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Abstract: The study aims to conduct a direct pull-out test on fifty-four cube specimens considering
different variables, including the type of reinforcement (sand-coated glass fiber-reinforced polymer
(GFRP) and ribbed steel bars); the type of concrete (normal weight concrete NWC and lightweight
foamed concrete LWFC); the diameter of the reinforcing bars (10 mm; 12 mm; and 16 mm) and
the bonded length (3∅, 4∅, and 5∅). The hybrid fiber hooked-end steel (0.4% by volume) and
polypropylene (0.2% by volume), respectively were used to improve the properties of LWFC by
converting the brittle failure to ductile. The results showed that in the case of strengthened foamed
concrete (FC), the bond strength with steel bars was greater compared to that with the GFRP bars. The
bond strength ratio between the GFRP and steel bars of the FC specimens was found to vary between
37.8–89.3%. Additionally, in all specimens of FC, pull-out failure was witnessed with narrower
crack width compared to NWC. Furthermore, mathematical equations have been proposed for
predicting the bond strength of FC with steel and GFRP bars and showed good correlation with the
experimental results.

Keywords: bonding behavior; ribbed steel bars; GFRP; foamed concrete; direct pull-out test; bond
stress–slip relations

1. Introduction

Based on density, concrete has been classified into three categories, namely lightweight
concrete (800–2000 kg/m3), regular concrete (2000–2600 kg/m3), and heavyweight concrete
(>2600 kg/m3) [1–3]. Foamed concrete is a type of lightweight concrete which mainly
consists of the binding material, fine sand, and water; meanwhile, the air is filled by a
homogeneous foam that is gradually added to the other components of the mixture until it
reaches the required density. These homogeneous air bubbles replace the coarse aggregate
in normal concrete, which is the fundamental difference between foamed concrete and
normal concrete. Foamed concrete rather can be considered as a new building material,
having limited application in the construction sector [4,5]. This may be attributed to the
lack of research findings and data related to its structural properties, and bond behavior
with the reinforcing bars.

By incorporating foamed concrete in the construction sector, exploitation of natural
resources, mainly the coarse aggregates can be sustainably monitored [6,7]. Additionally,
some other advantages offered by the foamed concrete are (i) enhanced thermal insulation,
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consequently reducing the energy expenditure, (ii) consumption of harmful environmental
wastes (such as silica fume, fly ash, and ground granulated blast-furnace slag (GGBS) [8,9])
with pozzolanic properties that can used as chemical binders, thereby reducing cement
consumption and therefore high carbon emissions, (iii) ease in transportation of struc-
tural members due to its light weight, which reduces labor costs and therefore the cost
of project [10].

The application of foamed concrete has become popular all over the world; one
example of using foamed concrete as a construction material in Iraq is the city of residential
architecture project in the Maysan region of Southern Iraq. Additionally, foamed concrete
has been used for nonstructural applications (having a compressive strength of about
17 MPa) as a levelling material under tiles, instead of other waste materials.

Many research studies have been conducted to investigate the effect of adding different
types and percentages of fibers on the mechanical properties of foamed concrete [11,12].
These findings have confirmed that fibers can significantly improve the properties of foamed
concrete, especially polypropylene fibers and hooked-end steel fibers. Moreover, GFRP bars
have gained popularity in the construction industry due to their high tensile strength, light
weight and corrosion resistance which helps to maintain the life of buildings [13,14]. All
these features enable them to be designed and fabricated in a number of fields, especially
those with high load-carrying capacity, such as hydraulic engineering, building construction
and highways.

The bond between the traditional concrete and reinforcement plays a crucial role in
providing strength and durability to the structural members. Correspondingly, in the case
of foamed concrete, it is essential to first evaluate the bond behavior of foamed concrete
with reinforcing bars (herein, GFRP and steel bars were used). The bond behavior of
lightweight concrete has been previously studied by a number of researchers. Nadir and
Sujatha [15] studied the effect of bond strength by conducting a pull-out test on lightweight
concrete containing coconut shell as coarse aggregate, with replacement levels of 25%,
50%, 75%, 100% and deformed steel bars with 12 mm and 16 mm diameters. A reduction
in bond strength was reported with respect to the increase in coconut shell replacement
percentage and the increase in the diameter of the bars, respectively. Zhao et al. [16]
performed the pull-out test to investigate the bond strength of a lightweight aggregate
containing expanded shale aggregates in its fine and coarse state with 100% replacement.
A variety of variables, such as w/c ratio of the mix, bond length, and rebar diameter, were
considered. The results indicated an increase in the bond strength upon decreasing the w/c
ratio and upon increasing the diameter of the bars. Further, Abbas et al. [17] investigated
the effect of different variables, such as bonded length, bar diameter, and concrete cover, on
the bond strength of lightweight concrete (LWC) containing steel fibers and porcellanitic
as coarse aggregate. It was found that the bond strength of normal weight concrete was
higher compared to LWC [18,19]. As for the types of reinforcement, studies have proven
that the use of deformed bars offers a higher resistance to bonds compared to the plain bars,
significantly due to the presence of ribs which function as the rough surface and therefore
enhance the frictional and mechanical forces, thus enhancing the bond [20–23]. Further, the
bond behavior of glass FRP bars was studied by Tang et al. [24] after covering them with a
layer of sand to improve the bond with the lightweight concrete. The bond resistance was
found to be improved by 350% compared to the plain glass bars.

In contrast, the studies related to the bond behavior of foamed concrete are quite
limited. Indeed, in international literature, only two studies on the bond behavior of foam
concrete have been reported to date. Nindyawati and Umniati [25] performed the pull-out
test to study the bond performance between bamboo-reinforced bars and nonstructural
foamed concrete (12.7 MPa compressive strength), and reported the bond strength between
0.33–0.48 MPa. Additionally, in another research, de Villiers et al. [26] conducted two
types of tests, namely beam end and pull-out tests to verify the bond strength between
deformed steel bars and foamed concrete with different densities (1200 kg/m3, 1400 kg/m3,
1600 kg/m3). A direct relationship between the density of foamed concrete and bond
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strength was observed. Moreover, in the beam end test, early and sharp cracks were
observed compared to normal concrete.

However, these studies are not sufficient to arrive at any conclusive research finding.
An extensive investigation considering several other variables, such as different types of
reinforcing bars, variation in diameter, etc., is further required to understand the bond
behavior of structural foamed concrete. The present study aims to investigate the bond-
ing behavior of foamed concrete and reinforcing bars using a pull-out test, according to
RILEM [18,19,27–29]. Two types of reinforcing bars, namely ribbed steel bars and sand-
coated GFRP bars, each having diameters (∅)of 10 mm, 12 mm and 16 mm and bonded
length ratios of 3∅, 4∅ and 5∅, were used. Further, based on the experimental findings,
mathematical equations have been proposed in this study for the prediction of the bond
strength of the two types of bars with the structural lightweight foamed concrete (FC).

2. Experimental Program
2.1. Materials

Specimens of lightweight foamed concrete were prepared by using ordinary Portland
cement and silica fume as binding material. Silica fume is softer than cement, with poz-
zolanic properties; it is considered a subproduct of the ferrosilicon mineral production
process and primarily contains very fine amorphous particles of SiO2. Its chemical analysis
is shown in Table 1. In addition to the local river sand, silica sand (Figure 1) was added
to be used as fine aggregate. A local synthetic foam agent was used to produce the foam.
Moreover, chemical additive superplasticizers were used to reduce the w/c ratio and to
obtain the required structural strength.

Table 1. Chemical analysis of silica fume and ordinary Portland cement.

Chemical Composition
Silica Fume Ordinary Portland Cement

Results % Results %

Al2O3 1.80 4.51

Fe2O3 0.42 3.68

CaO 2.30 61.19

MgO 1.60 2.31

SiO2 90.56 21.44

Na2O 0.70 0.1

K2O 0.73 0.48

SO3 0.56 2.7

Loss on ignition 2.40 2.39

Hybrid fiber hooked-end steel (Hs) and polypropylene (Pp) were also added to prepare
two types of concrete mix, while the normal concrete specimens were designed according
to British standards [30], with a w/c ratio of 0.43, a compressive strength of 40 MPa, and a
slump of 110 mm. The materials’ properties are listed in Tables 2–8. The bond behavior
of the lightweight foamed concrete was studied using two types of reinforcement bars:
conventional ribbed reinforcing bars and sand-coated GFRP bars (see Tables 9 and 10).
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Figure 1. Grading of fine silica sand.

Table 2. Material properties of silica fume.

Material Color Form Specific
Gravity

Bulk Density
(kg/m3)

Average Particle
Size (µm)

Compressive Strength
7 Days (MPa) pH Value

Silica fume White Powder 2.6 ± 0.1 550–650 0.1 86.0 2

Table 3. Material properties of silica sand.

Material Specific Gravity Bulk Density
(kg/m3) Particle Size (mm) Water Absorption (%) Si2O (%) Porosity (%)

Silica sand 2.6 1588 0.75–1.50 1.6 97 0.4

Table 4. Material properties of synthetic foam.

Material Color Form Freezing Point (◦C) Foam Expansion Surface Tension pH Value

Synthetic foam Light yellow Liquid −5 to −30 4 ± 1% to 20% 17.1 ± 10 % 6.0–9.5

Table 5. Material properties of super plasticizer.

Material Color Form Component Specific Gravity Chloride Content pH Value

Super plasticizer Opaque Liquid Single 1.06 ± 0.01 Nil to BSEN 934-2 5.0–7.0

Table 6. Material properties of OPC.

Material Color
Fineness
(m2/kg)

Specific
Gravity

Setting Time
(Minutes)

Compressive
Strength (MPa) Water

Absorption (%) Si2O (%) Impact
Value (%)

Crushing
Value (%)

Initial Final 3 Days 7 Days

OPC Grey 405 3.06 135 205 24.4 32.3 0.4 15.2 15.2 22.7
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Table 7. Material properties of gravel.

Material Specific Gravity Bulk Density (kg/m3) Maximum Particle Size (mm)

Gravel 2.7 1734 12.5

Table 8. Material properties of fibers.

Material Bulk Density
(kg/m3)

Average Fiber
Length (mm)

Average Fiber
Diameter (mm) Aspect Ratio L/D Tensile

Strength (MPa)
Ultimate

Elongation (%)

Hs fiber 7800 30 0.750 40.0 >1100 <2
Pp fiber 910 12 0.018 666.7 300–440 -

Table 9. Properties of steel bars.

Diameters ∅ (mm) Surface Texture Ultimate Stress fu (MPa) Yield Stress fy (MPa)

10 Ribbed 684 420
12 Ribbed 709 446
16 Ribbed 790 514

Table 10. Properties of GFRP bars.

Diameters, ∅ (mm) Surface Texture Tensile Strength (MPa)

10 Sand coated 827
12 Sand coated 758
16 Sand coated 724

2.2. Mix Proportions

Normal weight concrete (NWC) specimens were designed according to British stan-
dards [30] to achieve a strength of 40 MPa, as shown in Table 11.

Table 11. Mix proportion of NWC.

Cement
(kg/m3)

Sand
(kg/m3)

Gravel
(kg/m3) Slump (mm) w/c Ratio Density

kg/m3

450 750 860 110 0.43 2320

Lightweight foamed concrete (LWFC) specimens were designed by conducting several
trial mixes to study the effect of fiber addition in single (only one type of fiber, Hs or Pp)
and hybrid (two types of fibers, Hs + Pp) states to obtain a lightweight concrete with
a constant density of 1800 kg/m3 and a compressive strength 40 MPa [31]. All mixing
proportions are listed in Table 12. The schematic illustration of the mixing procedure of
lightweight foamed concrete is shown in Figure 2, and the same has been summarized in the
following paragraph.

1. The dry materials, cement, sand and silica fume, were circulated inside a 180 L rotary
drum mixer for 30 s to evenly mix the dry materials with each other.

2. Then, 85% of the mixing water was added and mixed with the dry materials for
approximately 2 min until homogeneous balls were obtained.

3. The superplasticizer (SP) was added to the remaining 15% of mixing water, and the
latter was added to the previous mixture components and mixed for 1 min until the
balls became a homogeneous mixture.

4. The foam was produced by the foam generator instrument and added to the mix
immediately after preparation. The ingredients were mixed for at least 90 s until all
foam was uniformly distributed and incorporated.
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5. Finally, the fibers were added and spread over the mixture by hand, and then mixer
was run for 30 s, ensuring its even distribution in the mix.

Table 12. Mixing proportions of LWFC.

Mix Code LWFC LWFC Hs LWFC Pp LWFC Hs + Pp

Fibers (kg/m3) 0 31.20 1.83 31.20 + 1.83
Cement (kg/m3) 1350 1350 1350 1350

Sand (kg/m3) 900 900 900 900
Silica fume (%) 10 10 10 10

Superplasticizer (SP) (%) 1.12 1.12 1.12 1.12
Water binder ratio 0.28 0.28 0.28 0.28
fc at 7 days (MPa) 28.51 33.40 30.73 34.60
fc at 28 days (MPa) 34.00 38.06 37.12 40.80

Foam (L/m3) 215 225 218.75 221.25
LWFC: Foamed concrete, LWFC Hs: Foamed concrete with hooked-end steel fibers, LWFC Pp: Foamed con-
crete with polypropylene fibers, LWFC Hs + Pp: Foamed concrete with hybrid fibers of hooked-end steel and
polypropylene (FC), fc: Cubic compressive strength.
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Figure 2. Preparation of mix.

For the present study, lightweight foamed concrete with hooked-end steel and
polypropylene fibers, LWFC Hs + Pp (designated as FC) with a compressive strength
of 40.8 MPa, was adopted to prepare the cube specimens for conducting the pull-out test.

2.3. Mechanical Properties of Concrete

After achieving the required design compressive strength of 40 MPa, other properties
influencing the bond strength of concrete were also verified. A compressive strength test
was carried out using cube specimens with dimensions of 100 × 100 × 100 (mm) [30].
A tensile strength test was conducted using cylinder specimens with dimensions of
100 × 200 (mm) [32]. A modulus of elasticity test was performed using cylinder spec-
imens of size 150 × 300 (mm) [33], and a flexural strength test was conducted on prism
specimens with dimensions of 140 × 140 × 600 (mm) [34].
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2.4. Pull-Out Specimens

The pull-out test was conducted on a total of 54 cube specimens: 18 cube specimens
of lightweight foamed concrete reinforced with sand-coated GFRP bars, 18 specimens of
lightweight foamed concrete reinforced with traditional ribbed steel bars, and 18 specimens
of normal weight concrete reinforced with traditional ribbed steel bars.

For this purpose, 18 cubic shaped wooden molds, each having a central circular
opening at the base, were fabricated to cast the specimens. The diameter of the circular
opening was kept equal to the diameter of the specific bar used in the test in order tightly
confine the reinforcing bar through it, while the other end of the reinforcing bar was held by
hand, ensuring that it was not tilted while pouring the concrete, as shown in Figure 3. The
inner surface of the molds was coated with a thin layer of oil before pouring the concrete to
facilitate easy removal of the specimen after hardening. Two types of reinforcing bars were
adopted: steel bars and GFRP bars, each with diameters of 10 mm, 12 mm, and 16 mm, and
bonded length ratios of 3∅, 4∅ and 5∅, which are equivalent to the following:
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30 mm, 40 mm, 50 mm for bars diameter 10 mm
36 mm, 48 mm, 60 mm for bars diameter 12 mm
48 mm, 64 mm, 80 mm for bars diameter 16 mm
Short bonded lengths were chosen because it difficult to obtain a uniform slip (dis-

placement) along the bonding area while adopting a larger bond length [35,36], and this
would eventually not fulfill the aim of the present study. The required bonding length
between the concrete and the reinforcing bar was precisely determined, and the remaining
portion which represents the unbonded length of the reinforcing bar was covered with a
hollow plastic tube, as illustrated in Figure 4.
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After the molds were fully arranged, the mix of NWC was poured into molds and
compacted in three layers, and the upper surface of concrete cubes were leveled and
finished. In case of FC specimens, leveling, surface finishing and compaction were not
required due to their self-compacting properties. After 24 h, the cube specimens were
removed from the molds and cured for a period of 28 days. For both types of concrete (FC
and NWC), the average of two specimens with the same variables was adopted to study
the bond strength accurately.

2.5. Specimens Code

The code for all the specimens was derived in the following sequence of variables:
Concrete

type
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Reinforcing
bar type

Concrete (FC, NWC) Bond length (3∅, 4∅, 5∅) Bar diameter (10, 12, 16) Type (S—Steel).
Concrete (FC) Bond length (3∅, 4∅, 5∅) Bar diameter (10, 12, 16) Type (G—GFRP).

2.6. Testing Machine and Setup

The pull-out test was conducted using a hydraulic tensile testing machine (1000 kN
capacity). The specimen was fixed tightly on the tensile testing machine using a steel frame
consisting of two thick steel plates (25 mm thickness) in order to withstand the applied
forces without any arcing or deviation during the testing process. The bottom plate had a
central protrusion of certain length to enable proper fixing of the plate between the clamps
of the test machine. The top plate had a central circular aperture for the reinforcing bar to
pass through it. The two steel plates were tightly connected by heavy bolts after installing
the specimen between them to confine the specimen during testing. The reinforced steel
bar was fixed to the top clamp of the tensile testing machine. The specimens were subjected
to compressive load (downward on the concrete cube) and tensile load (upward on the
reinforcing bar) at a control displacement rate of 0.1 mm/s, as shown in Figure 5. The
necessary data, tensile force and slip, were recorded during the experimental course
directly from the testing machine using video imaging by the mobile camera until the test
was completed.
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machine (right).

In case of the FC specimens with GFRP reinforcing bars, some protection measures
were taken on the loading end of the bars to avoid crushing due to the hydraulic pressure
exerted during the pull-out test. It is an established fact that GFRP bars have high resistance
to tensile load but offer weak resistance to compressive loading (here, clamping of bars for
pull out test) and undergo brittle failure.

The protection involved covering the top portion of the GFRP bars with a standard
sleeve tube stuffed with epoxy (Sikadur31). The sleeve tube used in the study was 130 mm
in length, and its diameter was chosen based the minimum thickness of the epoxy around
the GFRP bars but not less than 2.5 mm to avoid the slip between GFRP bar and the sleeve
tube during tensile load application. Several trial tests on GFRP bars were conducted until
the validity of the test procedure was verified satisfactorily without any slip between the
GFRP bar and the sleeve tube, as shown in Figure 6. These protected GFRP bars were
cured for 10 days for the epoxy to gain a desired compressive strength in the range of
50–60 MPa, as indicated in the datasheet provided by the company (Sika). A similar method
for protection of the GFRP bars has been followed by Godat et al. [37] and Yang et al. [38].
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3. Results and Discussion
3.1. Mechanical Properties of Concrete

The results of the mechanical properties of NWC and LWFC have been summarized
in Table 13.

Table 13. Results of mechanical properties of concrete.

Mechanical Properties f’
c (MPa) f’

t (MPa) f’
r (MPa) Ec (GPa) Slump (mm) Flow (mm) ρd (kg/m3)

NWC 41.52 3.48 5.67 25.33 110 - 2325
LWFC 34.00 2.41 2.53 11.53 - 120 1820

LWFC Hs + Pp (FC) 40.80 4.59 5.83 24.60 - 100 1840

f′cu: Cubic compressive strength, Ec: Modulus of elasticity, f′t: Splitting tensile strength, ρd: Dry density, f′r: Flexural
strength (modulus of rupture).

The NWC mix was designed in accordance with the British standards, with com-
pressive strength approximately equal to the compressive strength of FC. However, in
the case of LWFC, the structural properties were improved by incorporating hooked-end
steel fibers and polypropylene fibers into the mix to achieve a compressive strength of
~40 MPa. The compressive strength, splitting tensile strength, flexural strength and mod-
ulus of elasticity of FC were found to be enhanced by 20.0%, 90.8%, 130.6%, and 113.4%,
respectively, compared to foamed concrete without fibers. This is because the fibers act as
a connecting bridge inside the concrete which helps to restrict micro- and macro-cracks’
formation [8,39,40]. In addition, fibers, especially PPF, bind with concrete via mechanical
linking and interfacial interaction [41]. Moreover, these fibers restrict the propagation
of shrinkage cracks during the hydration process, thus reducing the voids and greatly
improving the strength of concrete [42], as shown in Figures 7–9. The flowability was
within an acceptable range (115–140 mm) according to Hossain [43].
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3.2. Pull-Out Test Results

In this section, the results for the bond strength have been presented (see Table 14) and
were calculated using the following Equation (1);

τu(MPa) =
F

π∅lb
(1)

where
F is the maximum pull-out force (N),
∅ is the rebar diameter (mm),
lb is the bonded length (mm).
It must be noted that in all the considered cases, the bond strength was calculated

using average of two specimens of each type. Additionally, the longitudinal slip is defined
as the displacement between the reinforcing bar and concrete at the loaded end, which was
recorded directly from the testing machine using video imaging by the mobile camera until
the test was completed.

Table 14. Results of pull-out tests.

Specimen Code Dimension (mm) Su (mm) τu (MPa) lb
∅ c (mm) Mode of Failure

FC3∅_10S 100 × 100 × 100 4.3 24.66 3 45 Pull-out
FC3∅_12S 120 × 120 × 120 4.6 22.24 3 54 Pull-out
FC3∅_16S 160 × 160 × 160 5.3 18.91 3 72 Pull-out
FC4∅_10S 100 × 100 × 100 3.8 27.59 4 45 Pull-out
FC4∅_12S 120 × 120 × 120 8.0 24.39 4 54 Pull-out
FC4∅_16S 160 × 160 × 160 8.1 21.00 4 72 Pull-out
FC5∅_10S 100 × 100 × 100 5.1 17.28 5 45 Pull-out
FC5∅_12S 120 × 120 × 120 7.8 20.52 5 54 Pull-out
FC5∅_16S 160 × 160 × 160 6.0 17.11 5 72 Pull-out
FC3∅_10G 100 × 100 × 100 10.2 18.97 3 45 Pull-out
FC3∅_12G 120 × 120 × 120 4.1 15.03 3 54 Pull-out
FC3∅_16G 160 × 160 × 160 7.3 7.14 3 72 Pull-out
FC4∅_10G 100 × 100 × 100 9.7 20.86 4 45 Pull-out
FC4∅_12G 120 × 120 × 120 2.5 15.62 4 54 Pull-out
FC4∅_16G 160 × 160 × 160 5.6 10.13 4 72 Pull-out
FC5∅_10G 100 × 100 × 100 4.1 12.00 5 45 Pull-out
FC5∅_12G 120 × 120 × 120 8.2 18.33 5 54 Pull-out
FC5∅_16G 160 × 160 × 160 8.0 6.73 5 72 Pull-out
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Table 14. Cont.

Specimen Code Dimension (mm) Su (mm) τu (MPa) lb
∅ c (mm) Mode of Failure

NWC3∅_10S 100 × 100 × 100 6.8 24.83 3 - Pull-out
NWC3∅_12S 120 × 120 × 120 5.0 19.35 3 - Pull-out
NWC3∅_16S 160 × 160 × 160 3.1 19.17 3 - Pull-out
NWC4∅_10S 100 × 100 × 100 5.0 28.65 4 - Splitting
NWC4∅_12S 120 × 120 × 120 9.5 20.57 4 - Pull-out
NWC4∅_16S 160 × 160 × 160 6.9 20.50 4 - Splitting
NWC5∅_10S 100 × 100 × 100 5.1 19.11 5 - Splitting
NWC5∅_12S 120 × 120 × 120 5.1 19.45 5 - Pull-out
NWC5∅_16S 160 × 160 × 160 11.0 18.32 5 - Splitting

τu: Average ultimate bond strength, Su: Average slip corresponding to the ultimate load, lb: Bonded length, c:
Concrete cover.

3.3. Bond Behavior of FC with Ribbed Steel Bar
3.3.1. Effect of Bonded Length

Figures 10–12 depict a comparison of the bond stress–slip curve with varying bonded
lengths (3∅, 4∅ and 5∅) for steel bars with a diameter of 10 mm, 12 mm and 16 mm,
respectively, in FC. Corresponding to the bar of diameter 10 mm, the computed average
ultimate bond strengths were found to be 24.66 MPa, 27.59 MPa and 17.28 MPa, respectively
for bonded lengths 3∅, 4∅ and 5∅, respectively, while for the bar of diameter 12 mm, the
same were computed as 22.24 MPa, 24.39 MPa and 20.52 MPa. For the bar of diameter
16 mm, these values were evaluated as 18.91 MPa, 21.0 MPa and 17.11 MPa, respectively.
The bond strength has been found to be maximum for the bonded length 4∅, corresponding
to all the considered diameters of the bars.
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For the bar of diameter 10 mm, the bond strength of FC4∅_10S was found to be 11.9%
and 18.7% higher than FC3∅_10S (lb = 30 mm) and FC5∅_10S (lb = 50 mm), respectively.
Usually, for large bonded lengths, the bond strength fails to show any enhancement due
to the irregular distribution of stresses [16,44,45], which leads to a reduction in bond
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stiffness along with the bond interface. Additionally, in Figure 10, the ascending branch
and the descending branch of FC4∅_10S are found to be more converged compared to
other bonding lengths due to the development of cracks on the surface of the FC4∅_10S
specimen, as depicted in Figure 13d. This indicates a sudden reduction in bonding capacity
compared to the continuous slow slippage of the bar from foamed concrete.
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For the bar of diameter 12 mm, the bond strength of FC4∅_12S was found to be 9.
7% and 59.7% greater compared to FC3∅_12S (lb = 36 mm) and FC54∅_12S (lb = 60 mm),
respectively. Additionally, from Figure 11, it has been observed that the curve for FC5∅_12S
is sharper compared to the other curves due to the formation of diagonal cracks around the
reinforcing bar extending longitudinally to a specific height at the specimen interface, as
shown in Figure 13h. These cracks appeared due to the crushing of concrete at the bonding
interface as a result of high shear stresses between the ribs of the reinforcing bar and the
surface of the concrete facing these ribs.

Furthermore, for the bar diameter of 16 mm, the bond strength of FC4∅_16S with a
bonded length 64 mm was found to be 11.1% and 22.7% higher than FC3∅_16S (lb = 48 mm)
and FC5∅_16S (lb = 80 mm), respectively, as shown in Figure 12. This is due to the rapid
pulling out of the bar when the length of the bond is short, and the irregular distribution of
stresses around the bars when the length of the bond is long. Figure 13c,i,f, illustrate the
failure pattern; a longitudinal crack parallel to the steel bar was observed for the specimens
FC3∅_16S and FC5∅_16S, while a diagonal crack around the reinforcing bar was witnessed
in case of the specimen FC4∅_16S.

3.3.2. Effect of Bar Diameter

Figures 14–16 depict a comparison of bond stress–slip curves with varying diameters
of steel bars (10 mm, 12 mm and 16 mm) for the bonded lengths 3∅, 4∅ and 5∅ in FC.
Corresponding to bonded length 3∅, the computed average ultimate bond strengths were
found to be 24.66 MPa, 22.24 Mpa and 18.91 Mpa, respectively, for bar diameters 10 mm,
12 mm and 16 mm; meanwhile, for bonded length 4∅, the same were computed as
27.59 MPa, 24.39 MPa and 21.00 MPa. For bonded length 5∅, these were evaluated as
17.28 MPa, 20.52 MPa and 17.11 MPa, respectively. Therefore, in case of the shorter bonded
length (3∅ and 4∅), the bond strength has been found to have an inverse relation with the
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diameter of the bar. In contrast, for the longer bonded length (5∅), the relation no longer
obeyed the inverse proportionality. The bond strength was found to be maximum for the
12 mm diameter bar corresponding to bonded length 5∅. However, the bond strength was
enhanced by 30.4% and 31.4% when the diameter from was reduced from 16 mm to 10 mm,
corresponding to shorter bonded lengths 3∅ and 4∅, respectively. The results stipulate that
FC offers weak confinement to the bars with larger diameters when shorter bond lengths
are considered.
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3.4. Bond Behavior of FC with Sand-Coated GFRP Bars
3.4.1. Effect of Bonded Length

Figures 17–19 depict a comparison of bond stress–slip curves with varying bonded
lengths (3∅, 4∅ and 5∅) for sand-coated GFRP bars with a diameter of 10 mm, 12 mm and
16 mm, respectively, in FC. Corresponding to the bar of diameter 10 mm, the computed
average ultimate bond strengths were found to be 18.97 MPa, 20.86 MPa and 12.00 MPa for
bonded lengths 3∅, 4∅ and 5∅, respectively, while for the bar of diameter 12 mm, the same
were computed as 15.03 MPa, 15.62 MPa and 18.33 MPa. For the bar of diameter 16 mm,
these were found to be 7.14 MPa, 10.13 MPa and 6.73 MPa, respectively. Similarly, to the
steel bars, the bond strength of GFRP bars has been found to be maximum for the bonded
length 4∅, corresponding to the 10 mm and 16 mm diameter bars, while for the 12 mm
diameter bar, the bond strength was found to be highest for bonded length 5∅.
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Figure 18. Effect of variation in bonded length for the 12 mm diameter GFRP bar.
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For the bar of diameter 10 mm, the bond strength of FC4∅_10G was found to be
10.0% and 30.2% higher than FC3∅_10G (lb = 30 mm) and FC5∅_10G (lb = 50 mm) bonded
lengths, respectively. Again, for large bonded lengths, the bond strength fails to show any
enhancement due to the irregular distribution of stresses [16,44,45] leading to a reduction
in bond stiffness along with the bond interface.
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For the bar of diameter 12 mm, the bond strength of FC4∅_12G (lb = 48 mm) was
found to be 4.0% greater compared to FC3∅_12G (lb = 36 mm) and 13.8% lesser compared
to FC54∅_12G (lb = 60 mm).

Additionally, for the bar of diameter 16 mm, the bond strength of FC4∅_16G with
lb = 64 mm was found to be 41.9% and 50.5% higher than FC3∅_16G (lb = 48 mm) and
FC5∅_16G (lb = 80 mm) bonded lengths, respectively, as shown in Figure 19.

In Figures 17–19, all the curves begin with a steady rise, up to the maximum bond
stress. After that, the pull-out failure occurs, wherein the slip begins to increase rapidly
and is accompanied by a rapid decrease in the bond capacity, indicated by the descending
branch of the curve. The failure pattern of these specimens is depicted in Figure 20, in
which only a few micro cracks are visible.
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3.4.2. Effect of Bar Diameter

Figures 21–23 depict a comparison of the bond stress–slip curves with varying di-
ameters of sand-coated GFRP bars (10 mm, 12 mm and 16 mm), for the bonded lengths
of 3∅, 4∅ and 5∅, in FC. Corresponding to bonded length 3∅, the computed average
ultimate bond strengths were found to be 18.97 MPa, 15.03 MPa and 7.14 MPa, respectively
for bars of diameter 10 mm, 12 mm and 16 mm; meanwhile, for bonded length 4∅, the
same were computed as 20.86 MPa, 15.62 MPa and 10.13 MPa, and for bonded length 5∅,
these were 12 MPa, 18.33 MPa and 6.73 MPa, respectively. Therefore, in case of GFRP
bars, for a constant bonded length, an increase in the bond stress has been witnessed upon
decreasing the diameter of the bars for specimens with shorter bonded lengths (3∅ and



Buildings 2023, 13, 1153 19 of 33

4∅); this is similar to the case of steel bars. The bond strength was enhanced by 165.7% and
105.9%, corresponding to bonded lengths of 3∅ and 4∅, respectively, upon reduction of the
diameter from 16 mm to 10 mm. On the other hand, for the longer bonded length (5∅), the
bond strength was found to be maximum in the 12 mm diameter bar.
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Figure 21. Effect of variation in GFRP bars’ diameter for bonded length 3∅.
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Figure 22. Effect of variation in GFRP bars’ diameter for bonded length 4∅.
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Figure 23. Effect of variation in GFRP bars’ diameter for bonded length 5∅.

3.5. Bond Behavior of NWC with Ribbed Steel Bar
3.5.1. Effect of Bonded Length

Figures 24–26 depict a comparison of bond stress–slip curve with varying bonded
lengths (3∅, 4∅ and 5∅) for steel bars with a diameter of 10 mm, 12 mm and 16 mm,
respectively, in NWC.
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Figure 24. Effect of variation in bonded length for the 10 mm diameter steel bar.
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Figure 25. Effect of variation in bonded length for the 12 mm diameter steel bar.
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Figure 26. Effect of variation in bonded length for the 16 mm diameter steel bar.

Corresponding to the bar with a diameter of 10 mm, the computed average ultimate
bond strengths were found to be 24.83 MPa, 28.65 MPa and 19.11 MPa, respectively for
bonded lengths 3∅, 4∅ and 5∅, respectively, while for the bar of diameter 12 mm, the
same were computed as 19.35 MPa, 20.57 MPa and 19.45 MPa, and for the bar of diameter
16 mm, these were 19.17 MPa, 20.5 MPa and 18.32 MPa, respectively. The bond strength has
been found to be maximum for the bonded length 4∅, corresponding to all the considered
diameters of the bars.

Therefore, for the bar of diameter 10 mm, the bond strength of FC4∅_10S was found
to be 15.4% and 50.0% higher than FC3∅_10S (lb = 30 mm) and FC5∅_10S (lb = 50 mm)
bonded lengths, respectively. In Figure 24, the ascending and the descending branch were
recorded only for bonded length 3∅, while for 4∅ and 5∅, only the assending branch was
observed due to the sudden shear failure of the specimen.

For the bar of diameter 12 mm, the bond strength of FC4∅_12S was found to be
6.3% and 5.8% greater compared to FC3∅_12S (lb = 36 mm) and FC54∅_12S (lb = 60 mm),
respectively. Additionally, in Figure 25, the descending branch for 4∅ was not observed
due to the sudden shear failure of specimen.
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Furthermore, for the bar of diameter 16 mm, the bond strength of FC4∅_16S with
a bonded length of 64 mm was found to be 6.9% and 11.9% higher than FC3∅_16S
(lb = 48 mm) and FC5∅_16S (lb = 80 mm), respectively, as shown in Figure 26. The failure
patterns of these specimens are depicted in Figure 27.
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3.5.2. Effect of Bar Diameter

A comparison of bond stress–slip curves with varying diameters of steel bars (10 mm,
12 mm and 16 mm) for the bonded lengths—3∅, 4∅ and 5∅, respectively, in NWC is shown
in Figures 28–30. A similar analogy has been carried out in the case of NWC and FC with
steel bars, i.e., for a constant bonded length, an increase in the bond strength has been
observed upon decreasing the diameter of the bars with a shorter bonded length (3∅).
The bond strength was enhanced by 26.1%, corresponding to the bonded length 3∅, upon
reducing the diameter from 16 mm to 10 mm. On the other hand, for bonded length 4∅
and 5∅, proper peaks of bond stress could not be determined due to the sudden failure of
the specimens.
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Figure 28. Effect of variation in steel bars’ diameter for bonded length 3∅.
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3.6. Effect of Type of Reinforcing Bar

Table 15 compares the bond strength between the two groups of foamed concrete
with the same variables except for the type of reinforcing bar (Group 1: FC + Steel bar and
Group 2: FC + GFRP bar). It has been clearly observed that bond strength in the case of
steel bars is greater than that of the GFRP bars in FC specimen; this can be attributed to the
high modulus of elasticity, increased chemical adhesion and greater surface roughness of
steel bars compared to the GFRP bars. A similar variation in bond strength between steel
and GFRP bars has been reported by Munoz [46]. The bond strength ratio between GFRP
and steel bars of FC specimens

(
τG

u,FC/τS
u,FC

)
is found to vary between 37.8–89.3%.

Table 15. Comparison of pull-out test results for the two types of reinforcing bars.

Specimen Code τS
u,FC (MPa) Specimen Code τG

u,FC (MPa) τG
u,FC/τS

u,FC (%)

FC3∅_10S 24.66 FC3∅_10G 18.97 76.9%
FC3∅_12S 22.24 FC3∅_12G 15.03 67.6%
FC3∅_16S 18.91 FC3∅_16G 7.14 37.8%
FC4∅_10S 27.59 FC4∅_10G 20.86 75.6%
FC4∅_12S 24.39 FC4∅_12G 15.62 64.0%
FC4∅_16S 21.00 FC4∅_16G 10.13 48.2%
FC5∅_10S 17.28 FC5∅_10G 12.00 69.4%
FC5∅_12S 20.52 FC5∅_12G 18.33 89.3%
FC5∅_16S 17.11 FC5∅_16G 6.73 39.3%

τS
u,FC: Average ultimate bond strength of of FC with steel bars, τG

u,FC: Average ultimate bond strength of of FC
with GFRP bars.

Concerning the failure pattern of the two types of bars, both of them ended with
pull-out failure after recording the ultimate bond strength with the appearance of micro
cracks on the surface of the concrete for some specimens, especially those reinforced with
conventional steel bars. This indicates the significant dependence of the bond strength on
the compressive strength of the concrete at the bond interface [47] due to the high shear
stresses generated between the two materials. In Figure 31, the remains of the concrete
between the ribs on the bar surface after failure are clearly visible. On the other hand, the
bond strength of the GFRP bars is found to be dependent on the resistance of the resin
layer that covers the surface of the GFRP bar. This is evident in Figure 32, wherein the
rough layer that covered the surface of the bar has peeled off and eroded, followed by the
emergence of fine glass fiber filaments randomly around the bonding area. This is due to
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friction mechanism between the concrete surface and the high shear stresses between thin
layers under the layer of resin covering the surface of the bar [48].
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3.7. Effect of Concrete Type

A comparison of pull-out test results between foamed concrete and normal concrete
(Group 1: FC + Steel bar and Group 3: NWC + Steel bar) has been indicated in Table 16.
In general, the chemical adhesion between FC and the steel reinforcing bar is superior
compared to the NWC and steel bars, regardless of the diameter and the embedded length
of the bar. However, the foamed concrete contains stable air voids within it, indicating a
weak zone in the specimen. Nonetheless, FC is able to achieve a bond strength equivalent to
the normal concrete, which may be attributed to the use of silica fume in the production of
foamed concrete. Silica fume has pozzolanic properties which contribute to the hydration
process, leading to the formation of calcium hydroxide, water and other forms of calcium
silicate hydrate, which improve the bonding between the components of the foamed
concrete (fine aggregate and cement paste) and also improve the bond between the concrete
and steel reinforcement. Moreover, the use of the superplasticizer enhanced the bond
strength of foamed concrete by reducing the w/c ratio. This increases the ability of FC
to resist the crushing caused by ribs at the bond interface and impair the bonding area
through its effect on bleeding under the reinforcing bar [49]. Additionally, it must be noted
that unlike the FC, NWC specimens have shown a sudden shattering and splitting due to



Buildings 2023, 13, 1153 26 of 33

the compressive load applied in an opposite direction to the pull-out load on the machine.
Additionally, the cracks in NWC were found to be wider than those of FC specimens,
indicating a good cohesion of the foamed concrete components; this is attributed to the use
of a low w/c ratio and chemical additives (silica fume) which enhanced the stiffness of
FC [50]. Further, a reduction in crack width of FC specimens attracts the interest of building
codes that always strive to achieve the same: an increase in the durability of the structure,
and restricted corrosion of the reinforcing bars as a result of environmental conditions [51].

Table 16. Comparison of average pull-out test results for the two types of concrete (NWC and FC).

Specimen Code τS
u,FC (MPa) Specimen Code τS

u,NWC (MPa) τS
u,FC/τS

u,NWC (%)

FC3∅_10S 24.66 NWC3∅_10S 24.83 99.3%
FC4∅_10S 22.24 NWC3∅_12S 19.35 114.9%
FC5∅_10S 18.91 NWC3∅_16S 19.17 98.6%
FC3∅_12S 27.59 NWC4∅_10S 28.65 96.3%
FC4∅_12S 24.39 NWC4∅_12S 20.57 118.6%
FC5∅_12S 21.00 NWC4∅_16S 20.5 102.4%
FC3∅_16S 17.28 NWC5∅_10S 19.11 90.4%
FC4∅_16S 20.52 NWC5∅_12S 19.45 105.5%
FC5∅_16S 17.11 NWC5∅_16S 18.32 93.4%

τS
u,FC: Average ultimate bond strength of of FC with steel bars, τS

u,NWC: Average ultimate bond strength of of
NWC with steel bars.

The bond strength of most of the FC specimens was observed to be greater than
NWC specimens, which may be credited to the presence of hooked-end steel fibers [49]. In
addition, the use of hybrid fibers increases the ductility of foamed concrete by increasing
the confinement and preventing the expansion of the micro- and macro-cracks.

4. Comparison between Experimental and Predicted Bond Strength of FC
4.1. FC+ Ribbed Steel Bar

The experimental bond strength for all the fifty-four specimens was computed using
the basic equation given by (1). However, prediction of bond strength is dependent on
several factors such as bar diameter (∅), concrete cover (c), compressive strength

(
f′c
)
, w/c

ratio, density, etc. [49]. Additionally, from the present experimental findings, it has become
evident that the bond behavior for shorter bonded lengths (3∅ and 4∅) was different from
the bond behavior for the largest bonded length (5∅). The bond strength was found to be
inversely proportional to the bar diameter when using shorter bonded lengths, while for
the largest bonded length, the ultimate bond strength recorded was for the bar of diameter
12 mm. Therefore, there exists no linear proportionality between the bond strength and the
bar diameter of the large bonded lengths.

Orangun et al. [52] proposed an equation for the prediction of bond strength for
concrete–steel bars with shorter bonded length (≤4∅), given by Equation (2), in which the
bond strength is found to be dependent on bonded length (lb), bar diameter (∅), concrete
cover (c), and compressive strength

(
f′c
)
.

τu =

[
1.22 + 3.23

c
db

+ 53
db
lb

]√
f′c (2)

Kim, Kim, Yun and Lee [50] considered the effect of bonded length (lb), bar
diameter (∅) and compressive strength (fc) to be the most influential parameters on the
bond strength of steel bars. Equation (3), proposed by Orangun, Jirsa and Breen [52] for the
prediction of bond strength, is as follows:

τu =

[
37.5

(∅+ lb)
0.25 − 9.4

]√
f′c (3)
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Additionally, Zuo and Darwin [51] proposed an Equation (4) for the predicted bond
strength of steel bars, where As is the area of steel.

τu = [1.44lb + (c + 0.5∅) + 56.3As]
[
0.1

cm

c
+ 0.9

]
4
√

f′c (4)

Moreover, most researchers agree that the main parameters that affect the concrete-
reinforcing bar bonding strength are the bonded length (lb), the diameter of the bar (∅) and
the concrete cover (c), while the other parameters such as density, compressive strength
and w/c ratio were found to be less significant [49].

Therefore, in present study, three parameters, namely bonded length (lb), the diameter
of the bar (∅) and the concrete cover (c) were adopted as dependent variables, while the
density, compressive strength and w/c ratio were considered to be independent variables
for developing the prediction equation for FC with steel bars with short bonded lengths
(3∅ and 4∅). Meanwhile, for the largest ratio of bonded length (5∅), the effect of slip,
Su (refer Table 14), has also been introduced in addition to the previous parameters to
predict the bond strength equation. Finally, based on the regression analysis, the predicted
Equation (5) for the bond strength was derived as follows:

τu =

2.39 lb
∅ − 0.22c + 27.45 , for lb < 5∅

8.6578
Su

(√
lb+∅

)
c , for lb ≥ 5∅

(5)

Figures 33 and 34 compare the ratios of average experimental ultimate bond strength
to the average predicted ultimate bond strength of the proposed Equation (5), and the
previously derived equations existing in the literature [50]. All results of the comparison
are displayed in Table 17.
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Figure 33. Comparison between the experimental and predicted ultimate bond strength for bonded
lengths 3∅ and 4∅ [50,52].
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Figure 34. Comparison between the experimental and predicted ultimate bond strength for bonded
length 5∅ [50,52].

Table 17. A comparison between the experimental and the predicted results of average ultimate bond
strength (MPa) for FC + steel bar.

Specimen Code
(MPa)

τuexp [Present Study] τupred [Present Study] τu [30] τu [31] τu [32]

FC3∅_10S 24.7 24.5 31.9 16.6 15.1
FC4∅_10S 27.6 27.0 27.2 18.4 13.1
FC5∅_10S 20.5 20.5 23.5 19.3 11.9
FC3∅_12S 22.2 22.3 28.0 24.0 15.1
FC4∅_12S 24.4 25.0 23.5 26.6 13.1
FC5∅_12S 17.3 17.5 20.1 27.8 11.9
FC3∅_16S 19.0 18.4 22.3 42.6 15.1
FC4∅_16S 21.0 21.5 18.1 47.2 13.1
FC5∅_16S 17.1 17.0 43.6 49.4 11.9

4.2. FC+ Sand-Coated GFRP Bar

Few equations have been given in the literature for predicting the bond strength
of concrete–GFRP bars. ACI [53] gave the following Equation (6) for the prediction of
bond strength:

τu =

[
0.332 + 0.025

c
∅ + 8.3

∅
lb

]√
f′c (6)

where ‘lb’ is the bonded length, ‘∅’ is the diameter of the bar and ‘c’ is the concrete cover.
Additionally, according to Eligehausen et al. [54], relation for bond strength is given

by Equation (7):
τ

τ1
=

[
S
S1

]α
(7)

where ‘S’ is the slip at failure and ‘α’ is a curve fitting parameter ≤ 1.
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In the case of GFRP bars, the smallest diameter, 10 mm, was not affected by the
concrete cover, and was completely pulled out during the test without leaving any crack
on the surface of concrete specimens. Therefore, the bond strength values were considered
to be governed by the bonded length and the bar’s diameter when performing the linear
regression analysis. The resulting equation was found to have a high correlation of 0.86;
therefore, to ensure the reliability of the results, the findings were compared with the results
obtained from the equation existing in the literature [54], as shown in Figure 35. Meanwhile,
for the larger diameters, 12 mm and 16 mm, in addition to the diameter and bonded length
of GFRP bar, bond strength was observed to be affected by the concrete cover (c) and slip at
failure (Su). This is because the cover provided partial confinement to the bars, leading to
the partial pulling off of the bar during the pull-out test. Therefore, based on the regression
analysis and curve fitting value α = 0.4 (refer Equation (7)), the predicted Equation (8) was
derived as follows:

τu =

 −0.4798 lb
∅ + 10.821 , for ∅ = 10 mm

−13 c
Su

[
4
√

lb+∅
] + 25.656 , for ∅ > 10 mm (8)
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Figure 35. Comparison between the experimental and predicted ultimate bond strength for the
10 mm diameter GFRP bars [54].

From Figure 36, it has been observed that experimental results were closely related
to the predicted bond strength (R2 = 0.9289). All results of the comparison are presented
in Table 18.
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Figure 36. Comparison between the experimental and predicted ultimate bond strength for the
12 mm and 16 mm diameter GFRP bars [54].

Table 18. Comparison between the experimental and the predicted results of average ultimate bond
strength (MPa) for FC + GFRP.

Specimen Code
(MPa)

τuexp (Present Study) τupred (Present Study) τu (ACI [53]) τu (Eligehausen et al. [54])

FC3∅_10G 19.0 18.4 18.4 1.4
FC4∅_10G 20.9 19.5 14.6 1.8
FC5∅_10G 18.3 19.6 12.2 1.8
FC3∅_12G 15.0 18.0 18.4 2.3
FC4∅_12G 15.62 9.5 14.6 2.5
FC5∅_12G 12 8.4 12.2 2.5
FC3∅_16G 7.14 10.0 18.4 2
FC4∅_16G 10.3 8.7 14.6 2.2
FC5∅_16G 6.7 6.0 12.2 2.3

5. Conclusions

The present study aims to investigate the bond strength of foamed concrete (FC) and
normal weight concrete (NWC) with ribbed steel and sand-coated GFRP bars through
a direct pull-out test. The test was conducted on fifty-four cube specimens, considering
different variables, viz., the type of reinforcement (sand-coated glass fiber-reinforced poly-
mer (GFRP) and ribbed steel bars), the diameter of the reinforcing bars (10 mm, 12 mm,
and 16 mm) and the bonded length ratio (3∅, 4∅, and 5∅). The following are the major
conclusions obtained from the study:

1. The use of hybrid fibers both short and long (Hs and Pp fibers) significantly improved
the mechanical properties of the foam concrete (FC) and reduced crack formation
and propagation. For shorter bonded lengths of steel and GFRP bars, the bond
strength was found to obey an inverse relation, while for longer bonded lengths, no
proportionality was observed. On the other hand, for a constant diameter of bar, the
bond strength was found to be maximum for a bonded length of 4∅ in both steel and
GFRP bars.
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2. For the steel bar of diameter 10 mm, the bond strength of FC4∅_10S was found to be
11.9% and 18.7% higher than FC3∅_10S and FC5∅_10S, respectively. Similarly, for
diameter 12 mm, the bond strength of FC4∅_12S was found to be 9.7% and 59.7%
greater compared to FC3∅_12S and FC54∅_12S, respectively. Additionally, for a
16 mm diameter bar, the bond strength of FC4∅_16S with a bonded length of 64 mm
was found to be 11.1% and 22.7% higher than FC3∅_16S and FC5∅_16S, respectively.

3. For the GFRP bar of diameter 10 mm, the bond strength of FC4∅_10G was found to
be 10.0% and 30.2% higher than FC3∅_10G and FC5∅_10G, respectively. For the bar
of diameter 12 mm, the bond strength of FC4∅_12G was found to be 4.0% greater
compared to FC3∅_12G, and 13.8% lesser compared to FC5∅_12G. Additionally, for
the bar of diameter 16 mm, the bond strength of FC4∅_16G was found to be 41.9%
and 50.5% higher than FC3∅_16G and FC5∅_16G, respectively.

4. In case of GFRP bars, the bond strength was enhanced by 165.7% and 105.9%, corre-
sponding to the bonded length 3∅ and 4∅, respectively, upon reducing the diameter
from 16 mm to 10 mm. On the other hand, for a longer bonded length (5∅), the bond
strength was found to be maximum for the 12 mm diameter bar.

5. Through the regression analysis, equations of very high correlation were predicted;
these represent the practical results of the bond strength of FC with steel bars of short
(3∅, 4∅) and long (5∅) bonded lengths. The predicted bond strengths showed a good
correlation with the experimental values, and were also found to be comparable with
the results obtained using equations existing in the literature.
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