the
fatigue factor of modified asphalt increases with the amount of polyolefin. Consequently,
strict control the amount of polyolefin in asphalt is recommended to ensure that the
modified asphalt has qualified fatigue resistance.
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3.4.4. Creep Stiffness Modulus and Creep Rate

Brittle cracking is the dominant damage form of asphalt pavement in high latitude
areas. As a result, it is of great practical value to enhance the low-temperature performance
of asphalt pavement to reduce the maintenance frequency of roads in cold areas. In
this study, the cracking resistance of all modified asphalt samples at low temperatures
was measured through a bending beam rheometer. Two key parameters, namely creep
stiffness modulus (S) and creep rate (m-value), were obtained by the experiment. In general,
the smaller the S value is, the larger the m-value is, and the better the low-temperature
cracking resistance of asphalt is [40]. Figure 8 indicates the experimental results of all
modified asphalt binders at −12 ◦C. The errors of the parallel experiments for each sample
were within reasonable limits. It can be observed from Figure 8 that under the same test
temperature, the S value of polyolefin-modified asphalt is inferior to that of original asphalt,
while the m-value of polyolefin-modified asphalt is greater than that of original asphalt.
The S value and m-values of P-8 are 0.82 and 1.30 times those of virgin asphalt, respectively.
This finding illustrates that polyolefin elastomer improves the low-temperature behavior
of asphalt. The first glass transition point of polyolefin is around −43.7 ◦C according to
the previous DSC experimental results, which means that the uncrystallized ethylene and
octene in polyolefin are still in a soft rubber state under the BBR test temperature. The
flexible polymer chain allows the asphalt to disperse impact energy when impacted, which
reduces the chance of cracking. Consequently, polyolefin elastomer can extend the service
life of asphalt pavement in cold areas, to a certain extent.
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3.5. Engineering Performance

The experimental results of the engineering behavior on asphalt mixture with different
polyolefin dosages are listed in Table 5. Results show that the Marshall stability, residual
Marshall stability, dynamic stability, and ultimate flexural strain of the asphalt mixture after
adding polyolefin have significantly improved, suggesting that the addition of polyolefin
can enhance the resistance to moisture damage, rutting deformation, and low-temperature
cracking of asphalt mixture. These improvements can be explained by the fact that with the
decrease of temperature after completion of construction, polyolefin will precipitate in the
form of microcrystals, which will increase the stiffness of asphalt binder and further enhance
the resistance of the asphalt mixture to high-temperature deformation and moisture damage.
For low-temperature performance, the ultimate flexural strain of the asphalt mixture with
polyolefin as a modifier was also observed to increase, indicating that the addition of
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polyolefin improved the flexibility of the asphalt mixture. This phenomenon is consistent
with the results of the BBR test, which show asphalt profits from the uncrystallized flexible
structures in the polyolefin molecular chain. The residual Marshall stability, dynamic
stability, and ultimate tensile strain of the asphalt mixture containing 8% polyolefin are
1.05 times, 1.31 times, and 1.17 times those of the control samples, respectively.

Table 5. Engineering performance of polyolefin modified asphalt.

Items
Moisture Susceptibility High-Temperature

Performance
Low-Temperature

Performance

MS1 (kN)
/Std. Dev

MS (kN)
/Std. Dev RMS (%) Dynamic Stability

(Times/mm)/Std. Dev
Ultimate Flexural

Strain (µ
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AM-0 11.89/0.77 13.35/0.45 89.06 3988/115.52 3342.17/136.12
AM-2 13.35/0.64 14.57/0.67 91.63 4325/107.01 3452.35/83.24
AM-4 13.88/0.67 14.99/0.57 92.60 4575/114.73 3521.39/69.23
AM-6 14.79/0.50 15.85/0.82 93.31 4871/112.55 3737.52/78.91
AM-8 15.65/0.45 16.73/1.1 93.54 5233/134.58 3904.51/85.47

3.6. Modification Mechanism

The experimental results of the infrared spectrum of all specimens in this study are
displayed in Figure 9. All curves presented are reproducible. Seven obvious absorption
peaks can be observed in the wave number interval from 400 cm−1 to 4000 cm−1. The
characteristic peaks at 2921 cm−1 and 2851 cm−1 are induced by stretching vibration of
−CH3 and −CH2 [41]. The absorption peak observed at 1600 cm−1 is caused by the
vibration of the benzene ring C=C skeleton [42]. The absorption peaks at 1460 cm−1 and
1378 cm−1 are related to the bending vibration of −CH. The absorption peak at 1030 cm−1

is closely related to the S=O bond in asphalt [43]. The absorption band at 700~900 cm−1

of the fingerprint area is induced by the bending vibration of the C−H on the benzene
ring. The characteristic peak of polyolefin-modified asphalt is almost the same as that
of virgin asphalt, only the absorption peak intensity is slightly different. In addition,
no fresh characteristic peaks can be observed from the infrared spectrum of polyolefin-
modified asphalt. Therefore, it may be concluded that polyolefin elastomers do not affect
the chemical properties of virgin asphalt, and mechanical blending is the main mode of
interaction between them.
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In polyolefin, the crystallized ethylene segment (rigid structures) and the uncrys-
tallized ethylene and octene (flexible structures) are two-phase structures, resulting in
two glass transition points at −43.7 ◦C (Tg1) and 43.1 ◦C (Tg2), which has been verified
in the DSC experiment. Meanwhile, asphalt was classified into three sections, namely
brittle, flexible, and viscous states, using the brittle point (Tb~11.0 ◦C) and softening point
(Ts~49.7 ◦C) as dividing points. To understand more clearly the enhancement mechanism
of polyolefin elastomer on virgin asphalt, Tg1 and Tg2 of polyolefin elastomers are labeled
on the temperature axis, as well as Tb and Ts of virgin asphalt in Figure 10. Since the Ts
of virgin asphalt is close to the Tg2 of polyolefin, the above two temperature points are
labeled at the same position in Figure 10.

Virgin asphalt is brittle in interval A, while the “flexible structures” of polyolefins
are flexible. Therefore, the brittleness of polyolefin-modified asphalt is reduced by the
existence of the “flexible structures” which is responsible for the phenomena observed in
the BBR and three points bending tests. In temperature interval B, the “flexible structures”
of polyolefin and virgin asphalt are in the flexible state, while the “rigid structures” of
polyolefin are in the glass state. The combined effect of the “flexible” and “rigid” structures
may cause polyolefin-modified asphalt to be slightly hardened. Therefore, the complex
modulus and rutting resistance of polyolefin-modified asphalt are improved within this
interval, while the fatigue resistance is weakened. This improvement is consistent with
the conclusions drawn from the above experiments. The virgin asphalt is mainly viscous
in interval C. However, the “flexible” and “rigid” structures of polyolefin are still in a
rubbery state. As a result, polyolefin-modified asphalt changes from viscous to elastic due
to the “rigid structures” and “flexible structures.” In this temperature interval, the rutting
resistance of polyolefin-modified asphalt will be enhanced. In summary, the mechanism of
the enhancement of asphalt properties by polyolefin elastomers is displayed in Table 6.
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Table 6. Mechanism of the enhancement of asphalt properties by polyolefin.

Temperature Interval
and Boundary

State of Materials
Performance of

Modified AsphaltFlexible
Structure

Rigid
Structure

Virgin
Asphalt

A (Tg1--Tb) Rubbery state Glassy state brittle Rigidity is weakened
B (Tb--Tg2(Ts)) Rubbery state Glassy state elastic Elasticity is improved

C (Tg2(Ts)--) Rubbery state Rubbery state viscous Viscosity is weakened
Elasticity is improved

4. Conclusions and Future Work

In this study, the feasibility of using polyolefin elastomers with a two-phase molecular
structure to simultaneously improve the high and low-temperature performance of asphalt
was investigated. Through the preceding analysis and discussion, the following findings
can be obtained:

The polyolefin with a unique two-phase structure was detected by DSC to have a glass
transition point (−43.7 ◦C and 43.1 ◦C) at high and low temperatures, respectively, which
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laid the foundation for improving the high and low-temperature properties of asphalt at
the same time. In other words, it is reliable to select high-quality asphalt modifiers from
the perspective of molecular structure to improve the durability of asphalt pavement.

The results of rheological properties demonstrate that polyolefin elastomer can signif-
icantly enhance the anti-deformation and anti-cracking abilities of asphalt binder, while
the fatigue resistance of asphalt is weakened slightly by the hardening of polyolefin. In
addition, no concerns are found about the storage stability and workability of polyolefin-
modified asphalt. It is suggested that the exact dosage of polyolefin should be based on the
premise that asphalt has sufficient anti-fatigue properties.

The engineering performance of the asphalt mixture indicates that the introduction of
polyolefin can improve the moisture damage resistance, rutting deformation resistance, and
cracking resistance of the asphalt mixture. The residual Marshall stability, dynamic stability,
and ultimate tensile strain of the modified asphalt mixture are 1.05 times, 1.31 times, and
1.17 times of those of the contrast sample, respectively.

The infrared spectrum analysis of modified asphalt shows that asphalt modified by
polyolefin is mainly mechanical blending. The improvement of polyolefin on asphalt
performance can be explained by the existence of both “rigid” and “flexible” structures
in polyolefin. It can be said that polymers with similar structures have the potential to
simultaneously improve the high and low temperature performance of asphalt.

Overall, this work confirms that polyolefin elastomers have great potential as asphalt
modifiers. However, there is a need for more extensive studies on field applications.
Additionally, a deeper understanding of the aging resistance of polyolefin-modified asphalt
and its adhesion to aggregates remains an outstanding research need in the future.
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