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Abstract: The use of seashells to replace traditional cement-based materials and study their adsorption
capacity for pollutants can expand the functional engineering application range of cement-based
materials. A large amount of seashell waste is produced in coastal areas every year. How to deal
with and utilize this seashell waste is a common problem faced by coastal countries and regions. This
paper first reviews the principles of adsorption kinetics and adsorption isotherms to demonstrate the
adsorption mechanism of shell materials. Then the effects of pH, contact time, temperature, pollutant
concentration and other factors on the adsorption of heavy metal ions and basic dyes to seashells are
discussed. Finally, the relevant applications of seashells in the construction field are reviewed. The
results showed that the optimal pH value in the process of seashell adsorption was 5–7, the active
site on the surface of the seashell particles was limited, and that it would reach saturation at a certain
concentration, but would not further increase with the increase of time. The active site area of the
seashell would increase with the decrease of particle size, so the selection of seashell powder with
small particle size was conducive to enhancing the absorption capacity and removal efficiency. The
experimental use of seashells instead of cementitious materials or natural aggregates in cement-based
materials showed good adsorption capacity and would have a wide range of application prospects
in permeable concrete and architectural coatings. By analyzing the research progress on factors
influencing seashell adsorption performance and the applications of seashell adsorption behaviors
in cement-based materials, this paper could provide ideas and methods for the design of functional
cement-based adsorption materials from multiple angles.

Keywords: architectural coatings; adsorption kinetics; cement-based materials; dyes; heavy metal
ions; seashells

1. Introduction

In many coastal areas, there is a severe problem of seashell waste accumulation. The
output of seashells in China has always been the highest in the world, and about 15 million
tons of discarded seashells are produced every year. A large amount of seashell waste
is discarded, which not only occupies land resources but also pollutes the environment.
There are many types of seashells, such as oysters, clams, scallops, mussels, etc. (Figure 1).
Seashells are mainly composed of 95% CaCO3, along with about 5% organic matter and
a small number of inorganic salts such as K, Na, Mg, Fe, Zn, Se and other elements [1,2].
As a natural material, a seashell is mainly composed of three parts: the outermost layer is
protein, the middle layer is calcite, and the inner layer is calcium carbonate crystals. The
seashell’s structure is relatively loose, the pore diameter is relatively large, and the pore
distribution is wide and uniform [3–5]. Seashell materials have broad application prospects
in the fields of adsorption-type functional building materials.
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Figure 1. Types of seashells: (a) Scallops; (b) Oysters; (c) Clam; (d) Mussel. 

At present, the commonly-used adsorption materials in engineering include acti-
vated carbon, zeolite, bentonite, metal oxides and hydroxides, as well as some industrial 
and agricultural wastes, etc. [6]. Given the considerations of saving costs and natural re-
sources, it is essential to find adsorbent materials that are economical and efficient, and 
that have strong adsorption capacity. The loose and porous seashell powder obtained by 
washing and grinding seashell waste has good adsorption, antibacterial properties and 
affinity with macromolecular substances [7]. Therefore, seashells and materials added 
with seashells can achieve the adsorption and removal of crude oil, heavy metals, sulfur, 
dyes, fungicides and other pollutants under certain conditions [8]. 

With the rapid development of cities, the demand for concrete is increasing. The an-
nual consumption of aggregates in the world exceeds 40 billion tons, of which 64–75% are 
used to prepare concrete. Many alternative materials currently used to produce ‘green 
concrete’ are recycled from industrial waste and by-products, so finding sustainable alter-
natives to natural aggregates is imperative. Since the main component of seashells is cal-
cium carbonate, which is similar to natural aggregate, it can also be divided into coarse 
aggregate and fine aggregate according to particle size [9]. The research efforts on cement-
based materials used as adsorption materials focus on the mass concrete components, and 
are mainly in reference to pervious road concrete relative to rainwater adsorption, the 
solidification of cement kiln co-processing on heavy metal ions, and the processing of 
sludge containing heavy metal ions [10]. Incorporating adsorption materials such as rice 
husk ash, zeolite, activated carbon and graphene into cement-based materials can effec-
tively improve the adsorption performances of cement-based materials relative to pollu-
tants [11–13]. 

This article conducts dynamic and thermodynamic analysis on the adsorption pro-
cess of different types of seashells, lists the matching situations between seashells and ad-
sorption models, analyzes the effects of factors such as pH value, contact time, tempera-
ture, adsorbent dosage and pollutant concentration on the adsorption process of seashells, 
and explores the influences of replacing cementitious materials and natural aggregates 
with seashells on the adsorption performances of cementitious materials, providing refer-
ences for the preparation of cement-based adsorption materials. 

2. Seashell Adsorption Theory 
2.1. Isothermal Adsorption Theory 

Adsorption isotherms describe the retention (or release) or migration of substances 
from aqueous porous media or aquatic environments to the solid phase at a constant tem-
perature and pH value [14,15]. Adsorption equilibrium is established when the adsorbate 
is in contact with the adsorbent for a long enough time. The adsorbate concentration in 

Figure 1. Types of seashells: (a) Scallops; (b) Oysters; (c) Clam; (d) Mussel.

At present, the commonly-used adsorption materials in engineering include activated
carbon, zeolite, bentonite, metal oxides and hydroxides, as well as some industrial and
agricultural wastes, etc. [6]. Given the considerations of saving costs and natural resources,
it is essential to find adsorbent materials that are economical and efficient, and that have
strong adsorption capacity. The loose and porous seashell powder obtained by washing
and grinding seashell waste has good adsorption, antibacterial properties and affinity with
macromolecular substances [7]. Therefore, seashells and materials added with seashells
can achieve the adsorption and removal of crude oil, heavy metals, sulfur, dyes, fungicides
and other pollutants under certain conditions [8].

With the rapid development of cities, the demand for concrete is increasing. The annual
consumption of aggregates in the world exceeds 40 billion tons, of which
64–75% are used to prepare concrete. Many alternative materials currently used to produce
‘green concrete’ are recycled from industrial waste and by-products, so finding sustainable
alternatives to natural aggregates is imperative. Since the main component of seashells is
calcium carbonate, which is similar to natural aggregate, it can also be divided into coarse
aggregate and fine aggregate according to particle size [9]. The research efforts on cement-
based materials used as adsorption materials focus on the mass concrete components,
and are mainly in reference to pervious road concrete relative to rainwater adsorption,
the solidification of cement kiln co-processing on heavy metal ions, and the processing
of sludge containing heavy metal ions [10]. Incorporating adsorption materials such as
rice husk ash, zeolite, activated carbon and graphene into cement-based materials can
effectively improve the adsorption performances of cement-based materials relative to
pollutants [11–13].

This article conducts dynamic and thermodynamic analysis on the adsorption process
of different types of seashells, lists the matching situations between seashells and adsorp-
tion models, analyzes the effects of factors such as pH value, contact time, temperature,
adsorbent dosage and pollutant concentration on the adsorption process of seashells, and
explores the influences of replacing cementitious materials and natural aggregates with
seashells on the adsorption performances of cementitious materials, providing references
for the preparation of cement-based adsorption materials.

2. Seashell Adsorption Theory
2.1. Isothermal Adsorption Theory

Adsorption isotherms describe the retention (or release) or migration of substances
from aqueous porous media or aquatic environments to the solid phase at a constant tem-
perature and pH value [14,15]. Adsorption equilibrium is established when the adsorbate
is in contact with the adsorbent for a long enough time. The adsorbate concentration in the
bulk solution is in dynamic equilibrium with the interface concentration. This constitutes a
mathematical connection that plays important roles in the modeling analysis, operation
design and application practice of the adsorption system. Graphics are usually used to
describe the relationship between the solid phase and the residual concentration of the
adsorbate, and its physicochemical parameters describe the surface characteristics, adsorp-
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tion mechanism and other characteristics [16–18]. The common isotherm models based on
the Langmuir and Freundlich isotherm model are summarized in Table 1.

Table 1. Adsorption isotherm models.

Isotherm Linear Formula Parameter Reference

Langmuir Ce
qe

= Ce
qe

+ 1
qmKL

qe: equilibrium concentration on the
adsorbent, mg L−1;
Ce: equilibrium concentration in solution,
mg L−1;
qm: maximum adsorption capacity, mg L−1;
KL: adsorption equilibrium constant.

[19]

Freundlich
log qe =

log KF + ( 1
n ) log Ce

KF : adsorption capacity correlation constant;
n: non-uniformity factor. [20]

Dubinin–
Radushkevich ln qe = ln qm − βε2 β: D-R isotherm constant;

ε: D-R isotherm constant. [21]

Temkin qe =
RT
bT

ln AT + RT
bT

ln Ce

RT : gas constant 8.314;
bT : Temkin isotherm constant;
AT : Temkin isotherm equilibrium constant.

[22]

Flory–
Huggins

log θ
C0

=

log KFH + nFH log(1 − θ)

C0: initial concentration in solution, mg L−1;
KFH : Flory–Huggins isotherm constant;
nFH : Flory–Huggins isotherm index;
θ: surface coverage.

[23]

Hill log(1 − θ) log
(

qe
qsH−qe

)
= nH log Ce − log KD

nH : Hill binding interaction synergy
coefficient;
KD : Hill isotherm constant;
qsH : Hill isotherm maximum uptake
saturation, mg L−1.

[24]

Redlich–
Peterson

ln(KR
Ce
qe

− 1) =
g ln Ce + ln aR

KR: Redlich–Peterson isotherm constant;
aR: Redlich–Peterson isotherm constant. [25]

Sips βs ln Ce = ln as − ln Ks
qe

βs: Sips isotherm model index;
as: Sips isotherm constant;
Ks: Sips isotherm constant.

[26]

Toth
ln qe

KT
=

ln Ce − 1
t ln(aT + Ce)

aT : Toth isotherm constant. [27]

2.2. Theory of Adsorption Kinetics

The study of adsorption kinetics provides information on the adsorption rate, the
properties of the adsorbent used, and the mass transfer mechanism; it consists of three
steps (Figure 2). The first step is external diffusion, where the adsorbate is transferred
through the liquid film surrounding the adsorbent. The concentration difference between
its bulk solution and the surface of the adsorbent is the driving force for external diffusion.
The second step is internal diffusion, which describes the adsorbate’s diffusion in the
adsorbent’s pores. The third step is the adsorption of the adsorbate on the active sites of
the adsorbent [28]. The commonly used kinetic models are listed in Table 2.
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Table 2. Adsorption kinetic models.

Kinetic
Equations Differential Equation Significance Reference

Pseudo-
first order model

PFO

dqt
dt = k1(qe − qt)

Describes the rate at which active sites in the
initial phase of an adsorbent adsorb solutes
under conditions of high initial concentration.

[29]

Pseudo-
second order
model PSO

dqt
dt = k2(qe − qt)

2

Describes the process of adsorbate diffusion
from the surface of the adsorbent to the
interior. Due to the difference in mass
transport at the beginning and end of
adsorption, this model is more suitable for
describing the diffusion process of substances
in particles.

[30]

Intra-particle
diffusion IPD qt = kit1/2 + C

Describes the equilibrium rate at which an
adsorbent adsorbs a solute, assuming that the
adsorption rate is governed by a
chemisorption mechanism.

[31]

Hybrid model
MO

dqt
dt =

k1(qe − qt)+ k2(qe − qt)
2

Based on the nonlinear model of PFO and
PSO, the adsorption process at any stage
is described.

[32]

Ritchie equation dθ
dt = ∂(1 − θ)n

Describe the adsorption process of gases on
solids where active sites dominate
the adsorption.

[33]

Pseudo n-order
model PNO

dqt
dt = kn(qe − qt)

n

The PNO model is an empirical equation,
which describes the adsorption process with
a series factor greater than 2, and it has no
specific physical meaning

[34]

3. Seashell Adsorption
3.1. Study on Adsorption of Seashells to Heavy Metal Ions

With the rapid development of industrialization and urbanization, the heavy metal
contents of urban and rural rivers and lakes have exceeded the standard limits. In particular,
toxic heavy metal ions are widely dispersed in aqueous solutions, which not only have
strong toxicity and non-degradable physical and chemical properties but also have serious
impacts on human health and environmental ecosystems. The treatment method currently
commonly used to reduce or remove heavy metals is chemical precipitation [35]. Although
this method is more economical, it has some disadvantages, including slow reaction times,
the need to control pH during processing [36], low metal solubility at near-neutral pH, and
reliance on polyelectrolytes or other chemicals as coagulant aids in the coagulation and
flocculation steps to facilitate rapid settling. Using seashells as a substitute for sedimenta-
tion can replace or reduce the current reliance on the large amounts of corrosive chemicals
required by conventional sedimentation treatment methods, avoiding secondary pollution.
Compared with conventional chemical precipitation, the separation and dehydration steps
of physical coagulation of seashell residues are simpler and more manageable [37]. Thus,
no coagulants or coagulants are required to facilitate flocculation and rapid settling. The
two primary crystalline forms of seashells are calcite and aragonite. Earlier studies showed
that minerals in the crystalline forms of calcite and aragonite have the ability to adsorb
metal ions. For example, manganese ions are adsorbed by calcium carbonate, and Mn2+ is
replaced by Ca2+ on the surface of calcite [38]. The factors affecting the adsorption of heavy
metals by seashell materials (Table 3) include pH value, initial concentration of pollutants,
contact time, amount of adsorbent, etc.
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Table 3. Factors affecting the adsorption of heavy metals.

Influencing Factors The Effects on the Adsorption of Heavy Metals Reference

pH value

The initial pH value of the solution changes the
charge on the adsorbent surface and the ionization
degree of the adsorbed species. As the pH value
increases, the competition and repulsion between
protons and heavy metal ions becomes weakened,
and the adsorption rate also increases.

[37,39]

Contact time and Temperature

Temperature and time will affect the adsorption
process equilibrium and reaction rate. Due to the
electrostatic reaction between the adsorbent and
metal ions at high temperatures, the adsorption
capacity and removal efficiency generally decrease
with the increasing temperature and reach saturation
with time.

[40,41]

Adsorbent dosage

The amount of adsorbent determines the adsorption
capacity of the adsorbent at a certain concentration
of the adsorbed substance. Usually, due to the
increase in the active sites of the adsorbent and the
easy penetration of metal ions into the adsorption
sites, when the amount of adsorbent increases, the
adsorption efficiency will improve. When the
amount of adsorbent is too much, it will lead to
partial coverage of adsorbent particles, a decrease in
concentration gradient and a decrease in the effective
surface area of adsorption.

[41–43]

Initial concentration of
pollutants

When the concentration of heavy metals in the
aqueous solution is different, the separation speed is
also different. As the initial concentration of metal
increases, the ratio of the number of active sites on
the adsorbent surface to the number of moles of
metal ions at low concentrations is high. At the same
time, as the initial concentration of pollutants
increased, the adsorption rate decreased instead.

[43–46]

In the experiment of Masukume et al. [47], the washed and dried seashells were
crushed and sieved, and the seashells with a particle size below 0.15 mm were weighed
and mixed with acid mine wastewater (mainly containing Fe3+, Mn2+). It is common to seal
the container and place it in a shaker at a constant temperature of 25 ◦C for 24 h, and then
to filter the sample with filter paper to detect the concentration of residual iron, manganese
and sulfate solution. The experimental results showed that the removal of metal ions
increased with the increasing seashell mass, and the metal removal performance followed
the following trend: Al3+ > Fe3+ > Mn2+ [48]. Meanwhile, the experiment measured the
influence of different pH values on the adsorption performance. With the increase in pH
value, H+ gradually decreases, and more metal ions occupy the adsorption sites. The metal
adsorption rate increases with the increasing pH value of the initial solution.

Helen et al. [49] chose clams and oysters as research objects, and the experimental
treatment method was similar to that of Mike Masukume et al. [47]. The seashell powders
with a particle size range of 0.125–0.25 mm were mixed with the metal salt, and stirred
evenly at room temperature. The adsorption experiment was conducted on the metal
solution containing Pb2+, Zn2+, Cd2+ and Cu2+. The experimental results showed that the
adsorption performance of seashell is better than that of limestone in the initial adsorption
stage. It has the potential for continuous adsorption capacity and rapid removal of high-
concentration metal ions. In the experiment of Mahendra et al. [50], firstly, the seashells
were cleaned and dried, and then the seashell powders with a particle size of 0.1 mm were
ground and screened for research; secondly, the metal solution (containing Cd2+, Pb2+ and
Zn2+) was mixed with the seashell powders and placed in a shaker for 3 h; finally, the
analysis was carried out using adsorption kinetics and adsorption isotherms. According to
the analysis of the experimental results, heavy metal accumulation on bivalve mollusks
results from ion exchange. At the same time, the adsorption process conforms to the
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Langmuir isotherm and the pseudo-second-order kinetic models. The experimental results
also showed that the optimal pH range for the seashell to adsorb heavy metals was 5–7,
and the equilibrium adsorption amounts of Pb2+, Cd2+ and Zn2+ were 588.23 mg g−1,
476.19 mg g−1 and 357.14 mg g−1, respectively. Wang et al. [51] soaked the cleaned clam
shell in the 0.5% dilute hydrochloric acid for 30 min, and then cleaned and dried them.
Clam shell powders with a particle size below 0.1 mm were screened out and calcined
at 1000 ◦C for 3 h in a muffle furnace for experimental analysis. After high-temperature
calcination, almost all calcium carbonate is converted into calcium oxide and adsorbs Pb2+.
The experimental results showed that the adsorption process conformed to the Freundlich
isotherm and pseudo-second-order kinetic models. The calcined clam shell powder had
good adsorption performance on Pb2+, and the adsorption capacity reached 102.04 mg g−1.

The effects of pH value, contact time, temperature, pollutant concentration and other
factors on the adsorption of heavy metals by seashells are shown in Table 4. A small amount
of organic matter inside the seashell has little effect on the adsorption capacity, and the
main adsorption work is undertaken by Ca2+ ions and -CO3 groups [36]. The optimum pH
value in the seashell adsorption process is 5–7, and when the pH value is less than 4, the
-CO3 group will be protonated. When the pH is 6–10, -CO3 groups react electrostatically
with metal ions, which is more conducive to exchanging Ca2+ with metal ions. When the
pH value is >10, it will increase the deposition of OH- ions, thereby reducing the adsorption
capacity [50]. At high temperatures, the binding ability of the active sites of seashells
relative to heavy metals becomes weaker, the solution is more inclined to the liquid phase,
and the seashells have a stronger ability to capture solid-phase pollutants, resulting in a
decrease in adsorption capacity. Since the active sites on the surface of seashell particles
are limited, they will reach saturation at a certain concentration, so they will not increase
further with time. However, the active sites of seashells will increase with the decrease
of particle size, so choosing seashell powders with small particle sizes is beneficial for
enhancing the absorption capacity and removal efficiency.

Table 4. The strongest influencing factors for seashell adsorption of heavy metals.

Adsorbent Pollutants pH Contact
Time h

Temp
◦C

Concentration of
Pollutants mg L−1

Maximum
Adsorption
Capacity %

Isotherm
Model

Kinetic
Model Ref

Oyster shell
powders Cu2+ 5.5 24 25 10 99.9 Freundlich ——– [52]

Oyster shell
powders Ni2+ 2 24 60 200 47.2 Langmuir PSO [53]

Oyster shell
powders Cu2+ 2 24 60 200 80.7 Langmuir PSO [53]

Oyster shell
powder. Cd2+ 10 1 —— 5 99.7 ——– ——– [54]

Calcined oyster
shell powders Hg2+ 6 1.3 25 10 95.72 ——– ——– [55]

Calcined oyster
shell powders As2+ 7 1.3 25 10 96.88 ——– ——– [55]

Oyster shell
powders Cd2+ 5 0.8 25 80 39.5 Langmuir PSO [56]

Scallop shell
powders Cd2+ 5 0.8 25 80 33.3 Langmuir PSO [56]

Clam shell
powders Pb2+ 6 10 35 160 80.1 Langmuir PSO [57]

Clam shell
powders Pb2+ 6 24 35 20 85 Langmuir PFO [58]

Mussel shell
powders Cu2+ —– ——- —— 50 100 ——– ——– [59]

Mussel shell
powders Cr6+ —– ——- —— 50 100 ——– ——– [59]

Mussel shell
powders Cd2+ —– ——- —— 50 100 ——– ——– [59]

3.2. Study on Adsorption of Seashells to Dyes

There are many studies on removing dyes from sewage systems using natural ma-
terials, industrial waste or industrial by-products [60]. Shamik Chowdhury et al. [3]
investigated the feasibility of removing the cationic dye Basic Green 4 (malachite green,
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BG4) from aqueous solutions with seashell powders. The washed and dried seashells
were crushed and sieved in the experiment into three particle sizes larger than 0.5 mm,
0.25–0.5 mm and smaller than 0.25 mm. Using Fourier transform infrared spectroscopy
(FTIR) for observation and analysis, it was found that the negatively-charged functional
groups on the surface of seashell powders interacted with BG-4 at the peak point and
reached the maximum adsorption amount at pH = 8. The adsorption isotherm of BG-4
on seashell powders best fit the Langmuir isotherm equation, which indicated that the
binding energy of the seashell adsorbent was uniform across the surface. According to the
parameters of the Dubinin–Radushkevich isotherm, it can be inferred that the adsorption
property of BG-4 on seashell powders is physical adsorption.

Suteu et al. [61] used seashells to conduct adsorption experiments on Brilliant Red
(HE-3B) dye at different temperatures. First, the cleaned and dried seashells were ground
and screened to obtain a particle size of 0.06–0.11 mm; then, the seashells were used to
conduct adsorption experiments on Brilliant Red with different initial concentrations of
50–300 mg L−1. The results showed that the experiment was more in line with the Langmuir
isotherm equation, and the adsorption capacities of the monolayer at 20 ◦C and 60 ◦C were
109.89 mg g−1 and 294.118 mg g−1, respectively. Based on the Dubinin–Radushkevich
isotherm parameters, it can be inferred that this is a combined mechanism of physical
adsorption and electrostatic interactions. Mehdi et al. [62,63] used calcined scallop seashells
with azo dye Reactive Black 5 (RB-5), anionic dye Reactive Blue 19 (RB-19) and Acid
Cyanine-5R (AC-5R) for adsorption tests. The adsorption experiments of RB-5 on scallop
shells showed that the adsorption efficiency of scallop shells increased with the increas-
ing amounts of adsorbent. When the dye concentration increased from 100 mg L−1 to
300 mg L−1, the removal efficiency decreased from 94.78% to 59.51%. Adsorptions of RB-19
and AC-5R were carried out using the same scallop seashells used for the adsorption of
Reactive Black 5 dye. The results showed that the adsorption efficiency of scallop seashells
increased with the amount of adsorbent, and the maximum dye adsorption amounts for
RB-19 and AC-5R were 12.36 mg g−1 and 12.47 mg g−1, respectively.

The effects of pH value, contact time, temperature, pollutant concentration and other
factors on the adsorption of dyes by seashells are shown in Table 5. It can be seen that the
positive charge density on the adsorbent increased in neutral or slightly acidic environments.
As the pH value further increased, the H+ on the particles’ surface gradually lost its activity,
which had a certain impact on the adsorption performance. The surface smoothness of
uncalcined seashells conformed to the monolayer adsorption characteristics, and its isotherm
adsorption model conformed to the Langmuir adsorption isotherm. However, after calcined
seashells, its isotherm adsorption model became more in line with the Freundlich adsorption
isotherm. Since the surface of calcined seashells was rougher, and more pores were generated
inside, it would be more in line with the multi-layer heterogeneous adsorption characteristics,
further improving adsorption performances [61–63]. Since the number of active sites on the
surface of the seashell increases with the decrease of particle size, the storage capacity
and removal efficiency are improved, so the smaller the particle size of the seashells, the
stronger the adsorption capacity.

Firstly, the adsorption properties of seashells relative to heavy metals and dyes were
reviewed; secondly, the effects of pH value, contact time, temperature, pollutant concen-
tration and other factors on seashell adsorption were analyzed; finally, the adsorption
mechanism of seashells was judged by the isothermal adsorption model and the adsorption
kinetics model. It can be seen from the results that the seashell structure is relatively loose,
the pore size is large, and the pore distribution is wide and uniform. While the seashell
adsorbs pollutants, its Ca2+ can ion-exchange with metals and dyes, and the CO3 group
captures pollutants, as shown in Figure 3. Seashell has certain advantages in both physical
and chemical adsorptions, and its adsorption rate and effect are also pronounced, proving
that it has the potential as an adsorbent.
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Table 5. The strongest influencing factors for seashell adsorption dyes.

Adsorbent Dye pH Contact
Time h Temp ◦C

Concentration
of

Pollutants
mg L−1

Maximum
Adsorption
Capacity %

Isotherm
Model

Kinetic
Model Ref

Sea shell powders Malachite green 8 2 30 50 84.6 Langmuir PSO [3]
Seashells Reactive brilliant red 1.2 24 60 300 98.1 Langmuir PSO [61]

Calcined scallop
shell powders Reactive Black 5 6 3 ——- 100 96.7 Langmuir PSO [62]

Calcined scallop
shell powders Reactive Blue 19 6 2 ——- 100 99.9 Freundlich PSO [63]

Calcined scallop
shell powders Acid Cyanine 5 R 6 2 ——- 100 99.9 Freundlich PSO [63]

Mussel shell
powders Methyl blue —– —— ——- 100 59.8 ——- ——- [59]

Mussel shell
powders Methyl red —– —— ——- 100 99.9 ——- ——- [59]
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4. Application of Seashell Adsorption Behaviors in Cement-Based Materials

In past studies, the application of seashell materials in cement-based materials has been
well-tested mechanically [64,65]. The current processing methods for seashell materials are
mainly rinsing, drying or calcination, grinding, and sieving to obtain the required particle
sizes [66–68]. The results show that adding seashell materials will reduce the strength of
concrete, and when the replacement rate of concrete is below 20%, the concrete strength
attenuation will be relatively weak [69–72].

4.1. Application of Seashell Adsorption Behavior in Cement Mortar

Finding alternatives to cement is especially important, because cement emits large
amounts of greenhouse gases during production. Currently, materials commonly used to
partially replace cement include seashells, blast furnace slag, coal fly ash, etc. The organic
matter contained in seashells has different effects on the performance of cement mortar,
and the organic matter contained in it can be used as a retarder in cement mortar. The
organic matter in the seashells acts in a manner similar to an air-entraining agent on the
cement mixtures, introducing air into the cement slurry [73,74]. These alternative materials
can improve the durability and mechanical properties of concrete, helping to achieve
high acid resistance and water absorption [75]. The process of changing the hydration
products of different dosages of seashells instead of cement was observed by scanning
electron microscopy, as shown in Figure 4. It can be seen that, in addition to calcium silicate
hydrate (C-S-H), more ettringite (AFt) and calcium carbonaluminate phases appeared in
the hydration products with the increase of seashell powders in the cement mixture [76].
Lertwattanaruk et al. [77] found that some ettringite, especially calcium carbon-aluminate,
formed near or on seashell powders. The addition of seashell powders not only enriched
the hydration cement matrix, but also promoted the precipitation of hydration products.
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In the experiments by Carolina et al. [78], heat-treated mussel shells were ground
and screened for fine aggregates in the particle size ranges of 0–1 mm and 0–4 mm to
replace fine aggregates in cement base coatings and surface coatings for water absorption
performance testing. Experimental results showed that mussel mortars had higher water
absorption than did the benchmark mortars, and the use of high displacement rates (50%
and 75%) significantly affected this property. The main reason is that the addition of flaky
seashells would reduce the bonding ability with cement, thereby producing large pores
and improving water absorption performance.

In the experiment by Chen et al. [79], firstly, fly ash and slag were used to replace
cement; secondly, the fine aggregate was made of an oyster shell with a 30% substitution
rate (particle size below 5mm) to prepare the mortar test block; finally, the water absorption
experiment was carried out after curing for 28 days and 90 days, respectively. The results
showed that adding fly ash and slag based on oyster seashell waste would effectively
increase the water absorption capacity of seashell mortar. After 90 days of curing, the
water absorption performance of the seashell mortar decreased, and the water absorption
capacity of the test block was significantly reduced due to the influence of curing time.
Qasem et al. [80] chose seashell powders (with a particle size below 0.3 mm) to replace
cement. The experimental results found that the water absorption performance of cement
mortar was improved with the addition of seashell powders.

4.2. Application of Seashell Adsorption Behavior in Concrete

Currently, three main uses of seashells in concrete have been proposed: coarse aggre-
gate substitute, fine aggregate substitute and high-temperature calcination as an activator
in concrete [81]. The porous nature of seashells makes them better at absorbing water, but
seashells with flakes or elongated shapes have large surface areas, which is not conducive
to bonding with cement mortar. The seashells produce many pores in the concrete matrix,
reducing the density of the concrete.

Ettu et al. [66] used periwinkle to replace coarse aggregate in concrete, and the replace-
ment rates were 25%, 50% and 75%, respectively. Compared with the control group, after
28 days of curing, the density dropped by 33%, 36% and 41%, respectively. Martínez-García
et al. [67] alternately replaced coarse and fine aggregates in concrete with mussel seashells.
The results showed that replacing coarse aggregate with mussel seashells had no significant
effect on the density of the concrete, which dropped by only about 1% after 28 days of
curing. The specimen density with mussel seashells instead of fine aggregate decreased by
about 10% after 28 days of curing. After 28 days, the density of concrete specimens with a
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20% scallop replacement rate was basically the same as that of the control group. Nguyen
et al. [82] found that the density of concrete specimens with a 40% scallop replacement
rate and a 60% scallop replacement rate dropped by 4% and 7%, respectively. Khankhaje
et al. [83] used seashells (CS) and palm kernel seashells (KS) with replacement rates of 25%,
50%, and 75% to replace coarse aggregate (LS) in the preparation of pervious concrete, as
shown in Figure 5. After 28 days of curing, the density of the pervious concrete specimens
had a slight change of about 3%. It can be seen that scallops had little effect on the density of
pervious concrete, which meets the requirements for pores and can be applied to pervious
concrete with low mechanical performance requirements [84].
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Randrianarimanana et al. [85] used scallop materials with a 2–6 mm particle size to
replace 40% of the coarse aggregate in an experiment to prepare pervious concrete. In
this experiment, a square column composed of the pervious concrete surface, geotextile,
cushion and subbase was designed to simulate the rainfall experiment. The results showed
that the initial vertical saturated permeability coefficient of the whole permeable pavement
system was 0.25 cm s−1. In the hydraulic test, the hydraulic function was affected by
the value of the inlet flow rate and the duration of the test, and the total moisture loss,
including evaporation, was between 9% and 20%. The results showed that the pollutant
removal efficiency of the whole system was about 80%, and that of the pervious concrete
was 27.4%. It can be seen from this experiment that adding seashells to replace part
of the coarse aggregate in pervious concrete could enhance its water permeability and
adsorption capacity with respect to pollutants to a certain extent. In the experiment by
Nguyen et al. [82], the coarse aggregate in the pervious concrete was replaced by scallop
seashells with a particle size of 2–4 mm and replacement rates of 20%, 40%, and 60%.
Experimental tests explored the adsorption degrees and permeability coefficients. The
results showed that both the porosity and the permeability coefficient increased after the
replacement ratio increased, mainly because the seashell materials were more porous
than the natural aggregate, and that the combination of the two different materials would
produce more pores. Similar trends were also found in other articles [86,87]: after increasing
the replacement ratio of seashells, the strength of pervious concrete would decrease, and
the water absorption, porosity and water permeability would increase.

Xia et al. [88] used oysters, ordinary Portland cement, natural gravel, standard sand,
diatomaceous earth, etc., to make permeable oyster shell bricks. After the washed oysters
were dried, they were subjected to controlled heat at 500 ◦C for 1 h for pulverization,
and two types of particle sizes, 2–2.5 mm and 2.5–5 mm, were screened out. They put
the experimental materials together, stirred them into a paste, put them into a breathable
brick mold and vibrated them, and finally compacted them with a metal plate. After
compaction, the experimental materials were calcined in a muffle furnace at 800 ◦C for
10 min and tested after 7 days of curing. The results of adsorption tests and the simulated
permeable adsorptions of copper, zinc, nickel and manganese at different oyster seashell
contents (Figure 6) showed that the adsorption capacity of permeable oyster seashell bricks
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increased with the increase of oyster seashells. The main reason is that the seashell material
itself has a good adsorption capacity for heavy metals, so the adsorption performance
of the test block shows a parabolic upward trend. The permeable oyster seashell bricks
have a continuous adsorption effect and have many applications in daily life, with great
potential in wastewater treatment. It also shows that the seashell material is a feasible
concrete additive material, one which can effectively improve the adsorption performance
of permeable concrete.
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4.3. Study on Adsorption of Seashell Materials Used in Architectural Coatings

With the enhancement of people’s health and environmental protection concepts and
the continuous innovation of coating technology, solvent-based coatings that release toxic
gases are gradually replaced by powders and water-based coatings [89]. Seashells are made
into water-based paints through special processes such as grinding and high-temperature
calcination, which can absorb and decompose harmful gases [90]. Mollusk seashells have a
porous and fibrous double helix structure after modification and calcination. Therefore,
the seashell coating has a wide range of applications in the aspects of alkali resistance,
crack resistance, humidity regulation and adsorption of harmful gases. For example,
using seashell waste as a calcium source, hydroxyapatite is prepared and coated on the
coating substrate, and the prepared coating exhibits excellent corrosion resistance and low
roughness [91].

The formaldehyde purification rate of water-based coatings prepared from seashell
powders increases linearly with the addition of seashell powders [92]. Wang [93] et al.
prepared water-based seashell powder coatings with different amounts of seashell powders
and calculated the effect of seashell powder admixture on the adsorption of formaldehyde
in water-based coatings. The results showed that with the addition of seashell powders
increased from 100 g to 200 g, the formaldehyde purification rate increased from 39.2%
to 68.3%. Seashell powders contain many micropores, and the adsorption performance
increases gradually with the increase in seashell powder content.

The moisture absorption and desorption performances of coatings means that when
the indoor humidity is too high or too low, the coatings rely on their characteristics to adjust
the relative humidity in the space and keep the air at a certain humidity [94]. The porous
structure of seashell powder gives it an excellent moisture absorption capacity. Studies
have shown that 1 kg of seashell powders can absorb 3.244 g of water in a standard indoor
environment [95]. Liquid interior wall coatings containing diatomaceous earth and seashell
powders as functional fillers have excellent humidity regulation functions [96]. Wang
et al. [93] studied the moisture absorption and desorption of seashell powders, calcined
seashell powders and calcined mature seashell powders, and found that all of these three
seashell powders could reach saturation within 36 h. The order of moisture absorption
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rate is calcined seashell powders > calcined mature seashell powders > uncalcined seashell
powders. The main reason is that calcium carbonate is converted into calcium oxide
after seashell powders are calcined, which then reacts with moisture in the air to form
calcium hydroxide. Therefore, even though the specific surface area of calcined and cured
seashell powders is higher, their moisture absorption rate is higher than that of uncalcined
seashell powders, but still lower than that of calcined seashell powders. The order of
dehumidification speed is calcined mature seashell powders > calcined seashell powders >
uncalcined seashell powders. Calcined seashell powders will react with part of the moisture
during the moisture absorption process, and it is irreversible, so the moisture cannot be
completely released.

5. Conclusions

This paper analyzed the adsorption properties of seashells and some applications
of seashells in the field of architecture. First, the influences of the physical and chemical
properties of seashell materials on the adsorption process were analyzed, and the matching
of different types of seashells with the adsorption model was listed. Secondly, the effects
of pH value, contact time, temperature, adsorbent dosage, pollutant concentration and
other factors on the seashell adsorption process were analyzed. The results showed that
the seashells had good adsorption performances. The adsorption performance with respect
to pollutants was better in a neutral or slightly acidic environment, and its adsorption
performance was further enhanced with the increase of temperature. According to the
performance analysis of shells in cement-based materials, given the physical and chemical
characteristics of shells themselves and their adsorption performance, the addition of shells
below 20% would not seriously impact the mechanical properties of cement-based materials.
Meanwhile, grinding seashells into pieces and adding them to cement-based materials can
effectively enhance the adsorption performance of cement-based materials and thus filter
pollutants. In terms of non-structural aspects, cement-based materials are used as aggregate
substitutes to provide a reference for the design of functional cement-based materials.

New adsorption materials have become a research hotspot, and the research on the
applications of cement-based materials in the adsorption field is gradually increasing. How-
ever, there is relatively little research on adsorption performance and pollutant treatment
when adding seashells to cement-based materials.

(1) At present, seashells are mostly used for the adsorption of metal ions, and there are
few studies on the adsorption properties of seashell materials relative to oil pollution.
Seashell materials are porous, and their pore structure has a great influence on the
adsorption performances of oil-absorbing materials.

(2) After calcining, the main components of the seashell change from calcium carbonate
to calcium oxide and calcium hydroxide, and its interior presents a more complex
pore structure. To a certain extent, the physical adsorption of seashells is improved,
but this will also decrease the abilities of shell groups to capture pollutants. Therefore,
the comparison of the adsorption performance of seashells before and after calcination
needs further study.

(3) At present, research on adding seashells to cement-based materials has shown that
seashells offer a certain improvement in the adsorption performance of cement-based
materials, although their strength is lower than that of traditional cement-based
materials. Further research is needed to ensure their adsorption performance while
improving their strength.
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