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Abstract: This article discusses the significance of confined masonry (CM) structures in terms of
their remarkable seismic performance in past earthquake events. However, the variability of CM
structures with differing materials, detailing, and construction practices across different regions
poses challenges in developing standardized design guidelines. To address the challenges, the state-
of-the-art developments in CM are comprehensively reviewed in the present article. This review
encompasses experimental campaigns studying CM walls and buildings to evaluate the effect of
important parameters on their performance, a discussion of various numerical and analytical models
with their respective benefits and limitations, and an examination of design procedures for CM in
nine country codes and their local guidelines. This review identifies gaps in the current knowledge,
including the need for more studies on the performance of CM structures under earthquake loads
and the use of new materials and construction techniques. The article concludes by formulating
future research directions to address the identified gaps, including the need for more experimental
studies and the development of sophisticated numerical models that can capture the complexities of
these structures under the action of different loads. Overall, the article serves as a valuable resource
for researchers and practitioners working on the analysis, design, and construction of CM.

Keywords: confined masonry; seismic behavior; experimental studies; numerical modelling;
structural design

1. Introduction

Throughout history, masonry has been a widely used building material consisting
of masonry units and mortar. Its abundance, affordability, and desirable structural and
architectural properties have made it a popular choice for constructing various structures,
from ancient pyramids to heritage buildings. Combining this versatile material with
innovation and technology has resulted in numerous notable masonry structures. In the
past, load-bearing unreinforced masonry (URM) constructions were quite commonly used
as housing methods even in seismically active areas. However, since the mid-twentieth
century, reinforced concrete (RC) frame structures have become prevalent, replacing the
thick and heavy load-bearing walls of URM with RC load-bearing frames. As a result,
masonry is now primarily used as infill.

The safety of a building is affected by various factors, such as material quality, work-
manship, and whether or not the construction and design guidelines were followed. How-
ever, the cost of construction is primarily influenced by the availability of local materials and
labor. The connection between safety and affordability in housing construction becomes
complicated in seismically active regions, more so in under-developed and developing
countries, as cost significantly influences the building process. The emphasis on mini-
mizing construction costs frequently leads to substandard-quality construction, even for
structures that have accessible design and construction guidelines, such as URM and
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RC frame buildings. The endeavor to prioritize affordability over safety has heightened
seismic vulnerability in certain seismically active areas, as evidenced by several previous
earthquakes [1–6]. Various factors account for the unsatisfactory performance of some of
the prevalent housing typologies, including the adoption of cost-cutting measures that
overlook seismic features and the utilization of inferior-quality materials and workmanship.
It is essential to prioritize safety over affordability and to ensure that construction practices
adhere to appropriate guidelines to reduce the risk of damage and loss of life during
seismic events.

To achieve safe and affordable housing while preserving the authenticity of masonry
construction, various methods of reinforcing masonry walls have emerged over the years.
Confined masonry (CM) is one such housing typology that has been proven to be safe
and affordable. Initially developed for rebuilding the buildings damaged during the
1908 Messina (Italy) earthquake that had a 7.2 magnitude, the CM technique has since
spread to high-seismic-risk countries such as Mexico, Colombia, Chile, and various other
countries [7–9]. CM is utilized in non-engineered and engineered residential construction,
ranging from single- to six-storey buildings. The CM system involves constructing masonry
walls, followed by the cast-in-place of nominally reinforced RC columns and beams at the
periphery of each wall and around the openings. The key components of a typical CM
building are depicted in Figure 1.
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Figure 1. Features of confined masonry building.

Gravity and lateral loads are transmitted from the floor and roof slabs to the walls.
In CM construction, the masonry wall is responsible for transmitting the gravity load
from the slab down to the foundation and for resisting seismic forces. The RC tie-columns
and tie-beams provide support to the masonry walls, improving their lateral stability and
preventing complete disintegration even in severe earthquakes. To enhance the bond
between the masonry walls and the RC tie-elements, toothed edges, i.e., masonry units
that are staggered at the tie-column locations, are often used. Good bonding can also be
achieved by providing dowels anchored into the RC tie-columns. Continuous horizontal
bands (lintel/sill bands) are provided in CM buildings to secure the wall against the
possibility of being knocked out during an earthquake. These horizontal bands with
vertical confining members extend only to the height of the opening and also serve as a
confining scheme for the wall openings. The plinth band transmits the load from the walls
to the foundation and protects the ground-floor walls from excessive settlement in soft soil
conditions. Lastly, the foundation transmits the loads from the structure to the ground.
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Figure 2 shows a simple comparison between the three building construction
types—traditional masonry, infilled RC, and CM—to provide a basic understanding of
their behavior under loading. In traditional masonry, URM walls are designed to with-
stand vertical as well as lateral seismic loads, and these walls primarily fail under shear
from horizontal bed-joint cracking. In contrast, the other two building construction types
additionally use RC elements other than masonry elements. While infilled RC frames and
CM structures may appear similar, their behavior under gravity and lateral loading differs
significantly. In masonry infilled RC frame buildings, the RC members are first cast and
designed to withstand all anticipated loads on the structure; subsequently, an infill panel is
constructed. A small gap usually exists between the beam soffit and the masonry panel due
to the fact that the gravity load transferred to the infill panel is almost negligible. Under
lateral loading, the RC frame attempts to deform in a flexural mode, whereas infill primary
deforms under shear stress, causing separation between the RC members and the infill
walls along the interface. However, in CM structures, concrete is cast in place after the
masonry wall, resulting in an integral composite action of the RC and masonry elements.
The masonry wall is the main load-bearing element in CM; the primary purpose of the
small-sized RC tie-elements is to improve the lateral stability of the masonry wall, enhanc-
ing their deformation capacity and connectivity with other walls and floor diaphragms. CM
offers economic advantages, as it utilizes the full masonry strength in the main load-bearing
element instead of the RC confining frame [10,11]. In summary, CM is a safe, affordable, and
effective method for constructing masonry buildings that can withstand seismic activity,
and it has been successfully implemented in various countries worldwide.
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Figure 2. Comparison of (a) traditional masonry, (b) infilled RC frame, and (c) CM wall.

2. Research Significance

While the fundamental construction approach for homes built under the CM system
remains consistent, there are significant differences in various regions of the world regard-
ing the characteristics of the construction materials used, tie-element detailing, construction
techniques, and other factors. A large number of studies have been carried out in the past
to understand the behavior of these types of structures and to establish some analysis and
design principles for the basic applications of this building type. In this article, different
studies have been reviewed to provide an overall understanding of this system under
gravity and seismic loadings.

The initial focus of the article is on the performance of CM buildings during previous
earthquakes, as documented by multiple research teams. The aim is to identify potential
failure modes and gain a better understanding of the overall behavior of CM buildings when
subjected to loading. Following that, a review of various past experimental investigations
conducted on CM structures is presented to determine the impact of significant parameters
on their lateral load response. The capabilities and limitations of the numerical and
analytical models for simulating the performance of CM structures are then reviewed.
Finally, the design codes of different countries are reviewed and compared in terms of
the recommendations on the design forces (axial, shear and flexural forces) of CM wall.
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Thus, the present article aims to enhance our knowledge of the behavior, analysis, and
design of CM buildings, benefiting code developers, design engineers, and researchers
in the development of systematic analyses and safe and affordable design rules for their
practical application in India as well as other countries.

3. Performance
3.1. General Performance

The ability of CM structures to resist structural loading is achieved through the
combined action of the masonry walls and the adjacent RC confining elements, including
tie-columns and tie-beams as well as a combination of plinth bands, sill bands, lintel bands,
and roof slabs [7,8,12–16]. In CM, failure due to only vertical loading is not considered
a critical issue since masonry walls are always designed such that they are subjected to
relatively less axial compressive stress. Despite being designed to withstand vertical loads,
masonry structures may still experience critical failure modes when subjected to gravity
and lateral seismic loading, as the low tensile strength of masonry can become a limiting
factor. As reported in past literature, CM buildings have performed excellently during
earthquakes [8,17–31]. Observations made during past earthquakes have revealed damage
to CM buildings that had some design and construction flaws. These flaws included the
use of poor-quality materials, insufficient tie-columns at wall intersections and around
openings, a lack of detailing in the RC tie-columns, insufficient anchorage of reinforcement
in the tie-elements, poor diaphragm connections, and torsional issues due to irregularities,
among others. Past earthquake damage reports and research studies have identified several
potential failure modes of CM buildings, which include in-plane failure, overturning
or out-of-plane (OOP) failure, diaphragm failure, connection failure, and non-structural
failure [8,18,32].

The walls of a building are generally classified as either in-plane or out-of-plane walls
(Figure 3), and it is necessary for the walls to have sufficient strength to withstand both
in-plane and out-of-plane loading. In-plane seismic effects have been found to be critical
in ground-story walls [8,33]. On the other hand, OOP effects are prominent in the upper
stories of CM buildings [34].
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The in-plane failure mode is most critical for CM walls as it occurs along the primary
lateral load transfer path (Figure 3a). When subjected to lateral loading in an OOP direction
(as shown in Figure 3b), masonry walls experience bending and shear stresses that can cause
cracks due to the limited tensile strength of the masonry, increasing the risk of collapse due
to overturning. OOP failure in a wall can be vertical or horizontal depending on the relative
distances between the vertical and horizontal lateral supports. Factors such as the wall’s
geometry, diaphragm flexibility, and connection with adjacent confining elements influence
the OOP displacement response of a wall [32]. In earthquakes, the OOP failure of URM
walls is one of the most commonly observed failure modes of URM buildings. In addition,
loose-fitting masonry beneath the concrete beam in infilled RC frames was found to be
quite common, resulting in the OOP collapse of these panels. However, CM walls have
superior integration between the masonry and the adjacent RC tie-elements due to their
unique construction sequences. The effective bond between the confining frame and the
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masonry wall in CM buildings creates a thrust on the beams and columns, forming an
arching mechanism. This leads to better resistance against OOP failure for CM structures
compared to URM and infilled RC frame structures [8,35–37].

The failure modes of CM can vary based on a number of factors, including geometric
parameters such as aspect ratio and slenderness ratio as well as the type and magnitude
of loading as observed in several previous studies (Table 1). As shown in the table, shear
and flexural failure are the two primary failure modes of CM walls when subjected to
in-plane lateral loading [7,8,38]. Cracks develop in the masonry panel of a CM wall when
the tensile strength of the masonry is insufficient to withstand the stress demand. The
pattern of these cracks depends on the relative strength of the mortar joints, the brick mortar
interface, and the brick units; they can either follow the mortar joints (stepped) or pass
through the bricks. The application of in-plane lateral loading can lead to a compressive
failure mode characterized by the crushing of the masonry, particularly when there is a large
vertical load on the wall or when low-compressive-strength masonry is used in construction
(Figure 4a). In contrast, seismic loads can cause the bed-joint sliding shear failure of the
wall (Figure 4b) when there is a low vertical load, weak horizontal mortar joint, and low
concrete shear strength. In most cases, the masonry wall develops a compressive diagonal
strut perpendicular to the tensile stresses when subjected to lateral loading (Figure 4c).
In a few cases (especially for slender CM walls), a portion of the wall may experience
tensile stresses, which results in horizontal flexural cracks in the lower courses of the wall
(Figure 4d).

Table 1. Basic failure modes of CM walls in past experimental studies [12,13,16,35,36,39–56].

Load
Direction Failure Mode References

In-plane

Compressive failure Though crushing of the masonry is observed in almost all studies, compressive
failure is not regarded as a major failure mode.

Sliding shear failure
Sliding shear failure has been observed in limited studies and mostly in CM walls
that have a very low aspect ratio and low gravity loads, as reported by
Yoshimura et al. [39,40], Kuroki et al. [41], Wijaya et al. [42], Gavilán et al. [43], etc.

Diagonal tension failure

Formation of diagonal shear cracks resulting in the diagonal tension failure of the
CM is the most common type of failure observed in past studies by Kato et al. [44],
Aguilar et al. [45], Iiba et al. [46], Yoshimura et al. [39], Tomaževič and
Klemenc [16], Yoshimura et al. [40], Kumazawa and Ohkubo [47],
Yoshimura et al. [48], Yáñez et al. [49], Marinilli and Castilla [50], Zabala et al. [51],
Gouveia and Lourenço [52], Bourzam et al. [12,13], Kuroki et al. [41],
Wijaya et al. [42], Matošević et al. [53], Singhal et al. [35,36], Gavilán et al. [43],
Gavilán [54], etc.

Flexural cracks

Flexural failure is generally not observed in CM walls, but flexural cracks have
been reported by Kato et al. [44], Iiba et al. [46], Yoshimura et al. [40,48],
Zabala et al. [51], Gouveia and Lourenço [52], Matošević et al. [53],
Varela-Rivera et al. [55], etc.

Out-of-plane Vertical/horizontal cracks

Out-of-plane failure is not generally observed in CM walls due to the confinement
effects of RC tie-members. Some studies by Varela-Rivera et al. [56],
Singhal et al. [35,36], etc., have reported vertical/horizontal cracks due to the
out-of-plane response of CM walls.
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in masonry wall, and (e) combination of different in-plane failure modes in CM.

Although individual failure mechanisms can theoretically happen, observed dam-
ages in CM structures usually involve a combination of different modes; e.g., Figure 4e.
It is common to observe in CM structures shear-induced in-plane damages, which can
take different forms, such as bed joint sliding, diagonal compression or strut action, and
diagonal tension in which shear cracks start from the masonry wall and propagate to-
wards the tie-columns, as reported by [1,7,38,43,57,58]. Typically, well-developed diagonal
cracks are seen in CM buildings with light frames, i.e., those with small cross-sections
of tie-columns and a lower percentage of steel, which is often the case. However, for
strong frames where the relative stiffness of the RC frame is significant compared to the
masonry wall, or where the tie-elements have larger sections, the behavior of the CM wall
may be similar to masonry-infilled RC frames [7]. In such cases, as observed by [58], ma-
sonry walls fail through different mechanisms such as bed joint sliding, diagonal cracking,
and toe-crushing.

Flexure-induced in-plane damages, as shown in Figure 4e, are relatively rare and
include horizontal tensile cracks in the lower courses of the masonry and tie-columns at
the tension end of the wall, and they also include the crushing of bricks and concrete in
the compression zone and reinforcement yielding in tie-columns [51,55]. In-plane flexural
damages are more likely to occur in walls with a higher aspect ratio (i.e., slender walls) or
a higher moment-to-shear ratio. CM walls with a high aspect ratio (i.e., narrow width in
comparison to height) are more prone to in-plane flexural failure under seismic loading.
This is especially common in piers between openings or in walls with low overburden
load, as well as in walls with insufficient flexural strength due to a lower percentage
of reinforcement in the tie-columns. One can expect a mixed shear-flexural failure to
occur more frequently in CM structures, although pure flexural failure is not commonly
observed [38].

In CM buildings, tie-columns play an important role in providing additional lateral
support to the masonry walls. In the event of severe damage to the masonry walls, the tie-
columns take over the load-carrying function and prevent the building from collapsing [7].
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This is why it is important to ensure that the tie-columns are properly designed and
constructed to resist the expected loads and forces. According to the literature, under
lateral loading, RC tie-columns and tie-beams of CM walls can act during both tension and
compression, depending on the direction and magnitude of the earthquake and gravity
loads [7,8,59]. Additionally, when subjected to a combined axial load and bending moment,
the wall cross-section develops tensile and compression stresses. However, masonry
and concrete have low tensile strength, so the longitudinal reinforcement of tie-columns
transfers the tensile stresses, while a combination of concrete, masonry, and longitudinal
reinforcement resists the compression stresses [7,38]. In the case of tie-columns, past
observations by [55,60] have shown that shear cracks can occur at the ends, flexural cracks
can occur along the height, concrete crushing can occur at the ends due to compression,
and rebars can yield at the end due to tension.

3.2. Experimental Performance

In recent decades, there has been an increased interest in the further study of CM
buildings because of their good performance during previous earthquakes. To characterize
their seismic behavior, various experimental efforts have been undertaken. The primary
objective of quasi-static cyclic tests and shake table tests carried out on CM walls has been
to characterize the performance of a CM system under gravity as well as under lateral
loadings. The controlled tests provide valuable insight into the performance of structures
subjected to varying levels of lateral drift. In contrast, shake table tests provide details
related to the dynamic behavior of structures required for an earthquake-resistant design.
While past experimental studies have investigated individual CM walls under the action of
different loads, including gravity, in-plane, and out-of-plane, the majority of the previous
studies have concentrated on testing CM walls subjected to lateral in-plane loading.

3.2.1. Influence of Some Important Parameters on Behavior of CM Walls

Meli et al. [7] provides a summary of the experimental studies conducted over the
past 30 years on the in-plane behavior of CM walls. The study states that during in-plane
lateral loads, a masonry wall initially resists the forces. As the masonry panel starts to
crack and lose strength, the vertical reinforcement in the tie-columns engage to resist the
tensile and compressive stresses. However, increasing lateral deformations cause further
damage to the masonry wall and tie-columns, ultimately leading to failure in many cases,
wherein the tie-columns fail under shear stress due to the extension of the diagonal shear
failure of the masonry wall. The OOP behavior of CM walls has also been studied experi-
mentally by various research teams. The CM walls were either subjected to monotonically
increasing uniform static pressures using airbags or subjected to out-of-plane dynamic
loads. For instance, Refs. [35–37] conducted shaking table tests to investigate the OOP
behavior of CM walls. Several experimental studies have been conducted in the past to
understand the behavior of CM structures under various parameters. These parameters
include material properties, overburden pressure, geometric characteristics, number and
spacing of tie-columns, reinforcement detailing of the tie-columns, openings, and number
of stories, among others. The range and frequency of occurrence of some important param-
eters in previous experimental studies were shown in Borah et al. [61]. Understanding the
parameters that affect the behavior of CM structures can aid in developing effective seismic
retrofitting techniques to enhance their performance during earthquakes.

(i) Type of masonry

Iiba et al. [46] conducted shake table tests on CM walls and found that walls con-
structed with Japanese bricks (with a compressive strength of 36 MPa) had 1.5 times higher
lateral strength compared to those constructed with Mexican bricks (with a compressive
strength of 5 MPa) due to the bricks’ higher compressive strength. Meanwhile, Meli et al. [7]
observed that walls made of low-strength hollow concrete blocks had more brittle failures
than those made of solid concrete or clay units. Decanini et al. [62] found that CM walls
made of solid clay bricks exhibited 50% more strength against ultimate cracking than
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against initial cracking. On the other hand, walls made of hollow clay bricks showed only
a 20% increase in strength against ultimate cracking. Furthermore, Yáñez et al. [49] discov-
ered that walls constructed with hollow clay brick units had significantly higher lateral
strength and energy dissipation capacity than those made with concrete masonry units,
but the former specimens degraded in strength and stiffness more quickly. In summary,
the strength, deformation, and energy dissipation behavior of CM walls, as well as the
degradation of their strength and stiffness, varied greatly depending on the type of brick
units used in construction. Walls built with high-strength units demonstrated better lateral
strength and performance under lateral loads, while low-strength hollow units were prone
to brittle failure.

(ii) Overburden load

The capacity of a CM wall to resist sliding is mainly dependent on the friction and
adhesion between the bricks and the mortar. Studies by Yoshimura et al. [40] and Varela-
Rivera et al. [55] showed that an increase in normal stress applied to the wall enhances
the frictional resistance, resulting in improved lateral capacity and energy dissipation
characteristics. The test results by Yoshimura et al. [40] on half-scaled CM walls made of
hollow concrete blocks and with an aspect ratio of about 0.84 revealed that the ultimate
lateral shear strength increased in proportion to the applied vertical axial load. Again,
Varela-Rivera et al. [55] conducted full-scale tests on CM walls with an AR of more than 1 that
were made of hollow clay bricks with reduced longitudinal reinforcement in the tie-columns to
induce flexural failure. Results from the three CM wall specimens of [55]—M4, M5, and M6—for
three different overburden loads ranging from 0.24 MPa to 0.71 MPa (detail specifications can
be obtained from the original paper) were compared in Figure 5a. The findings indicated that
an increase in the axial compressive stress on the wall led to an increase in flexural strength,
while the drift ratios and displacement ductility decreased.
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(iii) Aspect ratio

Aspect ratio is a significant geometric parameter of CM walls, defined as the ratio of
wall height (excluding tie-beam) to wall length (excluding end tie-columns). It predomi-
nantly determines the failure mode of a CM wall. Previous experimental investigations
have typically focused on single-bay CM wall specimens with an aspect ratio range of
approximately 0.6 to 2.75, with the majority of studies examining squat walls or a range of
0.6 to 1.5 [61]. Gavilán et al. [43] tested seven solid CM walls with different aspect ratios
ranging from slender to squat and observed that all walls failed under shear stress. As
shown in Figure 5b, when the aspect ratio decreased (slender wall ME1 with AR = 2.75
to squat wall ME5 with AR = 0.68 were considered here), the lateral strength increased,
and the drift corresponding to the ultimate load decreased. The panels of squat walls with
intermediate tie-columns behaved as a single structure rather than behaving like panels of
isolated walls with the same aspect ratio.

Varela-Rivera et al. [55] also studied slender CM walls, as mentioned earlier. They
observed that wall behavior was characterized by the yielding of the longitudinal rein-
forcement, followed by vertical and diagonal cracks in the masonry panel. The failure of
the walls was considered a pure flexural failure, and included the crushing of the concrete
in the tie-columns. The test results demonstrated that the flexural strength of the CM
wall increased, while the drift ratio decreased as the aspect ratio decreased. Again, the
quasi-static cyclic lateral load testing of CM walls with three different aspect ratios (from
slender to squat) was conducted by Borah et al. [57], and it was found that the relatively
squat wall experienced a significant degradation in post-peak strength due to early damage
in its tie-columns. The study suggests that the current design methodologies for CM walls,
particularly for tie-columns, need to be improved to account for the impact of aspect ratio.

(iv) Number of tie-columns and their spacing

As the lateral load increases following the initial diagonal crack in the masonry of a
CM wall, cracks propagate towards the tie-columns, which leads to shear concentration
at the ends of the tie-column. Hence, the number of tie-columns and their spacing are
important parameters for the analysis and design of CM walls. Marinilli and Castilla [50]
conducted experiments to evaluate the effect of the number and spacing of confining
columns on the seismic behavior of four full-scaled CM walls made of hollow concrete
blocks. The findings suggest that the presence of more confining columns with smaller
spacing appears to distribute the cracking along the masonry panels more evenly, thereby
improving the distribution of damage. Moreover, the addition of confining columns was
found to increase the strength of the walls.
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(v) Tie-column reinforcement

The role of confining elements in masonry walls is to prevent premature failure, but
minimum reinforcement is necessary to avoid sudden failure. However, there is no consen-
sus in the literature regarding the influence of longitudinal and transverse reinforcement in
tie-columns on the lateral strength of CM walls, despite consistent improvement in lateral
deformability and ductility with increasing reinforcement content. Shake table testing of
CM walls with varying axial reinforcements in the tie-columns showed that the four-fold
increase in longitudinal reinforcement percentage (ρl) and two-fold increase in transverse
reinforcement percentage (ρt) did not result in significant increases in lateral strength,
but they did lead to a two-fold increase in drift at peak lateral strength (δm) and a slight
increase in drift at ultimate load (δu) [46]. However, Kato et al. [44] studied half-scaled
CM walls with four different sets of reinforcement detailing in the tie-columns—A: had a
high longitudinal reinforcement ratio (3.8%) and a high shear reinforcement ratio (1.28%),
B: consisted of a high axial (3.8%) and poor shear (0.3%) reinforcement ratio, C: had a poor
axial (0.99%) and high shear (1.28%) reinforcement ratio, and D: had poor axial (0.99%)
and poor shear (0.3%) reinforcement ratio combinations. It was observed that a 3.8-fold
increase in ρl resulted in a 1.5-fold increase in lateral strength and a 1.4-fold increase in δm,
as shown in Figure 5c.

In a study by Zabala et al. [51] on the quasi-static cyclic lateral load testing of CM
walls with varying overburden loads and tie-column reinforcements, a 1.5-fold increase
in ρl, along with a two-fold increase in overburden pressure (σ), led to around a two-fold
increase in lateral load capacity, with δm increasing by around three-fold and a slight
increase observed in δu. Additionally, Quiroz et al. [63,64] demonstrated from the quasi-
static cyclic lateral load testing of four full-scaled CM walls with different tie-element
reinforcements that a 1.3-fold increase in ρl results in a 1.4-fold increase in lateral capacity,
and δm and δu increases by around four times. These studies indicate that the influence
of longitudinal and transverse reinforcement in tie-columns on the lateral strength of
CM walls is complex and may vary depending on several factors, including the type of
testing and the specific details of the wall construction. However, increasing reinforcement
content consistently improves the lateral deformability and ductility of CM walls, which
can enhance the wall’s ability to withstand seismic forces. Therefore, careful consideration
must be given to reinforcement the content of tie-columns when designing CM walls for
seismic regions.

(vi) Connection between wall and tie-column

To ensure good seismic performance and to delay the occurrence of undesirable
cracking and separation between masonry walls and RC tie-elements, sufficient bonding
between them (as shown in Figure 1) is necessary. A study by Wijaya et al. [42] found that
continuous anchorage provided the highest lateral load capacity for CM walls compared to
short anchorage or zigzag toothed connections. However, the wall with zigzag toothed
connections had the lowest capacity, while the wall with short anchorage had intermediate
capacity. It was also observed that the lateral drift capacity at different limit states was
significantly higher in the wall with zigzag toothed connections, followed by those with
continuous anchorage and short anchorage. Another study by Singhal and Rai [35] tested
three half-scale two-bay CM wall specimens with different densities of toothed connec-
tions (no toothing specimen and toothed specimens with the height of the toothed edges
(a) equal to the thickness of two brick course–coarse, (b) equal to the thickness of one
brick course–fine, and the length of toothing being one-half of the brick unit length) under
successive applications of in-plane (quasi-static cyclic) and out-of-plane (dynamic) loading.
They concluded that the increased density of toothing did not have a significant effect on
OOP behavior at the initial stages, but it did cause a significant improvement in post-peak
behavior under in-plane loads. The specimen with a high density of toothing showed larger
ductility and reduced strength degradation compared to the other schemes. Additionally,
the toothing density had a significant effect on the ability to control the OOP displacement
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at a higher in-plane drift level. Moreover, Matošević et al. [53] found that connection details
such as toothed connection and U-shaped dowel connection improved nonlinear wall
behavior and hysteretic energy dissipation (especially after 0.2% drift level, up to which the
structures remained practically elastic). Walls with toothed or U-shaped dowel connectors
exhibited more ductile behavior compared to walls with no connection (Figure 5d). Overall,
these studies demonstrate the importance of proper bonding between masonry walls and
RC tie-elements for good seismic performance; they also demonstrate that connection de-
tails such as toothed or U-shaped dowel connections can improve nonlinear wall behavior
and can increase ductility.

(vii) Reinforcement in wall

The effect of wall reinforcement on the lateral load response of CM walls has been
investigated in various experimental studies in the past. While the placement of a horizontal
wall reinforcement within the mortar joints is not a commonly used technique in many
regions, it has been found to improve the seismic response of CM walls. The inclusion of
reinforcement delays the process of crack initiation and propagation by resisting shear-
induced tensile stresses. This results in an improved lateral load and deformation capacity,
as well as a more uniform distribution of inclined cracking in walls under lateral loading.
The experimental studies carried out by [39,40,45,47,48,51,52,65,66] have investigated the
influence of wall reinforcement on the seismic response of CM walls. Figure 5e illustrates the
improvement in deformation capacity with the provision of horizontal wall reinforcement.

(viii) Opening confinement

When a wall has an unconfined opening, this tends to have a negative effect on its
capacity under seismic loads. During lateral loading, the corners of the openings experience
stress concentration, which leads to shear cracks that destabilize the panel and cause failure.
However, this problem can be addressed by incorporating confining elements around the
openings in a CM wall. The location and arrangement of these elements can vary based
on different studies, such as in [36,41,45,49,67,68]. Based on various experimental studies,
it has been determined that the use of continuous sill and lintel beams can improve the
behavior of CM walls with openings (as shown in Figure 5f).

In the study by Singhal and Rai [68], the lateral load response of a double-panel
perforated (window opening) infill RC frame with only lintel beams, which was named
SI-O2WA (no confinement), was compared with two similar CM specimens with two differ-
ent confining schemes around the window openings. The first scheme included continuous
tie-columns along the entire wall height, with discontinuous tie-beams at the top and
bottom of the window opening, and was named SC-O2WB (vertical confinement), while the
second scheme consisted of continuous sill and lintel beams along the entire wall length,
with discontinuous tie-columns on both sides of the opening, and was named SC-O2WC
(horizontal confinement). SC-O2WB and SC-O2WC showed about a 44% and 80% higher
in-plane capacity, respectively, and a higher energy dissipation capacity (>40%) than the
perforated infill wall SI-O2WA. Additionally, the in-plane as well as the out-of-plane per-
formance of SC-O2WC with continuous sill and lintel bands was better due to the beams
dividing the wall into smaller panels with a lower aspect ratio, resulting in well-distributed
diagonal shear cracks throughout the wall. Conversely, the piers in SC-O2WB were not
confined from the top and bottom, and they experienced more damage due to their large
slenderness. In summary, confining elements around openings in a CM wall are essential
for ensuring satisfactory earthquake performance and delaying undesirable cracking and
separation at the wall-to-tie-column interface.

(ix) Number of stories

There is a lack of literature on the impact of the number of stories on the behavior
of CM buildings. A limited number of studies have been conducted to investigate this.
San Bartolomé et al. [69] carried out a shake table test on a 1:2.5 scaled three-story CM
structure consisting of two parallel perimetric walls connected by RC slabs. Similarly,
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Scaletti et al. [70] conducted pseudo-dynamic tests on one full-scale and one half-scale
CM building consisting of two parallel walls connected by stiff horizontal slabs. Alcocer
and Casas [71], Flores et al. [72], Alcocer et al. [73], and Tomaževič and Klemence [33] also
studied scaled specimens of one- to three-story CM buildings with different configurations.
The results of these tests indicate that damage or collapse usually occurs in the lowest story,
which has also been a common observation during previous seismic events.

3.2.2. Comparison of CM with Other Similar Building Typologies

Researchers have studied the in-plane performance of CM walls in comparison to URM
or infilled RC frame walls. Yoshimura and Kikuchi [74] conducted tests on nine specimens
to compare the behavior of CM walls with URM walls and RC ductile moment-resisting
frames that had the same cross-sectional details as the CM specimen. The CM wall specimen
exhibited higher strength and ductility than the URM and infilled RC frame specimens,
leading to the conclusion that CM construction is an excellent structural system. The results
of the study suggest that CM walls have the potential to be a viable alternative to URM
or infilled RC frame walls in terms of in-plane performance. Tomaževič and Klemenc [16]
conducted a study on three specimens of both plain and confined masonry walls that had
an aspect ratio of 1.5 and were made at a 1:5 scale. The specimens were subjected to a
constant vertical load that was approximately 22% of the masonry compression strength,
and cyclic horizontal displacements. The study concluded that confining the wall with
RC tie-columns improves the lateral resistance of a URM wall by more than 1.5 times and
enhances the deformation and energy dissipation capacity by almost five and six to seven
times, respectively, as shown in Figure 6a. Although both types of walls exhibited similar
stiffness, the confined walls exhibited significant improvement in ductility and energy
dissipation capacity.
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Yoshimura et al. [75] conducted a study to investigate effective seismic strengthening
methods for masonry walls in developing countries. They constructed and tested 28 URM
and CM walls that had an aspect ratio of 0.77 and that consisted of 2D and 3D walls with
or without wall reinforcing bars or U-shaped connecting bars. The test results showed
that the CM wall system with connecting bars at the vertical wall-to-wall connections,
as well as the horizontal wall reinforcing bars, developed reasonably higher ultimate
lateral strength with the increase in vertical axial load, and they showed better ductility
compared to conventional URM specimens (Figure 6b). In a study conducted by Goveia
and Lourenço [52], sixteen walls were tested to investigate the effects of confining the
masonry walls with RC tie-elements and providing bed joint reinforcement. The walls
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were constructed at a 1:2 scale and consisted of URM and CM walls made of lightweight
concrete blocks with an aspect ratio of 1. The results showed that confining the masonry
walls with RC tie-elements improved the lateral capacity of the standard URM walls by
1.17 times and deformation capacity by 1.43 times compared to the CM walls without
bed joint reinforcement. Additionally, providing bed joint reinforcement increased the
lateral capacity of the CM walls by about 1.22 times and deformation capacity by 1.43 times
compared to the similar URM walls.

Some researchers have studied the behavior of CM walls under OOP loading con-
ditions by applying dynamic loads such as shake-table-generated ground motions or
uniformly distributed surface pressure using airbags. Tu et al. [37] conducted shake table
tests on a full-scale single-story CM building to study the OOP behavior of CM walls with
different thicknesses compared to masonry-infilled RC frames. Singhal and Rai [35,36]
studied the seismic performance of CM walls and compared it with typical masonry-infilled
RC frames. They subjected the specimens to successive applications of quasi-static cyclic
in-plane loading and OOP dynamic loading on a shake table. Their study showed that
CM walls with or without toothing exhibited better in-plane and out-of-plane responses
compared to infilled RC frames (Figure 7). The test results showed that the CM walls were
able to withstand significant OOP loads without major damage. The composite action
between the wall and the confining frames prevented the masonry panels from falling
out of the frame and helped to reduce the influence of inertia forces caused by their own
weight. Conversely, the infill panels in the masonry-infilled RC frames separated from the
boundary frame and collapsed due to the OOP inertia forces. The findings suggest that CM
walls may be more resistant to OOP loads than masonry-infilled RC frames.
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4. Analysis Methods

Despite their longstanding history, the engineering behavior of CM buildings has
been established at a slow rate. This is due to the significant variation in materials and
construction methodologies, which has resulted in a limited understanding of the complex
composite behavior of CM walls under different loading conditions. Although limited
studies have attempted numerical modeling strategies for the analysis of CM buildings,
the modeling process is complex, and reliable 3D finite element (FE) models (Figure 8a)
are not easy to obtain due to the computationally intensive nature of the process and the
requirement for a large number of input parameters. To address these issues, different
analytical modeling techniques have been developed for the analysis of CM walls over
the years. Since the behavior of CM walls is similar to that of other building types, such
as masonry-infilled RC frame buildings and URM buildings, various analytical modeling
techniques have been utilized to simulate and analyze CM systems [76]. These modeling
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strategies, as summarized in Figure 8, have varying degrees of refinement and precision for
capturing failure modes and predicting the lateral load behavior of CM walls. Different
commercial software programs such as ABAQUS, ANSYS, LS-DYNA, ATENA, SAP2000,
and ETABS have been utilized to predict the response of structures with these models.
In simplified 2D line element models, the building elements are modeled using either
two-noded beam-column elements or four-noded shell elements. The use of simplified
models became popular in the literature due to their practical applicability.
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Various simplified models have been developed, such as WCM (wide-column model),
STM (strut-and-tie model), ESM (equivalent strut/shell model), ETM (equivalent truss model),
and VDSM (vertical-diagonal strut model). The applicability of different simplified models
was assessed in Borah et al. [77] by analyzing single-story CM walls and a three-story CM
building under linear analysis as well as nonlinear static pushover analysis. Overall, while
analytical modeling techniques have advanced over the years, reliable and practical FE models
are still challenging to obtain, particularly for large structures. This section reviews the past
analytical and numerical research carried out to improve our understanding of the behavior
of confined masonry structures under different loading conditions.

Figure 9 presents a flowchart summarizing the various simplified analysis methods for
CM structures, which depend on their nature of application and the requirement of input
data for nonlinearity definitions. This information has been gathered from various research
studies [8,12,13,16,36,38,43,50,60,65,78–116]. With the exception of the conventional STM,
all models can be developed in any structural analysis program. The nonlinear analysis
methods are divided into two groups based on the input hinge definition types required.
Many researchers have developed prediction equations to estimate the lateral load and
lateral drift of CM walls at three critical stages. The first group, WCM and ETM, use these
equations for nonlinearity definitions in the wide-column and diagonal strut, respectively.
In contrast, the second group, ESM-strut and VDSM, use the input definition of masonry
prism properties for nonlinearity definitions in the diagonal struts.



Buildings 2023, 13, 1282 15 of 29Buildings 2023, 13, x FOR PEER REVIEW  15  of  30 
 

 

Figure 9. Flowchart showing different simplified analysis methodology  for CM structures. Note: 

Bor [113]; M&L3 and M&L2 [38]; S&R [36]; M&L1 [114]; Ria [115]; Bzm1, Bzm2, Bzm3 [12]; M&C 

[50]; T&K [16]; F&A [116]. 

4.1. Finite Element Method (FEM) 

The FE method is widely recognized as a reliable technique for structural analysis, 

offering a comprehensive approach to studying the structure in question (Figure 8a). Ma‐

sonry structures can be analyzed at the micro or macro level using FE analysis, according 

to several past studies [78–80]. Micro‐modeling approaches are typically applied to small 

structural elements in order to accurately represent the heterogeneity of masonry through 

the properties of each constituent and interface. Simplified micro modeling has also been 

used, in which bricks are expanded to up to half of the mortar thickness in both the vertical 

and horizontal directions, while the mortar is clamped into the mortar interface. Macro‐

modeling approaches are commonly adopted to represent the overall structural behavior, 

wherein no distinction is made between the individual units and joints, and the material 

parameters  are  obtained  from masonry  tests under homogeneous  states  of  stress. Re‐

searchers have widely employed both modeling approaches  to predict  the behavior of 

masonry walls. Smoljanović et al. [81] employed an extremely detailed micro‐modeling 

approach to replicate the behavior of CM walls. They used linear elastic triangular ele‐

ments  to discretize the RC and masonry components. Material non‐linearity,  including 

the fracturing and fragmentation of the discrete elements, was taken into account using 

smeared contact elements between  them. The  joint  interface between  the masonry ele‐

ments was modeled by  taking  into account tension cracking and sliding along  the bed 

joints of  the masonry using  the Coulomb dry  friction model. Amouzadeh Tabrizi and 

Soltani [82] also utilized a micro‐modeling approach to simulate masonry walls, where 

masonry  blocks were modeled  using  a  continuum model  and  potential  cracks were 

smeared into the developed model. The masonry joint interfaces were modeled by con‐

sidering shear sliding and  the opening of  joints. Using this approach,  the analysis pre‐

cisely predicted crack propagation and reinforcement bar yielding.   

Figure 9. Flowchart showing different simplified analysis methodology for CM structures. Note:
Bor [113]; M&L3 and M&L2 [38]; S&R [36]; M&L1 [114]; Ria [115]; Bzm1, Bzm2, Bzm3 [12]; M&C [50];
T&K [16]; F&A [116].

4.1. Finite Element Method (FEM)

The FE method is widely recognized as a reliable technique for structural analysis,
offering a comprehensive approach to studying the structure in question (Figure 8a). Ma-
sonry structures can be analyzed at the micro or macro level using FE analysis, according
to several past studies [78–80]. Micro-modeling approaches are typically applied to small
structural elements in order to accurately represent the heterogeneity of masonry through
the properties of each constituent and interface. Simplified micro modeling has also been
used, in which bricks are expanded to up to half of the mortar thickness in both the
vertical and horizontal directions, while the mortar is clamped into the mortar interface.
Macro-modeling approaches are commonly adopted to represent the overall structural
behavior, wherein no distinction is made between the individual units and joints, and the
material parameters are obtained from masonry tests under homogeneous states of stress.
Researchers have widely employed both modeling approaches to predict the behavior of
masonry walls. Smoljanović et al. [81] employed an extremely detailed micro-modeling ap-
proach to replicate the behavior of CM walls. They used linear elastic triangular elements to
discretize the RC and masonry components. Material non-linearity, including the fracturing
and fragmentation of the discrete elements, was taken into account using smeared contact
elements between them. The joint interface between the masonry elements was modeled
by taking into account tension cracking and sliding along the bed joints of the masonry
using the Coulomb dry friction model. Amouzadeh Tabrizi and Soltani [82] also utilized a
micro-modeling approach to simulate masonry walls, where masonry blocks were modeled
using a continuum model and potential cracks were smeared into the developed model.
The masonry joint interfaces were modeled by considering shear sliding and the opening
of joints. Using this approach, the analysis precisely predicted crack propagation and
reinforcement bar yielding.
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Borah et al. [83], Yacila et al. [84], Tripathy and Singhal [85], and Okail et al. [86]
followed a slightly different approach to simulate the behavior of CM walls using a FE
macro model. They used continuum elements to simulate the response of RC elements
and masonry panels. The modeling of the interfaces utilized the traction separation law
to account for the contact between materials, while hard contact was adopted to simulate
the interaction in the normal direction. The frictional behavior in the tangential direction
was described by the application of the Mohr–Coulomb failure criteria. Medeiros et al. [65]
employed a comparable technique, whereby the masonry and RC elements were charac-
terized using the smeared crack model. Eshghi and Pourazin [87] made a modification to
the FE simulation approach by introducing a 2D macro model for CM walls. In this model,
plasticity-based material models were implemented along with a Coulomb friction model
featuring a tension cut-off mode for the interface zone between the confining elements and
the masonry panel. Janaraj and Dhanasekar [88] discussed a macro-modeling approach
to calibrate unconfined and confined masonry panels tested under diagonal compression.
This approach used smeared properties to define both the hollow and the grouted masonry,
which effectively predicted the deformation characteristics, shear strength, and failure
modes of the CM walls.

4.2. Wide Column Method (WCM)

The Wide Column Model (WCM) for CM walls was developed based on the Equivalent
Frame model of URM buildings [89,90]. In this model, the CM wall is represented by a
one-dimensional two-noded centerline beam-column element (wide column) as depicted
in Figure 8b. The section properties of the element are transformed to account for the
composite action of the masonry and the RC tie-columns. The width of the tie-columns is
therefore transformed to equivalent width of the masonry such that the equivalent area of
the wide column section (Awc) becomes equal to

Awc = Aw + 2mAc (1)

Aw is the cross-sectional area of the masonry wall, Ac is the cross-sectional area of the
RC tie-column, and m is the ratio of the modulus of elasticity of the concrete (Ec) to the
modulus of elasticity of the masonry (Em). The tie-beam in the CM walls is represented
by a two-noded beam-column element, and the axial rigidity provided by the masonry
wall below the tie-beams is simulated by modeling the tie-beam as rigid with infinite
stiffness. For walls with openings, two types of beam sections are used, namely rigid
and flexible [91]. The WCM has been recognized as a viable model by NTC-M: 2004 [92]
for the structural analysis of CM structures with commercial computer programs. Terán-
Gilmore et al. [93] demonstrated the application of WCM for analyzing a three-story
building, where nonlinearity (axial lumped hinge) was defined near the bottom of each
wide column using the shear force–deformation relationship from a past backbone curve
model of a CM wall. The applicability of the WCM in the analysis of CM structures
has also been demonstrated by several past studies [91,94,95]. Choosing a trustworthy
backbone model for defining shear hinges in the WCM for CM walls can be a difficult
undertaking. Moreover, the assumption of monolithic behavior in WCM does not permit
the investigation of individual behavior of tie-columns and intricate force transmission in
various elements. The assumption of the monolithic behavior of tie-columns and masonry
walls is primarily applicable when representing the initial elastic response.

4.3. Strut-and-Tie Method (STM)

The Strut-and-Tie Model (STM) was initially developed as a manual method for ana-
lyzing and designing shear-critical structures and disturbed regions in concrete structures.
STM employs trusses to depict internal load paths within the structure, with compressive
stress fields (struts) connected by tensile stress fields (ties). Design member force resultants
are determined using static equilibrium as long as the STM is statically determinate [96,97].
These load paths are based on experience and intuition. Previous studies have used the
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Strut-and-Tie Model (STM) to analyze wall-type structures, considering them as analogous
to deep beams, where the entire wall serves as the D region in accordance with St. Venant’s
Principle. Past literature [8,85,92,98–100] suggests using the STM analysis for CM walls
subjected to lateral loading, where the wall is modeled as a pin-jointed structural truss
with both tension and compression members (Figure 8c). No specific guidelines have been
provided on how to develop an STM for walls with openings. The shear capacity of the
masonry wall is determined by the horizontal component of the diagonal strut force, while
the required amount of reinforcement in the tie-members is found using the calculated
axial forces in the ties.

Brzev and Gavilán [99] and Brzev [100] demonstrated the use of STM in a four-
story two-bay CM wall, where one bay contained a wall with an opening on each story.
However, the study disregarded the strut action of the walls with openings and only
analyzed the structure for the given story shear forces. While Ghaisas et al. [98] proposed
configurations for the orientation of strut elements influenced by the openings and panel
configurations, the ability of these configurations to predict lateral capacity and load
distribution in different members was not validated further. On the other hand, Tripathy
and Singhal [85] and Singhal [101] used the strut-and-tie analysis of a CM wall based
on principal stress resultants obtained from an FE analysis and then estimated its lateral
load-carrying capacity. The axial forces in the ties (fylAsl) are calculated by assuming yielding
in the longitudinal reinforcement of the tie-columns. Asl is the total area of the longitudinal
reinforcement in a tie-column, and fyl is the yield strength of the reinforcement. An empirical
relationship was recommended by [85] to estimate the limiting axial capacity (Fss) of a diagonal
strut in the STM:

Fss = F1

(√
f ′m Aw

)
(2)

where,
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λ
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L

)
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The constants C1 = 2.23 and C2 = 0.1 for H/L > 1, and C1 = 2.65 and C2 = 0.08 for H/L≤ 1.
The variable f ′m is the masonry prism compressive strength; H is the height of the CM
wall, including the tie-beam depth; L is the length of the CM wall, including the tie-column
width; t is the thickness of the wall; Ic is the moment of inertia of the tie-column section;
θ is the angle between the horizontal axis and the centerline of the strut. The axial force in
the diagonal strut is determined by employing the method of joints, which considers the
yielding of the longitudinal reinforcement in the tie-columns, i.e., using fylAsl/sinθ. When
the force exceeds the limiting capacity (Fss), the axial force in the strut is set to Fss, and the
lateral capacity of the wall is determined by the horizontal component of the force.

4.4. Equivalent Truss Method

Rankawat et al. [102] proposed a modified version of the STM for CM walls such that it
can be implemented in commercial software, and the method was renamed the Equivalent
Truss Model. Utilizing the relationship between the axial stiffness of the diagonal strut and
the lateral stiffness of the wall, the diagonal strut width was suggested as

wds =
KiL3

d
tEmL2

c
(5)

Ld is the diagonal strut length, Lc is the centerline length of the CM wall in the STM,
and Ki is the initial stiffness of the wall, which can be estimated using past studies. The
model’s ability to perform nonlinear analysis was demonstrated on a three-story building,
where the nonlinear behavior was limited to the diagonal strut and defined in terms of
stress–strain using the available CM wall backbone model. Therefore, it is crucial to choose
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a dependable backbone model to define the axial hinge in the diagonal strut. Although the
method can accurately estimate the lateral strength of CM walls, it does not account for
tie-column failure as it does not incorporate any nonlinearity in the tie-members.

4.5. Equivalent Strut Method or Equivalent Shell Method (ESM)

The equivalent strut method is a widely used and accepted method for modeling
masonry-infilled reinforced concrete (RC) frame structures. However, the gravity load
and lateral load behaviors of these structures are significantly different from those of CM
wall buildings [103]. The equivalent strut model for masonry infills in RC frames typically
uses a diagonal strut with released end moments to represent the lateral resistance of
the infill panel. Polyakov [104] proposed this method to estimate the lateral stiffness of
masonry infilled RC frames, and it has since been used as the basis for several other models
developed in subsequent years. The single strut model with the width of the strut equal
to one-third of the diagonal length of the panel was proposed by [105], but subsequent
studies showed that this model overestimates the stiffness of the infilled frames. Thus,
various empirical formulations have been proposed to define the effective width based on
different experimental and analytical observations. Paulay and Priestley [106] suggested
that the equivalent diagonal strut width be one-fourth of the diagonal length of the infill
wall; this is widely used and generally an effective width for masonry struts. Some studies
in the literature argue that a single strut cannot accurately simulate the complex interaction
between the masonry panels and the RC frames. As a result, multi-strut models have been
used, which can provide a limited simulation of the contact between the masonry panel
and the RC frame [103].

Previous studies have tried to apply the equivalent strut model to CM walls (as shown
in Figure 8d), but their effectiveness is restricted since they assume the failure modes in
CM walls to be similar to those in masonry-infilled frames. Kaushik and Sanganee [107]
proposed a strut width reduction factor for the equivalent strut model (ESM) to be applied
to CM walls. However, their investigation only focused on calibrating the lateral stiffness
of the CM walls to match past experimental studies. Torrisi and Crisafulli [108] and
Torrisi et al. [109] developed a 12-node masonry panel element model for the nonlinear
analysis of infilled RC frames and CM walls. The model includes six diagonal struts to
simulate the behavior of both infilled RC frames and CM walls. Similarly, some researchers
have employed four-noded shell elements to model masonry walls situated between the
centerline beam-column elements of the RC frame, as depicted in Figure 8e. According
to [110], the equivalent shell model was found to be better than the equivalent strut
model for estimating initial stiffness; however, it was also suggested that the strut model
could be useful for conducting parametric studies. Some other research has employed
linear shell elements to model masonry walls in order to perform a linear analysis of CM
walls [98,107,111,112]. However, this approach is limited, as shell models cannot accurately
simulate nonlinear responses.

4.6. Vertical-Diagonal Strut Method (VDSM)

The Vertical-Diagonal (V-D) strut model is a modified version of the Equivalent Static
Method (ESM), developed for the purpose of analyzing CM structures under the combined
influence of gravity and seismic loading [112]. It was observed that the ESM, a reliable
modeling technique for infilled RC structures, requires significant modifications before it
can be effectively applied to CM structures. The VDSM approach models the tie-elements
of a CM wall as frame elements, while the masonry wall is represented as a combination of
pin-jointed vertical and diagonal strut elements (Figure 8f). To replicate realistic tie-beam
deflection and tie-column axial forces under gravity loading, the VDSM method assumes
that the width of the vertical strut is 75% of the panel length and enhances the flexural
stiffness of the tie-beam by a factor of 20 to 25 times its original stiffness. Both struts are
modeled with a thickness equal to the actual wall thickness. To achieve a similar initial
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lateral stiffness value as observed in experimental studies, the width of the diagonal strut
is set to one-third of its length.

A lumped plasticity approach can be employed at designated hinge locations to
account for nonlinearity in both the diagonal struts and the tie-columns. To capture the
nonlinearity present in masonry walls, axial hinges are defined in the diagonal strut, while
flexure and shear hinges are utilized to simulate the nonlinear behavior of tie-columns.
The application of masonry prism strength to define nonlinearity in the diagonal strut,
as is done in the ESM for infilled RC frame structures, was found to overestimate lateral
strength due to the distinct failure modes exhibited by CM walls. Therefore, to more
accurately reflect the failure of CM walls, the effective shear strength of the masonry (fss),
which represents the strength corresponding to the weakest failure mode in such walls,
was utilized in place of the masonry prism strength as the axial strength of the diagonal
strut. Empirical relationships were suggested for the estimation of fss using six independent
parameters: masonry prism strength ( f ′m), concrete compressive strength (fc), wall aspect
ratio (AR), overburden pressure on tie-beams (σ), % steel reinforcement in tie-columns (ρl),
and thickness of wall (t):

fss = 0.096t0.217 f ′m
0.827 f 0.081

c ρl
0.018(1 + σ)0.235AR0.101 for AR ≤ 1 (6)

fss =
0.134t0.133 f ′m

0.886 f 0.107
c ρl

0.002(1+σ)0.004

AR0.248 for AR > 1 (7)

Borah et al. [112] verified the accuracy of the V-D strut model and the empirical equa-
tions for estimating the lateral load behavior of CM walls by using data from 35 single-bay
and multi-bay specimens across 14 different studies. The model was found to adequately
replicate the realistic linear and nonlinear behavior of CM walls with satisfactory accuracy.

4.7. Using Backbone Curves

Previous experimental studies have also led to the development of analytical backbone
curve models for performance-based designs and for analyzing the lateral load behavior of CM
walls, including their stiffness, strength, and deformability [12,13,16,36,38,43,50,60,113–115].
These backbone curve models for the lateral load analysis of CM walls have either been
developed using methods intended for unreinforced and reinforced masonry walls or based
on a limited number of laboratory tests. These models assume different parameter sets that
can vary regionally, making it difficult to generalize due to their particular calibration for
specific CM wall systems. Significant variations in critical parameters in the experimental
database, such as masonry compressive strength (ranging from 1.7 MPa to 61 MPa) and
shear strength (ranging from 0.24 to 2.74 MPa), concrete compressive strength (10 to
44 MPa), wall aspect ratio (0.3 to 2.75), longitudinal reinforcement in tie-columns (0.5%
to 6.6% of cross-sectional area), tie-column cross-sectional area relative to the total area
(0.07 to 0.32), and vertical axial load on walls (−0.1 to 1.8 MPa), introduce various challenges
for creating idealized load–deformation envelope curves for CM wall analysis and design.
One example of a backbone curve for CM walls is presented in Figure 10, where the
equations are suggested by [113] for estimating the lateral load and lateral drift capacity of
CM walls at three critical stages: initial cracking, maximum load resistance, and ultimate
stage for 20% strength degradation (represented by points A, B, and C in Figure 10). The
suggested equations were developed for two types of masonry using regression analysis
and data obtained from past experimental studies.
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The accuracy of the non-linear analysis results obtained from WCM and ETM depends
on the force–deformation backbone curve model chosen for CM walls, which is represented
by prediction equations. Past studies have focused on predicting lateral loads, with only a
few offering methods for lateral drift estimation at different damage stages. Borah et al. [113]
conducted a quantitative study on the suitability and limitations of existing prediction models
and reported that while some prediction models can confidently predict the maximum lateral
load resistance of CM walls (e.g., [113,116]), predicting lateral drift capacity at different damage
stages remains challenging due to the high level of uncertainty in deformation prediction in
the nonlinear range.

5. Design Methodologies
5.1. Basic Design

Standard codes and guidelines play a crucial role in ensuring public safety and welfare
by ensuring that buildings are designed and constructed to perform adequately in terms of
safety and serviceability. Design codes for CM buildings have been developed in some coun-
tries. Further, several guidelines have been established over the years to provide fundamental
information on CM and encourage its use in construction, as shown in Table 2 [7,59,117–130].
In many other countries, CM buildings are constructed using basic guidelines without the
development of any formal building codes. Common fundamental principles for the seismic
design of CM buildings are shared among all available codes and guidelines. The way seismic
forces are distributed within a structure is determined by the building configuration, including
its size and shape, as commonly noted in various guidelines and codes. Irregular configurations
are generally avoided due to their tendency to cause stress concentration and torsion. To manage
torsion within a manageable range, it is necessary to have a symmetrical arrangement of mass
and balanced stiffness in both directions.

Table 2. Design codes and guidelines for CM [7,59,117–132].

Design Codes Guidelines

Mexico: NTC-M: 2017 [117] Meli et al. [7]
Peru: NT E.070: 2019 [118] Schacher and Hart [59]
Chile: NCh2123: 2003 [119] Brzev et al. [126]

Argentina: INPRES-CIRSOC 103: 2018 [120] Carlevaro and Roux-Fouillet [127]
Colombia: NSR-98: 2010 [121] Arya et al. [128]
Costa Rica: CSCR: 2000 [122] Totten [129]

Europe: CEN: 2005 [123] Boen and associates [130]
China: GB 50003: 2011 [124] Schacher [131]

India: BIS: 2022 [125] Blondet [132]
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The design of a CM building involves meeting several requirements outlined in
various guidelines, which include maximum slenderness ratio, minimum wall aspect ratio,
maximum wall height, minimum wall thickness, tie-element details, and foundation details,
among others. Although the fundamental principles of CM building design remain the
same, the design codes and guidelines differ significantly, especially with regards to the
dimensions of masonry walls and tie-columns, as well as the detailing of tie elements,
materials, and other safety factors [7,38]. To achieve satisfactory seismic performance,
different country codes propose the use of tie-columns measuring between 100 mm and
200 mm with four longitudinal reinforcement bars and ties 6 mm in diameter. However,
the bar diameter for longitudinal reinforcement varies among different country codes, with
some codes such as those of Colombia and Chile recommending 10 mm, while those of
other countries such as Argentina, Eurocode, and China suggest different bar diameters
ranging from 5 to 12 mm.

5.2. Estimation of Design Forces for CM Wall

A structure’s seismic design is heavily reliant on its characteristic force–deformation
relationship, which is determined by three crucial design parameters: stiffness, strength,
and deformability/ductility. In order to ensure adequate seismic performance, the strength
and deformation capacities must exceed the demand imposed by a design earthquake.
While most of the codes specify the design lateral loads in terms of the design shear strength
of a CM wall, a few codes provide empirical relationships to estimate the design flexural
strength too (as shown in Figure 11).
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Borah et al. [57] conducted a study comparing the design-to-experimental strength ratios
of twelve solid, single-story, single-bay CM walls with different specifications (variation mainly
in aspect ratio, masonry strength, percentage reinforcement in ties, etc.) previously tested
by different researchers (MO of Aguilar et al. [45], Pattern 1-Clay Brick-2 of Yáñez et al. [49],
M1 of Marinilli and Castilla [50], 2 and 4 of Zabala et al. [51], JCM of Bourzam et al. [12],
ME2, ME4, and ME5 of Gavilán et al. [43], S1, S2, and S3 of Borah et al. [57]) to examine
the safety margins used in various codes against flexural and shear failure. These tests
were conducted under the action of gravity loads and lateral quasi-static cyclic loads. The
masonry design shear strength (vmd) estimated using different codes is shown in Figure 11a.
Figure 11b demonstrates that there is a significant difference in estimated safety margins
(ratio of design to experimental) in various codes against both shear failure (0.21 to 1.31)
and flexural failure (0.3 to 1.7). The blank spaces in Figure 11b indicate that some codes
(Argentina, Colombia, and China) do not have design flexural strength provisions. The
inconsistent estimation of design strength by the design codes and the limitations of some
of the design codes for the safe and economical design of CM walls against shear and
flexure failure is highlighted in the study. These inconsistencies may be due to the limited
availability of experimental data and the highly uncertain material properties of masonry.
To enhance the construction practices of CM buildings worldwide, it is essential to conduct
comprehensive experimental and finite element studies that consider all critical parameters,
thereby improving the CM building design codes.

5.3. Design Force Distribution in Different CM Elements

The existing design codes and previous research studies lack clear methods for es-
timating individual design forces for the tie-columns and masonry walls of CM walls.
Insufficient research and inconsistent design standards have led to the nominal design of
tie-elements that does not consider the impact of significant parameters. Limited recom-
mendations for the seismic design of tie-members are given by only a few design codes.
The utilization of the method recommended in Peru [118] involves designing the confining
columns to bear a shear force equivalent to a certain fraction of the design shear strength
of the masonry wall, depending on the number of tie-columns in the CM wall and the
length of the wall. According to this method, the shear force in tie-column for one bay CM
walls comes out to be 50% of the design shear strength of the masonry wall. The Argentina
code [120] provides some guidelines for calculating the axial strength of tie-columns in
its design as a fraction of the shear strength of the wall. The Mexican code [117] proposes
a basic approach to calculate the minimum reinforcement area required for tie-columns.
Borah et al. [133] conducted a parametric FE study to investigate the forces in the members
of a CM wall under lateral loading. Based on this, a method was developed to distribute
the shear forces to the tie-columns and masonry walls of CM walls. The proposed ap-
proach suggests designing masonry walls for the total shear force equivalent to the lateral
strength of CM walls. Tie-columns, on the other hand, should be designed for 15% to
50%, depending on factors such as wall thickness, masonry strength, and aspect ratio. To
ensure the safe and economical design, it is important to consider the size, configuration,
and reinforcement detailing. It is recommended that tie-columns should not be required
to resist more than 50% of the total lateral shear force resisted by walls. In cases where
tie-columns are required to resist more than 50% of the total lateral shear force, the CM
walls should be reconfigured and redesigned to avoid such situations.

6. Research Challenges and Future Directions

Numerous studies have been conducted worldwide, such as in Latin American, Eu-
ropean, and Asian countries, particularly in regions with high seismic activities, to study
the behavior of CM structures. Researchers have studied the structural behavior of CM
walls and identified their potential failure modes through experimental investigations and
previous earthquake experiences by exploring the influence of different parameters such as
material, geometry, and loading. Various numerical and analytical modeling techniques
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have been proposed for the analysis of CM structures. Moreover, some construction and
design rules have been established to ensure safe and adequate performance. However,
despite the progress made in understanding CM structures, there are still significant gaps
in our current knowledge, especially in experimental testing, analysis methods, and seismic
design. The existing analytical models and design codes are mainly based on empirical
observations, and more generalized analytical modeling techniques and design methodolo-
gies are needed. Additional experimental and analytical research is necessary to develop a
comprehensive understanding of the behavior of CM structures and to advance our knowl-
edge of seismic design for a desired performance level. In summary, while past studies
have contributed significantly to the understanding of CM structures, further research is
essential to address the remaining gaps and to develop effective seismic design guidelines
and methods for CM structures that can be applied globally.

Additional research studies are needed in several areas to fill the gaps in the cur-
rent knowledge:

• Aspect ratio has a significant influence on the behavior of CM walls. The available
experimental studies are limited and do not provide a sufficient understanding of
the influence of AR on CM behavior, especially considering the significant variations
in material and construction methodologies throughout the world. Further research
is needed to develop a comprehensive understanding of the influence of AR on the
behavior of CM structures. Limited studies have been carried out on slender CM walls;
therefore, additional studies are required to be carried out for walls with ARs greater
than one.

• The current modeling and simulation techniques available for analyzing CM buildings
have limited applications. A suitable interaction model is needed to simulate the inter-
face between wall panel and confining elements. A comprehensive numerical model
that can accurately simulate the response of CM walls to both gravity and lateral loads
is yet to be fully developed. The development of modeling and simulation techniques
is specifically required for multi-storey CM buildings and CM walls with openings.

• The literature reveals significant variations in the size and detailing of tie-elements
used in CM constructions. Additional studies are needed to evaluate the behavior
of tie-columns, particularly in terms of reinforcement yielding and damage patterns
with variations in different parameters such as relative strength and stiffness of wall
and confining elements and aspect ratio. It is important to evaluate the limiting
size and detailing of tie-columns such that the system does not behave like an RC
frame building.

• The current literature does not provide a clear discussion of the distribution of design
lateral forces to masonry walls and tie-columns. Further research is necessary to
understand the behavior of tie-elements under different loading conditions and to de-
termine the appropriate distribution of design forces to different members of confined
masonry buildings. Tiffness of wall and confining elements and aspect ratiolate the
wall-to-tie-column and should be compatable with existing HPU A minimum design
force for which the tie-columns should be designed needs to be established for their
improved design.

• The openings in CM walls have a negative influence on their strength and deformation
capacity; however, only limited studies have been performed to understand the effect
of various configurations of openings. Comprehensive experimental and numerical
studies are needed to quantify the effects of openings and the contribution of confining
elements around them. Studies need to be conducted that consider various sizes and
locations of openings in CM walls.

• To adopt performance-based seismic design methodology for CM structures, a com-
plete backbone profile, i.e., relationship between the lateral load and the corresponding
displacement, must be known. However, the existing models for predicting lateral
stiffness, strength, and deformability at different performance levels of CM walls
need to be assessed. This assessment will help to identify any gaps in the existing
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models and improve performance-based design methodology. Extensive experimental
studies need to be conducted that consider the different parameters discussed earlier
for this purpose.

• Over the years, various guidelines and design codes have been established in different
countries to promote the use of CM and provide basic details on its construction.
However, these guidelines and codes exhibit significant differences and gaps. It is
therefore necessary to evaluate their effectiveness in ensuring the seismic safety of CM
buildings, particularly in countries where the available masonry is weak and soft. This
assessment is essential to ensure that the guidelines and provisions of different codes
can adequately ensure public safety and welfare related to the adequate performance
of CM buildings.
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33. Tomaževič, M.; Klemenc, I. Verification of seismic resistance of confined masonry buildings. Earthq. Eng. Struct. Dyn. 1997, 26, 1073–1088.
[CrossRef]
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