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Abstract: The wood industry faces the dual requirements of improving the quality of timber products
and minimising waste during the manufacturing process. The finger joint, which is an end-to-end
joining method for timber boards, is one of the most important aspects of engineering wood products.
This study presents a numerical and optimisation investigation of the effects of finger-joint design
parameters on the flexural behaviour of finger-jointed timber beams. A numerical model based
on advanced three-dimensional finite element analysis was developed to model the behaviour of
finger-jointed beams. Using the validated finite element (FE) model and automated parameterisation,
a parametric study was conducted to assess the impact of each design parameter of the finger joint,
including finger length, tip thickness, and the number of finger joints. The results indicate that the
number of fingers and finger length significantly influence the maximum load capacity, while the tip
thickness has a marginal effect on performance. This study identifies a design threshold of five fingers
and a 14 mm finger length for achieving efficient, high-performance finger-joint designs. In addition,
the multi-objective modified firefly algorithm (MOMFA) was proposed to maximise the finger joint
resistance while simultaneously minimising the material waste. The optimisation shows that there
will be a significant amount of wood waste when using traditional single-objective optimisation that
only focuses on structural performance. In contrast, the proposed method achieves comparable load
capacity while significantly reducing waste (up to 53.31%) during the joining process. The automated
finite element modelling framework and holistic optimisation developed in this study can be used to
design and optimise engineering wood products for construction applications.

Keywords: engineering wood product; finger joints; waste reduction; finite element method;
parametric study; firefly optimisation algorithm

1. Introduction

Rapid population growth and urbanization in recent decades have significantly in-
creased the pressure on the planet’s limited resources and environment. As one of the
oldest materials introduced to humankind, wood has been brought back into the public eye
due to its sustainable characteristics and potential benefits. With larger span capabilities
and more consistent performance compared to traditional timber structures, engineered
wood product (EWP) has been gradually used in the timber industry to replace low-volume
and low-performance raw timber over the years. The finger joint, a method for interlocking
end-to-end joints of timber boards (i.e., timber beams) in the EWP manufacturing process,
has become one of the most important steps in the production of EWP [1]. A finger joint is
defined as the interlocking end joint manufactured with the machinery process of cutting a
series of similar, tapered, symmetrical shapes from the end of two identical wood pieces and
splicing them end-wise using adhesives [2]. This joint has many valuable characteristics
such as straightness, dimensional stability, and unlimited length [3]. Moreover, finger joints
also enable the ability to join short timber beams to longer ones and to utilise low-grade
lumbers. Finger-jointed timber beams can be laminated together to produce common EWPs
such as glue-laminated timber (GLT) and cross-laminated timber (CLT).
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The primary criterion for finger joint assessment is the load-bearing capacity of struc-
tures, which is determined using flexural tests and is frequently used for quality control
in EWP manufacturing [4]. Several reports highlight the importance of finger joints in
the flexural performance of EWPs [4,5]. For example, according to several experiments
on the flexural behaviour of CLT panels conducted by Navaratnam et al. [6], finger joint
failure is one of the most common failure modes observed in the tests. As a result, several
design factors related to finger joints such as finger length, tip width, pitch, and finger slope
should be considered in the production of an EWP to assure its structural performance [6–8].
Several studies have been conducted to investigate the effect of finger joint design param-
eters on structural performance by performing experiments or using the finite element
method (FEM). For example, Özçifçi and Yapıcı [9] experimentally investigated the bending
strength of various finger joint samples with different finger lengths. The wood types in
this study included Oriental beech, oak, Scots pine, poplar, and Turkish fir. The authors
found that for all species, as the finger length increases, the bending strength also increases
due to a larger bonding area [9]. In the study by Abdul Hamid et al. [10], the impact of
finger length and orientation on the bending strength of the finger joint made with Kelat
wood (Syzygium spp.), one of the commercial timbers in Malaysia, was determined. The
study also concluded that a long finger length will have a higher strength, while the finger
orientation has a minimal impact. Even though design parameters are interrelated with one
another and can have different effects on the timber beam, very few papers have considered
the combined effect of these variables. Tran et al. [11] conducted a numerical optimization
study on the flexural behaviour of finger-jointed timber beech beams. Finger length, pitch,
and tip thickness were simultaneously optimised using the response surface method (RSM)
and kriging interpolation. The obtained numerical results revealed the flexural capacity of
the finger joint beam was improved from 10.4 kN to 13.8 kN by optimizing its geometry.
Hasanagić et al. [12] optimised the tensile break force of a timber joint. The variables were
wood density, the ratio of sample width and thickness, and the ratio of finger length and
pitch. Higher values of the fracture tensile force were obtained based on a mathematical
model as a function of the maximum tensile force.

In the literature, it has been shown that the structural performance of a finger joint
generally can be improved by increasing the bonding area. These studies had a single
objective, focusing only on structural performance. However, in a study by Ratnasingam
and Scholz [13], the strength of different finger configurations was evaluated. The study
concluded that although using longer fingers made the finger-jointed panels stronger,
the additional material loss during machining offset the strength gain. Therefore, the
enlargement of the bonding area brings inherent adverse effects, such as extra wood waste,
by-products (i.e., sawdust), and adhesives. Firstly, it is well-known that preventing wood
waste and improving wood utilization can help mitigate environmental impacts while
also reducing pressure on global forest resources to meet construction demand [14,15].
Secondly, additional machining and jointing result in increased sawdust. When sawdust
is not properly disposed of, it becomes a health and environmental hazard [16]. Thirdly,
because of the larger bonding area, more adhesive is required. Even though adhesives
are made up of both natural and synthetic ingredients, they may have detrimental envi-
ronmental consequences and pose serious health risks to humans, depending on the type
of adhesive used [15,17]. Thus, more knowledge is required on the ways to improve the
structural integrity of finger joints while simultaneously increasing the efficiency of the
timber manufacturing process, lowering wood waste, and assisting the timber industry in
addressing growing environmental challenges.

The preceding literature review shows that the behaviour of finger-jointed beams has
been of great research interest, but the aforementioned research was solely focused on
the finger joint strength without considering the associated possible waste. As previously
discussed, this dual requirement is mutually contradictory. The major objective of this paper
is to improve the mechanical strength of finger joints while simultaneously minimising the
wood waste generated when using joining processes. The specific objectives include the



Buildings 2023, 13, 1186 3 of 19

development of an advanced 3D FE analysis, an investigation of the effect of finger joint
geometry, and finally, an optimisation framework for finger joint design. The nonlinear,
anisotropic Hill elasto-plastic model and cohesive modelling techniques were developed to
capture the nonlinear, orthotropic behaviours of timber and the failure of the bond lines
in the finger joint. To verify the accuracy and reliability of the developed 3D FE model,
the obtained numerical results were compared with experimental results. The effect of
finger joint parameters, including finger length, tip thickness, orientation, location, and the
number of fingers on the flexural performance of finger-jointed timber beams is investigated
using an advanced, 3D FE analysis. This paper implements a multi-objective modified
firefly algorithm (MOMFA), which has superior performance in complex engineering
optimisation [18–21], to perform the multi-objective optimisation for the geometry of the
finger joint to maximise the load capacity and minimise the waste created during the
joining process.

2. Numerical Simulation
2.1. Materials’ Laws

Bending tests are typically used to determine the flexural capacity of finger-jointed
beams and are a part of quality control in the production of EWP [4]. Figure 1 presents
a schematic showing the four-point bending test of a spruce timber beam with a fin-
ger joint used in this study. The setup was adopted from the experiment conducted by
Khelifa et al. [22]. The spruce timber samples were kept in a typical air-conditioned room at
a temperature of 20 ◦C. The moisture content of the timber samples was similar, averaging
around 12%, while the corresponding density was determined to be 460 kg/m3 [22]. To
assess the performance of a finger-jointed beam, a finger joint was fabricated at the middle
of the beam, as depicted in Figure 1, in accordance with the EN408 standard [23]. Two
supporting pins were placed underneath the timber beam specimen with a span of 852 mm.
The cross-section of the beam was 80 mm × 42 mm. As shown in Figure 1, two loading
forces were applied using on the top of the specimen at an equal distance on both the left
and right sides of the centre location until failure occurred. The material behaviours of
timber were modelled with the Hill elasto-plastic model, whilst the glue lines at the finger
joint location were modelled using cohesive behaviour. The material models and cohesive
behaviour used in this study are presented in the following sections.
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Figure 1. A schematic showing the four-point bending test of a spruce timber beam with finger joint
from Khelifa et al. [22] (not to scale; dimensions in millimetres).

2.1.1. Hill Elasto-Plastic Model

Due to the orthotropic responses of wood, i.e., wood behaves differently in different
directions [3,24], modelling the flexural behaviours of timber structures is challenging. The
Hill elasto-plastic model, implemented with the ABAQUS package [25], can be used to
describe the orthotropic responses of timber structures. This model is commonly used
to describe the behaviour of orthotropic materials, especially wood [11,22,24–27]. This
section briefly presents fundamental formulations of the Hill elasto-plastic model. Read-
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ers are encouraged to find a detailed description of the Hill elasto-plastic model in the
literature [11,22,24–27]. The linear, orthotropic behaviour of timber is given as follows:

σ11
σ22
σ33
σ12
σ23
σ13

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 2G12 0 0
0 0 0 0 2G23 0
0 0 0 0 0 2G13





ε11
ε22
ε33
ε12
ε23
ε13

 (1)

Given that:
C11 = E1(1− v23v32)Ґ
C22 = E2(1− v13v31)Ґ
C33 = E3(1− v12v21)Ґ

C12 = E1(v21 + v31v23)Ґ
C23 = E2(v32 + v21v31)Ґ
C13 = E1(v31 + v21v32)Ґ

Ґ = 1/
(
1− v2

12 − v2
23 − v2

31 − 2v12v23v13
)

(2)

where σ11, σ22, and σ33 are normal stresses and σ12, σ13, and σ23 are shear stresses; ε11, ε22,
and ε33, are normal strains and ε12, ε13, and ε23 are shear strains; E1, E2, and E3 are Young’s
moduli in the principal directions (1—L/longitudinal, 2—T/tangential, 3—R/radial); υij are
Poisson’s ratios; and G12, G13, and G23 are shear moduli in the principal directions. Follow-
ing the linear, elastic response, Hill’s potential function defines the nonlinear, anisotropic
plastic response of timber and is given as follows:

f (σ) =
√

H(σ11 − σ22)
2 + G(σ11 − σ33)

2 + F(σ22 − σ33)
2 + 2Nσ2

12 + 2Mσ2
13 + 2Lσ2

23 (3)

where the Hill’s constants (F, G, H, L, M, and N) are given as follows [25]:

F =

(
σ0)2

2

(
1

σ2
22

+
1

σ2
33
− 1

σ2
11

)
=

1
2

(
1

R2
22

+
1

R2
33
− 1

R2
11

)
, (4)

G =

(
σ0)2

2

(
1

σ2
33

+
1

σ2
11
− 1

σ2
22

)
=

1
2

(
1

R2
33

+
1

R2
11
− 1

R2
22

)
, (5)

H =

(
σ0)2

2

(
1

σ2
11

+
1

σ2
22
− 1

σ2
33

)
=

1
2

(
1

R2
11

+
1

R2
22
− 1

R2
33

)
, (6)

L =
3
2

(
τ0

σ23

)2

=
3

2R2
23

, (7)

M =
3
2

(
τ0

σ13

)2

=
3

2R2
13

, (8)

N =
3
2

(
τ0

σ12

)2

=
3

2R2
12

, (9)

where σ0 is the reference yield stress and σij is the yield stress value.
It should be mentioned that the difference in compression and tension behaviours

of timber, as discussed in the literature [24], is not considered in the anisotropic plasticity
material model. As the compression and tensile strength are equal, one can either choose
the smaller values or the mean values between both of them. In this paper, the same
material properties were used in the present FE model as given in Khelifa et al. [22]. The
material inputs of the Hill elasto-plastic model can be found in Khelifa et al. [22].
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2.1.2. Cohesive Behaviour

For finger-jointed timber beams, failure behaviours are complicated, but failure com-
monly occurs at the bond lines of the finger joint [3]. Lara-Bocanegra et al. [3] and
Fortuna et al. [5] stated that the weakest part of a glued–laminated structure timber is
at the finger joint. Moreover, Colling [28] conducted numerous experiments on timber
beams and reported that 220 out of 277 timber beams have failure modes related to the
finger joint. It is observed from the literature that the adhesive layer (glue) at the finger
joint usually fails before the timber itself reaches its ultimate stress. Traditionally, phenol–
resorcinol–formaldehyde (PRF) has been widely used for finger jointing, but there has
been an upsurge in the use of melamine–urea–formaldehyde (MUF) adhesive [29,30]. The
main reason for the decline in the use of PRF is its brown colour, which is perceived as
aesthetically undesirable [29,31]. Additionally, under heat treatment conditions, MUF adhe-
sives have demonstrated superior performance compared to PRF adhesives [32]. Thus, the
adhesive used for the sample test in this study was a 2-component MUF adhesive. Cohesive
behaviour is a significant advancement in fracture mechanics and finite element modelling,
and it has been used in several fields of timber engineering, especially in the investigation
of the delamination process [24]. Therefore, the cohesive modelling technique was selected
to model the glue in the finger joint connection. It should be noted that cohesive and
adhesive are not interchangeable terms and have different meanings. Cohesive refers to
the ability of materials to resist being pulled apart. Adhesive, on the other hand, refers to
a substance used to bond two surfaces together. In this case, adhesive refers to the glue
used in the finger joint connection that is being modelled using the cohesive modelling
technique. A detailed procedure for evaluating adhesive constants can be found in the
previous publication [33]. The cohesive behaviours of the glue consist of the linear elastic
traction–separation, damage initiation, and damage evolution behaviours, as illustrated in
Figure 2. The linear elastic traction–separation behaviour is given in the following equation:

σn
σs
σt

 =

Kn 0 0
0 Ks 0
0 0 Kt


δn
δs
δt

 (10)

where σn is normal stress; σs and σt are shear stresses; δn is the separation in the normal
direction; δs and δt are the separation in the transverse direction; and the Kn, Ks, and Kt
parameters are the initial stiffness. When the cohesive behaviours of the glue reach the
maximum stage, the damage to the glue starts. The damage initiation can be defined using
the peak values of the contact stress or the peak values of the separation. In this study, the
quadratic stress damage initiation criterion was found to be suitable to model the flexural
behaviour of finger-jointed spruce beams. The quadratic stress damage initiation is given
as follows: (

σn

σmax
n

)2
+

(
σs

σmax
s

)2
+

(
σt

σmax
t

)2
= 1 (11)

where σmax
n , σmax

s , and σmax
t are the maximum traction, as depicted in Figure 2. In this study,

the elastic and damage initiation material properties of MUF adhesive in the finger-joint
interface were obtained from the literature [11,22], as presented in Table 1. According to
Tran et al. [11], these cohesive parameters were determined as design variables and identi-
fied with a parametric study using a Python script file to achieve the numerical curve that
best fitted the experimental data. Readers are encouraged to refer to Refs. [11,22,30,34,35]
for further detail on the determination of the cohesive parameters.

Table 1. Material inputs for the cohesive behaviours of glue lines at a finger joint.

Initial Stiffness Damage Initiation

Kn = 4.9 N/mm3 σmax
n = 1.9 MPa

Ks = Kt = 4.9 N/mm3 σmax
s = σmax

t = 9.8 MPa
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After reaching the damage initiation criterion, the stiffness of cohesive behaviours
is degraded following the damage evolution law. A scalar damage index, D, is used to
represent the overall damage to the glue. The damage index D affects the traction of
cohesive behaviours as follows:

σi= (1− D)σund
i i = n, s, σ (12)

where σund
i is the traction predicted with the elastic traction–separation behaviour (i.e.,

no damage). For the linear softening of cohesive behaviours, as shown in Figure 2, the
evolution of the damage index D is defined as follows:

D =
δ

f
m
(
δm − δ0

m
)

δm

(
δ

f
m − δ0

m

) (13)

where δm is the effective separation, which is computed as follows:

δm =
√

δ2
n + δ2

s + δ2
t (14)

In Equation (13), δ0
m and δ

f
m are the effective separation at damage initiation and

complete failure, respectively. It was reported in the study conducted by Khelifa et al. [22]
that for finger-jointed spruce beams, the normal and shear separation at complete failure
are 0.0021 mm (δ f

n) and 4.7 × 10−5 mm (δ f
s,t), respectively. The effective separation δ

f
m at

complete failure can be computed from δ
f
n and δ

f
s,t using Equation (14).

2.2. Finite Element Model

In this study, the four-point bending test of the finger-jointed spruce timber beam
(Figure 1) was modelled using the Abaqus FEM package. The 3D model of the beam with a
finger joint is presented in Figure 3.

The 3D FE model for the finger-jointed timber beam consists of three parts: a left beam,
a right beam, and supporting steel bars. The left and right beam parts were modelled with
the anisotropic elastic–plastic constitutive law presented in the previous section. The left
and right beams were connected at the finger joint using cohesive contact behaviour, as
presented in Section 2.1. The majority of the beam was meshed using hexahedral elements
(C3D8R), as presented in Figure 3. At the finger-joint region, an adaptive meshing technique
with tetrahedral elements (C4D4) was used to achieve the good quality meshing of complex
finger-joint geometry, as shown in Figure 3. A mesh convergence study was performed to
examine the effect of mesh size on the numerical results. The steel bars with a diameter
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of 20 mm and a length of 42 mm were modelled with C3D8R elements (mesh size of
2 mm). The steel bars were assumed to behave elastically (E = 200 GPa and v = 0.29) in the
numerical simulation.
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In the numerical simulation, fixed boundary conditions (BCs) were applied at the
bottom of the supporting bars. The displacement BCs were applied at the two loading
locations. A surface-to-surface contact was used to simulate the interaction between the
beam and supporting bars. In this study, the numerical simulations were performed
using the Abaqus/Standard solver. The convergence of simulations due to material and
geometrical nonlinearity, as well as the failure of the glue, was an important issue that
required thorough investigation. In this study, a small-time increment and a large number
of allowable increments were used to overcome the convergence issue and achieve the
converged solutions from the simulations.

3. Optimization Method and Implementation
3.1. Automated Simulation Framework for Parametric Study

In order to investigate the effect of the finger joint design parameters on the flexural
performance of finger-jointed timber beams, the 3D FE model presented in the previous
section is further developed in this section. Firstly, the FE model was fully automated and
parameterised using Abaqus/Python scripting to independently investigate the effect of
the finger length (L f ), tip thickness (B), and the number of finger joints (n) in parametric
studies. This investigation provided a preliminary understanding, and the results were
verified against observations from the literature to ensure the robustness and versatility of
the FE model.

The rational selection of the parameters
(

L f , B, and n
)

for the parametric study is
explained as follows. Rao et al. [36] recommended that the tip thickness (B) should be from
0.4 mm to 0.8 mm to maximise the structural performance. Moreover, in an experimental
study reported by Khelifa et al. [22], the tip thickness (B) was 1 mm. As a result, the tip
thickness (B) was chosen to vary from 0.4 mm to 1.2 mm in this study. For the finger length
(L f ), Rao et al. [36] examined the performance of finger joints with the finger length varying
from 12.7 mm to 28.27 mm. In another study, Tran et al. [11] used finger lengths ranging
from 15 mm to 30 mm. Therefore, the finger length (L f ) was varied from 10 mm to 34 mm
in this parametric study. On the other hand, the number of fingers is influenced by the



Buildings 2023, 13, 1186 8 of 19

reduction factor υ, which is a ratio of the tip thickness (B) to the pitch ( h). As the total
depth of the beam (H) is constant, the number of fingers (n) is calculated as follows:

n =
H
h

(15)

According to the EN 15497 [37] standard, the reduction factor υ must be less than or
equal to 0.2. Therefore, the number of fingers (n) varied from two to nine in this parametric
study. Using the automated simulation framework, an FE model for each combination of(

L f , B, and n
)

was generated, meshed, and analysed automatically. The numerical results
were also extracted and analysed automatically for this parametric study.

Apart from the maximum load capacity, the total volume of the wood waste is also
considered in this study. As shown in Figure 4, the wood waste is the total loss of volume
due to the fabrication of the finger joint. This waste volume can be obtained from the timber
beam geometry.
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A flowchart showing the Python scripts (so-called fitness function used in the later
section) is presented in Figure 5.
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3.2. Optimisation Algorithm

The proposed multi-objective modified firefly algorithm (MOMFA), which is based
on our previous work [18–21], was used to determine the finger joint variables. The
conventional FA introduced by Yang [38] is based on three idealized rules:

1. The attractiveness of each firefly attracts other fireflies.
2. The attractiveness of a firefly is proportional to its brightness and decreases as the

distance increases.
3. The objective function determines the brightness of a firefly.

Chou and Ngo [39] and Bui et al. [18] developed a modified firefly algorithm (MFA),
which incorporates auxiliary elements, such as chaotic maps, AIW, and Lévy flight, to
enhance the performance of the traditional FA. The initial population is initially generated
using a logistic map [39,40]:

Xn+1 = ηXn(1− Xn), 0 ≤ X0 ≤ 1 (16)

The attractiveness of each firefly is determined as:

β =
(

βt
chaos − β0

)
e−γr2

ij + β0 (17)

βt
chaos =

{
0 βt−1

chaos = 0
1/βt−1

chaosmod(1) otherwise
(18)

rij =
∥∥xi − xj

∥∥ (19)

where β is the firefly attractiveness at each iteration; β0 is the firefly attractiveness at r = 0;
and r is the distance between any two fireflies i and j computed using Equation (19). The
chaotic parameter η is set to 4 and the absorption coefficient γ is set to 1 based on sensitivity
analyses. Equation (20) depicts the movement of firefly i when it is attracted to another,
more attractive firefly j:

xt+1
i = xt

i + β
(

xt
i − xt

j

)
+ αtsign[rand− 0.5]⊗ Lévy (20)

The last term in Equation (20) is a randomisation term with αt that is modified with
adaptive inertia weight and is calculated as:

αt = α0θt (21)

where α0 = 1 is the initial randomisation parameter; θ = 0.9 is the randomness reduction
constant based on sensitivity analyses and the literature; rand ∈ [0, 1] is a random number
generated with a uniform distribution in [0, 1]; and ⊗ is entry-wise multiplication. Lévy
flights are determined as follows:

Lévy ∼ s =
u

dυe1/τ
(22)

where u and v are determined with a normal distribution:

v ∼ N(0, 1) (23)

u ∼ N(0,

Γ(1 + τ)sin
(

πτ
2
)

Γ
[
(1+τ)

2

]
τ2

τ−1
2


2/τ

) (24)
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where is τ = 3/2 and Γ is the Gamma function, as determined using Equation (25):

Γ(z) =
∫ ∞

0
tz−1e−tdt (25)

A Pareto-optimal was used in the multi-objective optimisation in this study. To locate
solutions in the Pareto optimum set, MOMFA was performed to determine the collection of
non-dominated solutions:

PF =
{

s ∈ S
∣∣∃s′ ∈ S : s′ ≺ s

}
(26)

where S is the solution set and ≺ is the non-dominance relationship. Based on Pareto
dominance, solutions in a population P are separated into disjoint subsets and ranked
based on a non-dominated sorting algorithm (NDSA). Readers are encouraged to refer
to [41] for a detailed NDSA.

Figure 6 depicts an entire flowchart showing the MMOFA. It is worth mentioning that
the fitness function can be found in Figure 5. The number of samples and the maximum
number of iterations in this study were 30 and 50, respectively.
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4. Results and Discussion
4.1. Model Validation

In order to validate and assure the accuracy of the developed FE model, the numerical
results were compared with the experimental results reported by Khelifa et al. [22]. First,
the behaviour of the control beam (i.e., no finger joint) was used in the validation process.
The experimental setup for the control beam was identical to that for the finger-jointed
beam presented in Figure 1. Three mesh sizes (14, 8, and 5 mm) were investigated for
mesh convergence, as shown in Figure 7. Figure 8 presents the effect of mesh size on the
load-displacement results for the control beam. It can be seen that with the mesh size of
14 mm (1188 C3D8R elements), the mesh is coarse, as shown in Figure 7, and the numerical
result has not converged yet. The models with mesh sizes of 8 mm (5900 elements) and
5 mm (23,808 elements) produce very similar results. As a result, the mesh size of 8 mm
was used in the following numerical results.
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Figure 9 presents the comparison between the present numerical result and the experi-
mental result reported by Khelifa et al. [22]. Figure 9 shows that the developed FE model
accurately captures the flexural behaviour of the control beam. It is also observed that
the maximum load from the experiment is about 6% higher than that from the numerical
simulation. This difference can be attributed to the effect of boundary conditions. In the
numerical simulation, the surface-to-surface contact was assumed between the beam and
supporting bars, which is a simplified representation of the actual boundary conditions in
the experiment.
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Next, a comparison between the FE modelling and the experiment on timber spruce
beams with a finger joint was performed to validate the cohesive behaviours of glue lines
at the finger joint. Figure 10 presents a comparison of the numerical and experimental load–
displacement results of finger-jointed beams. Similar to the control beam, the experimental
results were obtained from Khelifa et al. [22]. The numerical simulation was carried out
for the vertical finger joint with a finger length L f of 22 mm, a tip thickness B of 1 mm,
and the number of fingers n of 7. It can be observed from Figure 10 that the developed
FE model can capture very accurately the flexural behaviours of the finger-jointed beam
obtained from the experiments. The maximum load capacity obtained from the present
FE model is 6.01 kN, whereas the average maximum load capacity obtained from the
experimental tests is 6.58 kN (8.5% difference). The accuracy in the numerical results can
be attributed to the careful investigation into the applicability of the Hill model presented
above and the accuracy in cohesive modelling. Moreover, it can be seen that the behaviour
of the finger-jointed beam is brittle, i.e., the finger-jointed beam behaves linearly up to the
failure point. On the other hand, the control beam, as shown in Figure 9, behaves in a
ductile manner. Khelifa et al. [22] reported that the failure of a finger-jointed timber beam
occurs due to the failure of the glue lines at the finger joint. In particular, delamination
takes place at the glue bond lines near the bottom of the beam and propagates towards
the top of the beam. In the simulation, the CSQUADSCR index, which represents the
quadratic stress damage criterion, as discussed in Section 2.1, Equation (13), was used
to quantify the failure of the glue lines. If the CSQUADSCR index is equal to 0, there is
no damage. Whilst a CSQUADSCR index of 1 indicates the completely damaged stage
of the glue lines. Figure 11a presents the evolution of the CSQUADSCR index in the
simulation at the beginning, at 6.2 mm mid-span displacement, and at 13.0 mm mid-span
displacement. Figure 11a shows that the failure first occurs near the bottom of the finger
joint and continues propagating towards the top. This results in the opening of the finger
joint, as shown in Figure 11b. The observation from the numerical simulation is well-
correlated with the experimental observation in Khelifa et al. [22]. The validation results
(Figures 9–11) demonstrate the accuracy and reliability of the developed FE model. It
should be acknowledged that the density or specific gravity of timber, depending on the
type of wood (hardwood or softwood), influences its mechanical properties, with higher
values resulting in better performance. Additionally, the adhesive used affects the bending
strength of the beam and can contribute to shear strength failure. While both adhesive and
wood types are crucial for finger joint strength, investigating their effects was beyond the
scope of this study, which focused on improving finger-jointed timber beam strength by
modifying the finger joint geometry. The subsequent section presents a parametric study
on different finger joint geometries, including finger length, tip thickness, and number of
finger joints.
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4.2. The Effect of Finger Joint Design Parameters
4.2.1. Impact of Individual Design Parameter

Using the validated FE model, this section presents the results for the effect of finger
joint parameters on the flexural performance of finger-jointed timber beams using a series
of parametric modelling. To assess the effect of the number of fingers, Figure 12 shows
the normalised performance for a different number of fingers (n = 2–9), whilst the finger
length L and tip thickness B were kept constant as 22 mm and 1 mm, respectively. Figure 12
clearly shows that increasing the number of fingers increases the flexural performance of
the finger-jointed beam. This can be explained by the fact that more fingers result in a larger
surface area of glue, hence improving the maximum load capacity [3]. The performance
increase from 1.75 kN to 5.81 kN between two fingers and five fingers. However, Figure 12
also shows that the performance reaches a convergence point at five fingers. This thereby
suggests that a threshold number of fingers (five fingers in this study) exists to maintain
the optimal performance of a finger joint. When increasing the number of fingers above
the threshold, the maximum load capacity does not increase significantly. According to
Rao et al. [36], the pitch has a minimal effect on the timber joint strength. Since the pitch
is related to the number of fingers, this further explains the flexural performance of the
finger-jointed beam with respect to the number of fingers observed in Figure 12. In addition,
the number of fingers is also governed by the reduction factor υ, as presented in Section 3.
According to the EN 15497 [37] standard, the reduction factor υ is required to be less than
or equal to 0.2. Using Equation (15), this means that the number of fingers should be less
than 8 (with the given beam depth and tip thickness in this study) for an efficient design.
The information from Rao et al. [36] and EN 15497 [37] standard is well-aligned with the
numerical results presented in Figure 12.

Similarly, Figure 13 presents the effect of the finger length (Lf) on the flexural perfor-
mance of the finger-jointed timber beam. As discussed in Section 3, the finger length L f
varies 10 mm to 34 mm in this investigation. The number of fingers n and tip thickness
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B were kept constant at seven fingers and 1 mm, respectively. The result shows that the
vertical bending strength of timber samples generally increases with the increase in the
finger length. Figure 13 shows that the performance increases significantly as the finger
length L f increases from 10 mm to 14 mm. Then, the increasing trend becomes flattened.
According to the experiments conducted by Hu et al. [42], for the finger length of 13, 20,
25, and 35 mm, the influence of finger length (13–35 mm) on the flexural performance of
finger-jointed beam is minimal. The experimental observation in Hu et al. [42] is confirmed
with the numerical results presented in Figure 13. The results show that the performance
of 14–34 mm finger length is very similar. Nonetheless, the present numerical result also
shows that there is a dramatic drop in the performance (approximately 25%) when the
finger length decreases from 14 mm to 10 mm. It is worth mentioning that the finger length
less than 13 mm was not tested in the study of Hu et al. [42]. The result from Figure 13 also
aligns with the common practice in the Canadian EWP industry, where the finger length
typically ranges from 22 to 29 mm [43].
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Figure 14 shows the normalised performance of the finger-jointed timber beam with
respect to the variation in tip thickness (B from 0.2 mm to 1.2 mm) while the number of
finger joints n and finger length L f were kept constant at seven finger joints and 22 mm,
respectively. In general, there are two clear patterns in the relationship between the tip
thickness and the flexural performance of finger-jointed timber beams. From 0.2 mm to
0.7 mm, the relationship is fluctuating, whereas the performance increases when the tip
thickness B increases from 0.7 mm to 1.2 mm. Nonetheless, it is worth mentioning that the
impact of the tip thickness B (Figure 14) on the flexural performance of a finger-jointed
timber is marginal, compared to that of the number of finger joint n (Figure 12) and finger
length L f (Figure 14). The difference between the best and worst performance is only
0.15 kN, as presented in Figure 14.
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4.2.2. Combined Impact of Design Parameters

Finger joint design parameters, such as finger length, tip width, pitch, and finger slope,
are interrelated with one another and can have different effects on the timber beam, as
discussed in other studies [7,22]. Therefore, this section examines the combined effect of
the finger length (L f ), tip thickness (B), and number (n) of fingers at the same time to find
the best combination of design parameters. It is worth mentioning that this investigation
requires a considerable number of simulations and would not be possible with a traditional
brute-force search. Therefore, in this investigation, the MOMFA proposed in Section 3
is used to simultaneously maximise the load capacity and minimise the generated wood
waste. As mentioned in Section 3, in this optimisation, the reduction factor (υ) varied from
0.1 to 0.2, the finger length (L f ) varied from 15 mm to 30 mm, and the tip thickness (B)
varied from 0.4 mm to 1.2 mm.

The two objectives of this study are mutually contradictory. Therefore, the MOMFA
was used for the multi-objective design. There are two main methods for multi-objective
design: the first is to combine all the separate objective functions into a single function
using weighting criteria, and the second is to identify the entire Pareto optimum solution
set. The second approach was used in this study. If a solution is dominant among other
solutions in the solution space, it is said to be Pareto optimum. The performance of each
solution is assessed primarily using the placement of its location closer to a preferred
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region with a higher maximum load capacity and a lower waste volume—the closer the
solution is to the bottom right of Figure 15, the better performance. A convergence study
was conducted to ensure the result from the MOMFA converged, and it can be observed
that 50 iterations are sufficient for this study.
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Figure 15 presents the optimisation results for the finger-joint beam. The white circles
represent the baseline design. The maximum load capacity and the waste volume of
the baseline design are 6.01 kN and 37 cm3, respectively. Each triangle represents an
optimal solution obtained from the multi-objective optimisation using the MOMFA. In the
traditional approach with only the load capacity objective being considered, the optimal
solution with the highest load capacity on the top is chosen without considering the waste
volume. This solution increases the finger joint resistance to 6.22 kN but incurs a waste
volume of 53 cm3. However, the Pareto front indicates that the optimal solution for the
bottom achieves a maximum load capacity of 6.18 kN while generating only 25 cm3 of
wood waste. Compared to the previous option, the load capacity is only 0.64% smaller, but
the waste volume is 53.31% lower. Therefore, it is necessary to have a holistic approach
during the optimisation processes before choosing the best combination, which is the
bottom optimal solution in this case. The baseline and best combinations are summarized
in Table 2. The best combination of geometric finger joints not only increases the load
capacity but also significantly reduces the waste generated during the joining process.
Comparing the baseline and best combination in Table 2, it is observed that the number
of finger joints increases while the finger length decreases. In this combination, fingers
are closely packed together, which creates a higher tension between the joint as well as
better bond-line areas between the fingers. This alleviates the need to make deeper cuts to
fabricate the finger joint and reduces waste generation.
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Table 2. The best and worst combination of the finger joint design parameters.

Parameter

Baseline Best
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5. Conclusions

This study aimed to investigate the flexural performance of finger-jointed timber
beams with respect to different finger joint parameters, including finger length, tip thickness,
and number of finger joints. To this end, the advanced, three-dimensional (3D) finite
element (FE) model was developed based on the Hill elasto-plastic constitutive law for
the orthotropic material responses of timber and the cohesive modelling technique for the
behaviours of glue lines at the finger joint. The developed FE model was validated with
a comparison of the numerical and experimental results. The comparison shows that the
numerical simulation can accurately capture the flexural behaviours (the maximum load
capacity and failure) of timber beams with and without a finger joint. The discrepancies
between the numerical and experimental are 6% (without a finger joint) and 8.5% (with a
finger joint), respectively, for the maximum load capacity.

Using the validated FE model, a series of parametric modelling was conducted to
investigate the effect of a finger joint, including the finger length (L f ), tip thickness (B), and
number (n) of fingers, on the flexural behaviour of a finger-jointed timber beam. From this
comprehensive parametric study, it is concluded that the number of fingers (n) and finger
length (L f ) significantly influence the maximum load capacity, whilst the tip thickness
(B) has a marginal effect on the performance. Furthermore, the results indicate that there
exists a design threshold for the number of fingers and finger length to achieve an efficient,
high-performance design of finger joints (n = 5 and L f = 14mm in this study).

In addition, the multi-objective modified firefly algorithm (MOMFA) was used to
maximise the finger joint resistance while simultaneously reducing the generated waste
material. These findings demonstrate that if waste reduction is not addressed, there will
be a substantial amount of wood waste. The best combinations of design parameters
(n, L f , and B) can not only increase load capacity but also reduce the waste generated
during the joining process. Therefore, it is necessary to consider the manufacturing process
holistically. The holistic framework presented in this study can support researchers and
engineers in effectively designing and optimizing the performance of finger-jointed timber.
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