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Abstract: Tunnels built in geologically active areas are prone to severe damage due to fault dislocation
and subsequent earthquakes. Using the Ngong tunnel in the East African Rift Valley as an example,
the dynamic response of a fault-crossing tunnel and the corresponding sensitivity are numerically
simulated by considering four factors, i.e., tunnel joint stiffness, isolation layer elastic modulus,
strike-slip fault creep-slip and earthquakes. The results show that a valley-shaped propagation of
peak displacement at the tunnel invert occurs in the longitudinal axis direction under an earthquake
alone. Then, it transforms into an S-shaped under strike-slip fault creep-slip and subsequent seismic
shaking. The tunnel invert in the fault zone is susceptible to tensile and shear failures under strike-slip
fault creep-slip movements of less than 15 cm and subsequent seismic shaking. Furthermore, the
peak tensile and shear stress responses of the tunnel invert in the fault zone are more sensitive to
fault creep-slip than earthquakes. They are also more sensitive to the isolation layer elastic modulus
compared to the joint stiffness of a segmental tunnel with two segments. The stress responses can be
effectively reduced when the isolation layer elastic modulus logarithmic ratio equals −4. Therefore,
the isolation layer is more suitable to mitigate the potential failure under small strike-slip fault
creep-slip and subsequent seismic shaking than segmental tunnels with two segments. The results of
this study can provide some reference for the disaster mitigation of fault-crossing tunnels in terms of
dynamic damage in active fault zones.

Keywords: fault-crossing tunnel; strike-slip fault; creep-slip and subsequent seismic shaking;
dynamic response; peak displacement; peak stress; sensitivity

1. Introduction

Tunnels are considered one of the greatest achievements of civil engineering in the
20th century, enabling railways and highways to traverse mountains and rivers. With the
expansion of transportation networks, an increasing number of tunnels are being built in
high-intensity seismic zones with numerous active faults. The tunnel is inevitably needed
to cross active faults. The Sichuan-Tibet railway has to cross the twelve deep and large
active faults in the Qinghai-Tibet Plateau [1]. As an example of one belt and one road
engineering, the Mombasa-Nairobi Railway crosses several faults in the East African Rift
Valley with a creep slip velocity of about 2 mm/a [2].

Based on the movement direction, active faults can be roughly classified into normal,
reverse and strike-slip faults. According to the movement mechanism, it is divided into a
stick-slip fault or a creep-slip fault. The stick-slip fault, i.e., coseismic fault, may induce
permanent ground deformations, such as fault dislocation, and subsequent earthquakes [3].
This always causes severe damage to fault-crossing tunnels, although tunnels are generally
considered safer than aboveground structures [4–7]. For instance, the Tawarayama tunnel
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at the Futagawa fault zone, with a dislocation of 2.2 m, suffered lining cracks and localized
failure in the 2016 Kumamoto earthquake [8]. The Daliang Tunnel crossing the Lenglongling
fault was severely damaged with a maximum 2.7 m lining dislocation in the 2022 Menyuan
earthquake [9]. Though the fault creep-slip may not induce an earthquake, it can also cause
permanent ground displacement [10]. Theoretically, the creep-slip fault dislocation and
subsequent earthquake may also cause severe damage to the fault-crossing tunnel.

Under the creep slip of normal, reverse or strike-slip faults, it results in the S-shaped
displacement of the tunnel [11]. The tensile, shear and crushing failure of the tunnel
lining invert and vault occurs at fault zones with a range from 3.5 to 4.0 times the tunnel
diameter [10,12]. The tensile and shear stresses increase with the increase in the fault
dislocation amplitude and width, surrounding rock density, tunnel segment length and
tunnel diameter [13–16]. At the same time, they also decrease with increasing fault dip
angle, the distance between adjacent fault planes and lining thickness [13,14]. The tensile
strain of the fault-crossing tunnel decreases to the compressive strain with the increase in
the crossing angle [17]. The extent and range of shear damage of the fault-crossing tunnel
can be reduced by the tunnel segment, the increase in the tunnel depth and an adjustment
of joint properties [18–20]. Under seismic shaking, the dynamic responses of tunnels at
fault zones are amplified compared with the tunnels at other zones. They are dominated by
multiple factors, as Tsinidis and He Chuan pointed out [21]. They increase with the increase
in the wave impedance ratio of the surrounding rock to the fault, fault dip angle, the ratio
of lining thickness to tunnel diameter, the earthquake wave dip angle and earthquake
intensity [22–26]. Furthermore, the seismic response of the fault-crossing tunnel can be
reduced by the implementation of segmental lining and isolation layers [24,27].

While the fault-crossing tunnel undergoes a fault creep-slip and subsequent earth-
quakes, the dynamic responses of the tunnel are dominated by fault dislocation direction
and magnitude, segment length and joint properties, and the effect of an earthquake can-
not be ignored [28–30]. The dynamic response of the fault-crossing tunnel is not a linear
superposition, for various reasons. One reason is that the fault’s dislocation induces the
reflection and refraction of seismic waves [31]. Another reason is that the dissipated energy
of the tunnel sharply increases under their subsequent actions, when compared to one of
their actions [32]. The third reason is that the cumulative attenuation of the tunnel’s overall
stiffness induced by a normal fault creep slip increases the seismic dynamic response of
the tunnel following subsequent earthquakes [33]. An adjustable flexible joint can not only
improve the aseismic capability of the tunnel, but it can also impede the reduction of the
overall tunnel stiffness by the concentration of shear tunnel displacement into the tunnel
connection. Thus, the dynamic stress response exceeding its permitted bearing capacity
is avoided by using the adjustably flexible joint or multilevel brittle-flexible joint [34,35].
However, when tunnel joints are applied, the upper structure of the tunnel still exhibits a
severe seismic response [36]. This means that fault-crossing segmental tunnels may suffer
damage from fault seismic shaking. Therefore, it is necessary to implement seismic miti-
gation methods for segmental tunnels to reduce the dynamic responses. At present, there
have not been any studies on the isolation layer and tunnel segments for the reduction of
tunnel dynamic damage from the subsequent actions of fault creep-slips and earthquakes.
Therefore, this paper intends to numerically investigate the effects of the isolation layer
and tunnel segments on tunnel dynamic responses under a strike-slip fault creep-slip and
subsequent seismic shaking. The strike-slip fault is chosen with the consideration that the
creep slip of the strike-slip fault has more influence on the tunnel than the reverse and
normal faults [37].

In this study, a numerical fault-crossing tunnel model is presented based on the Ngong
railroad tunnel in the East African Rift Valley. Then, the dynamic response of the tunnel
is numerically experimented with in consideration of the tunnel joint stiffness and the
isolation layer elastic modulus under a fault creep-slip and a subsequent earthquake. The
sensitivities of the above factors to the dynamic response of fault-crossing tunnels are
analyzed. Thus, a corresponding suggestion for fault-crossing tunnel dynamic damage
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reduction is presented. The results of this study can provide some reference for the disaster
mitigation of fault-crossing tunnels in terms of dynamic damage in an active fault zone.

2. Numerical Analysis of a Tunnel under Strike-Slip Fault Creep-Slip and Subsequent
Seismic Shaking
2.1. Engineering Background

The Ngong railroad tunnel, part of the Nairobi-Malaba Standard Gauge Railway in
Kenya, is located in the transition zone between the Kapiti Plateau and the East African Rift
Valley in Africa. With a length of 1.11 km and a maximal burial depth of 49.5 m, the tunnel
is surrounded by strongly weathered trachyte and weakly weathered trachyte, and crosses
faults F18-2, F9-1 and F9-2, as shown in Figure 1. The F9-1 fault, which is nearly vertical to
the tunnel axis, has a width of approximately 10 m and an inclination angle of 60◦. The
F9-1 fault is inclined to horizontal slippage, with a magnitude of dislocation of 10 cm in
100 years [2]. The tunnel has a horseshoe-shaped cross section, as shown in Figure 2. Its
primary and secondary supports were designed by the New Austrian Tunnelling Method.
In this study, the dynamic response of the Ngong tunnel with the F9-1 fault is investigated
by numerical simulations.
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Figure 2. Typical cross section of the Ngong tunnel.

2.2. Numerical Model

This paper mainly studies the response of fault-crossing tunnels with tunnel joints and
an isolation layer under strike-slip fault creep-slip and subsequent earthquakes. Several
simplifications have been made, including the plain ground surface, neglecting the tunnel
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excavation process and considering ideal homogeneity and isotropy for the tunnel, the
surrounding rock and the fault. The effects of the material inhomogeneity and joints in the
rock mass from the response of the tunnel were beyond the scope of this study.

A 3D numerical model of the Ngong railroad tunnel (as shown in Figure 3) was
established using FLAC3D software. The overall dimension of the numerical model was
200 m × 62.8 m × 99 m to meet the requirements of the boundary effect. The primary
support of the tunnel has only experienced the load in the construction stage, while the
secondary lining has resisted load effects throughout the service period. Therefore, the
primary support was ignored, and only the 50 cm-thick secondary lining was considered.
In addition, the joint between two segmental tunnels was numerically simulated with the
interface technique, as shown in Figure 3c [35]. Previous studies have shown that increasing
the thickness of the isolation layer can effectively reduce the seismic response of the tunnel.
However, it is not significant to increase the thickness of the seismic isolation layer beyond
the thickness of 20 cm [38,39]. Thus, a 20-cm-thick isolation layer was implemented between
the lining and the surrounding rock.
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A total of 25,200 solid elements were used in the model. The grid meshes were
refined in the areas near the tunnel and the fault to improve the efficiency of the numerical
simulation, as shown in Figure 3a. The isotropic elastic constitutive model was adopted
for the lining and shock absorption layer, while the Mohr-Coulomb constitutive model
was employed for the surrounding rock and fault. The local damping coefficient (αL) was
calculated by αL = πD, where D is the critical damping ratio. According to engineering
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experience, the critical damping of the surrounding rock is usually taken as 5% [24].
Reference [40] recommended that a damping ratio of 0.3–0.7 could be selected for isolation
to reduce the structure’s acceleration and displacement response under low-frequency
ground motion. Materials with low elastic modulus and high damping, such as rubber and
foam concrete, are commonly used for tunnel seismic isolation. The damping ratio of the
rubber damping layer given in Reference [41] is 0.35. Thus, this study’s critical damping
ratio of the isolation layer was 0.35. The interface elements between the surrounding rock
and the fault were established as shown in Figure 3c. The normal stiffness (Kn) and shear
stiffness (Ks) of the interface elements were calculated by:

Kn = Ks = 10max


(

K + 4
3 G
)

∆Zmin

 (1)

where K is the bulk modulus, G is the shear modulus, and ∆Zmin is the smallest dimension
on the connecting area in the normal direction of the contact surface. The mechanical
parameters of the model were obtained based on a series of laboratory tests, as shown in
Table 1.

Table 1. Properties of materials used in the 3D numerical model.

Component Density
/kg·m−3

Elastic Modulus
/GPa Poisson’s Ratio Internal Frication

Angle/◦
Cohesion

/MPa

Strongly weathered trachyte 2400 6.5 0.32 30 0.5
Weakly weathered trachyte 2400 6.5 0.28 45 1

Fault 2200 2.0 0.3 24 0.4
Lining 2500 35 0.2 - -

2.3. Analysis Procedure
2.3.1. Numerical Experimental Design

The 108 (4 × 3 × 3 × 3) overall cases were designed through a full-scale experiment
with four factors; i.e., fault dislocation magnitude (∆), earthquake intensity denoted by
peak ground acceleration (PGA), tunnel joint stiffness logarithmic ratio (γ) and isolation
layer elastic modulus logarithmic ratio (η), as tabulated in Table 2. Considering that the
strike-slip fault in the engineering background will experience a 10 cm creep-slip within
100 years, the maximum fault dislocation magnitude (∆) was selected as 15 cm. A 0.4 g PGA
was generally induced by a catastrophic earthquake with an intensity of 8 and was applied
in this paper. Reference [35] indicated that the joint stiffness is related to the elastic modulus
of the joint and the joint width. Here, we did not consider the effect of the joint width,
which was assumed to be unit 1; then, the joint stiffness was related to the modulus of the
joint material. The elastic modulus of the isolation materials in the previous studies ranged
from 10−6 to 102 GPa [18,41]. The joint stiffness was made dimensionless to facilitate the
analysis of the sensitivity of the joint stiffness. Thus, the joint stiffness logarithmic ratio
(γ) was selected from −7 to 1, representing the stiffness variation in the range of 10−6 to
102 GPa/m. In addition, the elastic modulus of the isolation layer was taken with reference
to the literature [39]. γ and η are calculated by:

γ = lg
(

ks1

ks2

)
= lg

(
kn1

kn2

)
, η = lg

(
E0

E1

)
(2)

where ks1 and ks2 are the shear stiffness of the tunnel and the surrounding rock at the fault
zone, respectively. kn1 and kn2 are the corresponding normal stiffnesses. kn1, kn2 are 46,
46 GPa/m, respectively. E0 and E1, with a value of 35 GPa, are the elastic modulus of the
seismic layer and the lining, respectively. ks1, ks2 and E0 are tabulated in Table 2.
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Table 2. Parameters used in the analysis.

Level ∆ /cm PGA/g γ η Ks1 (GPa/m) Kn1 (GPa/m) E0 (GPa)

1 2.5 (∆min) 0.1 (PGAmin) −7 (γmin) −4 (ηmin) 4.6 × 10−6 4.6 × 10−6 3.5 × 10−3

2 5 0.2 −4 −2 4.6 × 10−3 4.6 × 10−3 0.35
3 10 0.4 (PGAmax) 1 (γmax) 0 (ηmax) 460 460 35
4 15 (∆max) - - - - - -

2.3.2. Loading Process and Monitoring

The loading process was divided into the fault creep-slip and subsequent seismic
motion stages. During the creep-slip stage, all the nodes on the sides and bottom of
the model were constrained, and gravity was applied to obtain the model’s initial stress
equilibrium. Then, the fault and footwall were fixed, and a small velocity of the hanging
wall along the horizontal (x-axis) direction was achieved up to the required fault dislocation
magnitude, as shown in Figure 3d. A small velocity magnitude was selected to avoid the
quasistatic fault dislocation developing into a dynamic process. The dynamic module of
FLAC3D was opened after the strike-slip fault creep-slip. During the seismic motion stage,
selecting an appropriate seismic input is the main issue in evaluating the seismic response
of a cross-fault tunnel. From previous seismic events, earthquake damage to tunnels was
mainly caused by low-frequency ( f < 20 Hz) waves [38]. The 1940 El Centro ground motion
was recorded during the M6.9 strike-slip earthquake at a soil site located approximately
8 km from the surface projection of the fault, which is one of the earliest recorded and
most widely used near-field ground motions [42]. Therefore, the El-Centro wave, which is
the representative near fault wave, is used to analyze the seismic response in this study.
The waveforms with a peak acceleration of 0.4 g are plotted in Figure 4, with filtering and
baseline correction. Then, the wave is input from the bottom of the model, as shown in
Figure 3d. The free-field boundary was used at the side of the model to eliminate the wave
reflection effect (as shown in Figure 3e).
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To record the dynamic response of the tunnel lining, 26 monitoring sections were laid
along the tunnel’s longitudinal axis, as shown in Figure 3f. Each section had six monitoring
points involving the vault (I), right arch springing (II), left arch springing (III), right arch
foot (IV), left arch foot (V) and the invert (VI), as shown in Figure 3b. The displacement and
stress of each monitoring point were monitored during the fault dislocation and subsequent
earthquake processes, and then the peak displacement and peak stress were obtained.
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2.4. Sensitivity Analysis

To facilitate the analysis of the effect of the above four factors on the peak stress
response of the tunnel lining, the following indices were defined by:

ω1 =
peak σ1

ftk
, ω2 =

peak τ

fτ
, ω3 =

peak σ3

fck
(3)

where ω1, ω2 and ω3 represent the relative peak values of the first principal stress (σ1),
maximum shear stress (τ) and third principal stress (σ3) among the stress-time history
curves, respectively. ftk, fτ and fck are the standard tensile, shear and compressive strength
concrete with values of 2.51, 3.80 and 29.6 MPa, respectively [43,44].

The relative peak stress response of the tunnel lining was established as a function
of the normalizations of ∆, PGA, γ and η using the multivariate nonlinear fitting method
with the expression of

ωi = f
(
α∆, αPGA, αγ, αη

)
i = 1, 2, 3 (4)

where α∆ = ∆−∆min
∆max−∆min

, αPGA = PGA−PGAmin
PGAmax−PGAmin

, αγ = γ−γmin
γmax−γmin

, αη = η−ηmin
ηmax−ηmin

, ∆max, ∆min,
PGAmax, PGAmin, γmax, γmin, ηmax and ηmin are tabulated in Table 2.

3. Verification of the Numerical Model

The numerical model is calibrated with the results of the physical model. To the best
knowledge of the authors, the combined effect of strike-slip fault creep-slip and subsequent
seismic excitation on tunnels has not been experimentally carried out. Therefore, the
numerical model is verified by the responses of the Ngong railroad tunnel under seismic
shaking, the combination of a normal fault creep-slip and subsequent seismic excitation,
respectively [33,45].

Figure 5 shows the shaking table test model of the Ngong railroad tunnel with the
geometric similarity ratio of 1/20. The length of the model tunnel is about three times
the fault width (W). This test was conducted under seismic shaking, as well as under
fault creep-slip and subsequent seismic excitation. Further details are available in the
literature [33,45].
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Figure 5. Experimental model. (a) Outer profile of the model; (b) Inside of the model.

Figure 6 plots the numerical and experimental tunnel strains under 0.2 g and 0.4 g
seismic shaking, respectively. The fault dislocation on the numerical model boundary is
set to zero. Figure 6 shows that the peak longitudinal strains of the lining invert from
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the numerical model are similar to the ones from the shaking table experiment. Both are
characterized by the amplification of peak longitudinal strains at the center of the fault
compared to the ones at other positions along the tunnel axis.
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Figure 6. A qualitative comparison of the shaking table test and numerical simulation: (a) 0.2 g
seismic excitation; (b) 0.4 g seismic excitation.

Figure 7 plots the numerical and experimental tunnel strains under fault creep-slip
(2 cm and 4 cm) and subsequent 0.2 g seismic excitation. The fault dislocation direction
of the numerical mode is changed from a horizontal direction to a vertical one. This
change represents the normal fault creep slip. Figure 7 shows that the numerical model
and shaking table experiment also have similar peak longitudinal strains lining the invert
and a amplified peak longitudinal strain at the center of the fault zone in comparison to
other positions along the tunnel axis. In summary, the proposed numerical tunnel model
provides consistent results with the shaking table test. Therefore, this numerical tunnel is
verified to be reasonable and can be used for further analysis.
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Figure 7. A comparison of the shaking table test and numerical simulation: (a) 2 cm creep-slip and
subsequent 0.2 g seismic excitation; (b) 4 cm creep-slip and subsequent 0.2 g seismic excitation.

4. Numerical Results
4.1. Peak Displacement Response of the Tunnel

Figure 8 shows the peak displacement and peak displacement gradient at the tunnel
invert along the tunnel longitudinal direction under strike-slip fault creep-slip (∆) and
subsequent 0.4 g (PGA) seismic shaking. The peak displacement direction and magnitude
in Figure 8 are determined by the horizontal fault displacement and vertical earthquake
displacement. It can be seen in Figure 8a that the presence of an isolation layer changes
the hill-shaped propagation of peak displacement at the tunnel invert to the valley-shaped
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distribution under seismic excitation alone. The reason for this is that the isolation layer’s
damping performance and low modulus reduce the vibration amplitude of the tunnel at
the fault. Furthermore, the valley-shaped distribution of peak displacements under seismic
excitation is transformed into an S-shaped distribution under the combined fault dislocation
and seismic excitation. Correspondingly, the peak displacement gradient propagation alters
from a valley to a hill shape, as shown in Figure 8b. Notably, regardless of seismic excitation,
fault creep-slip or combined effects, the displacement gradient curves have a pattern of
sharp changes near the fault and are smoother at places far from the fault. The maximum
displacement gradients (absolute values) are within the fault zone, where the stiffness
and strength of the fault are low compared to the surrounding rocks of the hanging wall
and footwall. The gradients of the peak displacement curves are closely related to the
mechanical characteristics of the rock masses. Meanwhile, it can be seen that the peak
displacements at the tunnel in the hanging wall are smaller than those in the footwall. This
may be because the relative slippage of the hanging wall is induced by seismic excitation
compared to the footwall [41]. In addition, the peak displacement at the invert in the
hanging wall under only a 0.4 g seismic excitation is close to that under only a 2.5 cm
fault dislocation. Although the input motion has a vibration amplitude of 8.8 cm, it can be
reduced and absorbed by the isolation layer when it reaches the tunnel lining [27]. As a
result, the 0.4 g seismic excitation only induces approximately 2.5 cm peak displacement at
the tunnel invert.
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4.2. Stress Response of the Tunnel

Figure 9 plots the σ1, σ3 and τ contours of the tunnel with a γ of −7 and η of −4 under
∆ and a subsequent 0.4 g PGA seismic excitation, respectively. In this paper, σ1 and σ3 are
the tensile and compressive stresses which are represented by the positive and negative
stresses, respectively. Figure 9 shows that σ1, σ3 and τ of the tunnel are mainly concentrated
in the fault zone. The stress concentration zone of the concrete lining exhibits tensile stress
(σ1) and shear stress (τ), which are larger than the corresponding standard strength; for
example, the maximum σ1 = 16 MPa > 2.51 MPa and maximum τ = 18 MPa > 3.8 MPa.
The compressive stress in Figure 9c is less than the standard compressive strength. This
means the tunnel at the fault zone will undergo tensile and shear failure under strike-slip
fault creep-slip and subsequent seismic shaking. According to reference [8], extensive
shear-type and tension-type cracks were observed in the Tawarayama tunnel during the
Kumamoto earthquake (Japan, 2016) due to the interaction of strike-slip fault dislocations
and seismic shaking. Meanwhile, Figure 9 shows that the tunnel stress concentration zone
gradually expands with the increase in the fault creep-slip magnitude. Reference [14] noted
that the tunnel section located at the fault movement surface is first damaged with the
strike-slip fault movement. The degree of damage increases with the magnitude of the fault
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movement. In addition, the stress concentration is significantly reduced by the isolation
layer under the strike-slip fault creep-slip and subsequent seismic shaking.
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4.3. Peak Stress Response of the Tunnel

Figure 10 plots the peak stress responses of the tunnel with a γ of −7 and η of −4
under ∆ and a subsequent 0.4 g of PGA seismic excitation. If the fault centerline is the axis
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of symmetry, the peak stress distribution in the vault and the invert is symmetric about the
fault axis. The peak stress distribution of the left arch springing and right arch springing is
centrosymmetric, as well as the left and right arch foot. The peak tensile stress and shear
stress at the tunnel invert of the fault zone are more extensive than those at other positions.
Moreover, the peak tensile stress at the invert reaches 9.81 MPa and exceeds the sum of
2.63 MPa under 2.5 cm ∆ alone and 5.28 MPa under 0.4 g PGA seismic excitation alone. The
peak compressive and shear stress have the same characteristics as the peak tensile stress,
as shown in Figure 10. It can be deduced that the peak tensile stress under the combined
effect is greater than the sum of that under fault creep-slip alone and that under seismic
excitation alone. This indicates that tunnel stress responses at the fault are amplified by the
combined effect when compared to fault dislocation or seismic motion.
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4.3.1. Effect of Fault Dislocation

Figure 11 shows the effect of ∆ on the relative peak stress responses; i.e., ω1, ω2 and
ω3 at the fault section of the tunnel with a γ of −7 and η of −4 under fault dislocations



Buildings 2023, 13, 1163 12 of 18

and a subsequent 0.1 g PGA of seismic excitation. The relative tensile stress ( ω1) is evenly
distributed at the fault section (Figure 11a), while the relative shear stress (ω2) occurs with
a pyriform distribution at the fault section (Figure 11c). Figure 11 also shows that the ω1,
ω3 and ω2 at the invert (VI point), vault (I point) and invert (VI point) of the fault section
are larger than those at other positions. They increase from 1.64 to 11.58, from 0.2 to 0.97
and from 2.52 to 7.36 with the increase in ∆ from 2.5 cm to 15 cm, respectively. As the
magnitude of the fault dislocation increases, so does the relative peak stress, making the
tunnel more vulnerable to damage. In fact, the greater the displacement accumulated by
the fault creep-slip, the greater the uncoordinated deformation between the tunnel and the
surrounding rock. Once the deformation exceeds the limit value, the lining will be cracked.
The damage to the lining accumulates as the cracks develop and may cause complete
damage or collapse even before an earthquake occurs. Moreover, the tunnel invert is the
most vulnerable to more severe tensile and shear failure, and should be primarily protected
under strike-slip fault creep-slip and subsequent earthquakes.
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(a) Relative peak tensile stress (ω1), (b) relative peak compressive stress (ω3) and (c) relative peak
shear stress (ω2).

4.3.2. Effect of Earthquake Intensity

Figure 12 plots the effects of PGA on the relative peak stress responses at the fault
section of the tunnel with a γ of −7 and η of −4 under 2.5 cm ∆ and 15 cm ∆, respectively.
Figure 12a–c shows that ω1 at the invert, ω2 at the left arch foot and ω3 at the left arch
foot are larger than those at other points under 2.5 cm ∆ and subsequent earthquakes,
respectively. They increase from 1.64 to 3.7, from 0.19 to 0.59 and from 1.26 to 2.45 with
an increase in PGA from 0.1 g to 0.4 g, respectively. Figure 12a shows that the relative
tensile stress at the vault remains constant, while the relative tensile stress at other positions
increases with increasing PGA. However, when ∆ equals 15 cm, the relative peak stress
slightly varies with PGA from 0.1 g to 0.4 g, as shown in Figure 12d–f. In summary, these
indicate that the relative peak stress is dominated by the fault dislocation under the 15 cm
∆ and subsequent 0.1–0.4 g seismic shaking. In comparison, it is mainly determined by the
seismic shaking when ∆ equals 2.5 cm. It is noted that this result is applied to the peak stress
response of the tunnel at the fault. The effect of fault dislocation on the tunnel is limited
to the vicinity of the fault zone, and the peak stress response of the tunnel away from the
fault rises as the PGA increases. Combined with the verification results in Section 3, it is
clear that the seismic response of the tunnel at the fault is more intense with or without the
initial dislocation.
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∆) and (f) ω2 (15 cm ∆).

4.3.3. Effect of the Logarithmic Ratio of Tunnel Joint Stiffness

Figure 13 plots the relative peak stress responses of the tunnel at the fault section
affected by the tunnel joint stiffness logarithmic ratio (γ) under 5 cm ∆ and subsequent
0.2 g seismic shaking. Figure 13 shows that ω2 decreases 0.71 times from 10.44 to 2.97 with
decreasing γ from 1 to −4, while ω3 and ω1 decrease from 1.35 to 0.49 by 0.63 times and
5.34 to 4.39 by 0.18 times, respectively. However, the relative peak stress basically remains
the same when γ changes from −4 to −7. This indicates that the lower joint stiffness does
not reduce the peak stress response of the tunnel. The literature [35,36] showed that a
flexible joint stiffness with a logarithmic ratio of −2 to −1 can effectively reduce the extent
of tunnel damage under the combination of fault rupture and seismic excitation. Therefore,
it can be deduced that an appropriate reduction in tunnel joint stiffness can effectively
reduce the peak stress response of the tunnel. However, an indiscriminate decrease in joint
stiffness cannot provide a more favorable mitigation condition.
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4.3.4. Effect of the Isolation Layer Elastic Modulus Logarithmic Ratio

Figure 14 depicts the effects of η on the relative peak stress responses of the tunnel
with a γ of −7 under 10 cm ∆ and a subsequent 0.4 g PGA seismic excitation. It can be seen
in Figure 14 that ω1, ω3 and ω2 at the fault section are evenly distributed and reach the
maximum at the invert (VI point), right arch springing (IV point) and the invert (VI point),
respectively. When η is equal to −4, the values of ω1, ω3 and ω2 are the smallest (7.27,
0.79 and 4.85, respectively), while when η is equal to −2, values are the greatest (22.82,
2.79 and 16.93, respectively). In addition, η equals 0 represents an increase in the thickness
of the lining, and the relative peak stress at this point is slightly less than the peak stress
when η equals −2. It can be deduced that the isolation layer with an η of −4 can effectively
reduce the stress response of the tunnel lining. Reference [39] also showed that the internal
force of the tunnel lining significantly decreases when η is from −1 to −4. This means that
the lower elastic modulus of the isolation layer can be used under combined strike-slip
fault creep-slip and subsequent seismic shaking. Reference [46] pointed out that when η
changes from 1 to −3, the peak seismic stress of the tunnel is significantly reduced, but the
oval relative deformation of the tunnel cross-section is amplified. On the other hand, the
isolation layer should be sufficiently rigid to withstand the static load caused by the release
of in situ stress in the rock [38]. Therefore, a suitable reduction in the isolation layer’s
elastic modulus can offer superior mitigation conditions while maintaining the ability to
support loads.
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5. Discussions

A total of 108 groups of results are used to establish relative peak stress functions,
i.e., ω1, ω2 at the invert and ω3 at the vault, of α∆, αPGA, αγ and αη by the least squares
method as

ω1 =

{
21.08α∆ + 2.63αPGA − 9.63α∆αPGA + 0.17αr − 20.22α2

η + 25.17αη + 0.86, α∆ < 0.49
13.53α∆ + 0.27αPGA − 0.26α∆αPGA + 0.17αr − 43.32α2

η + 54.73αη − 1.17, α∆ ≥ 0.49
(R2 = 0.99) (5)

ω2 =

{
14.83α∆ + 0.48αPGA − 1.28α∆αPGA + 0.01αr − 12.54α2

η + 16.50αη + 0.78, α∆ < 0.54
11.04α∆ + 0.13αPGA − 0.12α∆αPGA + 0.02αr − 31.98α2

η + 43.34αη − 2.72, α∆ ≥ 0.54

(
R2 = 0.99

)
(6)

ω3 =

{
2.09α∆ + 0.32αPGA − 0.77α∆αPGA + 0.32αr − 2.23α2

η + 2.57αη + 0.24, α∆ < 0.47
1.39α∆ + 0.07αPGA + 0.08α∆αPGA + 0.30αr − 4.07α2

η + 5.43αη − 0.15, α∆ ≥ 0.47
(R2 = 0.92) (7)

where α∆ with values of 0.49, 0.54 and 0.47 indicate 8.63, 9.25 and 8.38 cm ∆, respectively. It
should be noted that this conclusion is obtained under the cases of this paper, and a general
relationship of the critical α∆ with relative peak stress requires further studies.

The derivatives of ω1, ω2 and ω3 are tabulated in Table 3. The larger the results in
Table 3 are, the more sensitive the factors are. In comparison with these derivatives of the
factors in Table 3, it can be found that derivatives in ω1 and ω2 are larger than the same
ones in ω3, except αγ. This further suggests that the tunnel is more susceptible to tensile
and shear failure than compressive failure.

Table 3. Derivatives of ω1, ω2 and ω3.

ωi α∆ αPGA α∆αPGA αr αη Notes

ω1
21.08 2.63 −9.63 0.17 −40.44αη + 25.17 α∆ < 0.49
13.53 0.27 −0.26 0.17 −86.32αη + 54.73 α∆ � 0.49

ω2
14.83 0.48 −1.28 0.01 −25.08αη + 16.50 α∆ < 0.54
11.04 0.13 −0.12 0.02 −63.96αη + 43.34 α∆ ≥ 0.54

ω3
2.09 0.32 −0.77 0.32 −4.46αη + 2.57 α∆ < 0.47
1.39 0.07 0.08 0.30 −8.14αη + 5.43 α∆ ≥ 0.47
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Table 3 shows that the derivatives for α∆ in ω1 and ω2 are greater than those for αPGA.
Therefore, it is deduced that the peak tensile and shear stress responses of the invert in the
fault zone are more sensitive to a fault creep-slip of less than 15 cm than to seismic shaking.

The derivatives for αη in ω1, ω2 are greater than those for αγ. Thus, the peak tensile
and shear stress responses of the invert in the fault zone are more sensitive to the isolation
layer elastic modulus compared with the joint stiffness of the segmental tunnel with
two segments. When the derivative of αη is greater than zero, the relative peak stress
decreases with the decrease in the isolation layer elastic modulus. This is consistent with
the opinion that a suitable decrease in the elastic modulus of the isolation layer can offer
favorable mitigation conditions. Hence, it can be deduced that the isolation layer is more
suitable to mitigate the potential failure under a small fault creep-slip and subsequent
seismic shaking compared with segmental tunnels with two segments.

In Table 3, it is noted that the coupling effect of fault dislocation and earthquakes
should be considered due to the larger derivatives of α∆αPGA with values of −9.63 in ω1
and −1.28 in ω2. The coupled effect may be the reason for the stress amplification of
the tunnel lining at the fault under fault creep-slip dislocation and subsequent seismic
shaking compared to fault dislocation or seismic motion. The coupled mechanism of fault
dislocation and earthquakes requires more in-depth research. Low-frequency waves less
than 20 Hz are responsible for tunnel earthquake damage [38] and contain the El-Centro
wave selected in this paper. Therefore, the above analysis can provide a reference for
the tunnel response under similar fault dislocations and subsequent seismic responses
dominated by low-frequency components.

6. Conclusions

Using the Ngong railroad tunnel in the East African Rift Valley as an example, the
dynamic responses and the peak stress sensitivities of fault-crossing tunnels with the tunnel
joint and the isolation layer are numerically investigated under strike-slip fault creep-slip
and subsequent seismic shaking. The main conclusions are drawn as follows:

(1) The valley-shaped propagation of peak displacement at the tunnel invert occurs
in the longitudinal axis direction under an earthquake alone. Then, it transforms into an
S-shaped under strike-slip fault creep-slip and subsequent seismic shaking.

(2) The tunnel invert in the fault zone is susceptible to tensile and shear failures under
strike-slip fault creep-slip and subsequent seismic shaking.

(3) The peak tensile and shear stress responses of the tunnel invert in the fault zone are
more sensitive to fault creep-slip than earthquakes. The peak tensile and shear stresses of
the tunnel invert in the fault zone are more sensitive to the isolation layer elastic modulus
than the joint stiffness of the segmental tunnel with two segments. They are effectively
reduced when the isolation layer elastic modulus logarithmic ratio equals −4.

(4) Favorable mitigation conditions for the tunnel can be provided by a reasonable
reduction in the isolation layer’s elastic modulus and a drop in the stiffness of the flexible
joints. In addition, the isolation layer is better suited to mitigate the potential failure
under small fault creep-slip and subsequent seismic shaking than segmental tunnels with
two segments.

The works mentioned above are based on numerical and experimental approaches.
However, the theoretical analysis of the combined effect needs more extensive research.
The nonlinear longitudinal response of the tunnel under the interaction of fault dislocation
and earthquakes will be analytically addressed further in the future.
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