
Citation: Hu, J.; Tu, W.; Gu, X. A

Simple Approach for the Dynamic

Analysis of a Circular Tapered Pile

under Axial Harmonic Vibration.

Buildings 2023, 13, 999.

https://doi.org/

10.3390/buildings13040999

Academic Editors: Jiecheng Xiong,

Ping Wang, Shuqian Duan and

Yucong Pan

Received: 18 March 2023

Revised: 5 April 2023

Accepted: 6 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A Simple Approach for the Dynamic Analysis of a Circular
Tapered Pile under Axial Harmonic Vibration
Jing Hu 1, Wenbo Tu 2,* and Xiaoqiang Gu 1

1 Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2 State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,

East China Jiaotong University, Nanchang 330013, China
* Correspondence: wenbotu@ecjtu.edu.cn

Abstract: The tapered pile offers sustainable use of construction materials due to its higher axial and
lateral capacity and better performance owing to its geometry. This paper develops a semi-analytical
solution of the vertical dynamic impedance of the tapered pile based on the dynamic Winkler theory
and transfer matrix method. The accuracy and reliability of the proposed approach are verified by
comparing the impedance functions of cylindrical and tapered piles obtained from the analytical
solution and finite element analysis. A parametric study is performed to investigate the influence of
the taper angle on the vertical dynamic impedance and resonant frequency. The results reveal that
the taper angle has a significant influence on the vertical dynamic impedance, while it does not affect
the oscillation period of the dynamic impedance and the resonant frequency. Besides, the vibration
performance of the tapered pile is better than that of a cylindrical pile with the same volume. For a
fixed-volume tapered pile, varying the pile length while keeping the pile tip diameter constant yields
a better dynamic impedance than varying the pile tip diameter while keeping the pile length constant.
Finally, the vertical displacement amplitude of the tapered pile decreases as the taper angle increases,
especially for high-frequency excitation.

Keywords: tapered pile; taper angle; dynamic impedance; resonant frequency

1. Introduction

Tapered pile geometry is characterized by a linear variation of a cross section along its
axis with a large diameter at its head and a small diameter at its toe. This configuration
results in a larger axial and lateral load carrying capacity and improved performance
under both vertical and lateral static loads. Many studies have reported that the vertical
load capacity of the tapered pile increases by 50 to 250% over cylindrical piles with the
same volume [1–4], and its lateral load capacity is higher by 60 to 80% [5–8]. Due to its
advantages over conventional cylindrical pile configurations, it has been adopted in build-
ing foundations, slope retaining projects, support of high-speed railways, and highway
weak-foundation treatment projects [9]. However, it has not yet been widely used in appli-
cations involving dynamic loading due to the limited knowledge of its dynamic pile−soil
interaction mechanism. Most previous studies focused on the static bearing characteristics
of the tapered pile using both experimental tests and finite element analysis [10–15]. The
cyclic response of axially loaded tapered piles has also been investigated, and the taper
angle was demonstrated to improve the cyclic performance of piles [16–18].

While the tapered piles bear the vertical loads from high-speed trains and their in-
stallation improves the surrounding soil and hence reduces the foundation settlement,
the tapered pile foundation will be affected by enduring dynamic loads and can play an
important role in the mitigation of ground-borne vibration due to high-speed train traffic.
Therefore, the vertical vibration characteristics of tapered piles subjected to dynamic traffic
load are important considerations, and effective analysis methods are desired to evaluate
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their dynamic characteristics. However, limited experimental and numerical investigations
have been conducted to evaluate the vertical response of tapered piles under dynamic
loading conditions. Tavasoli and Ghazavi [19] conducted field tests to evaluate the taper
effect on pile driving performance, which showed that the tapered and semi-tapered pile
geometry could offer better drivability with reduced cumulative hammer blow counts and
efficient driving operations. Ghazavi [20] conducted a series of finite element analyses
to characterize the dynamic response of tapered piles under vertical harmonic vibration,
which illustrated that the dynamic performance of the tapered piles is superior to that of
cylindrical piles with the same length and volume.

Compared to field tests and finite element analyses, analytical solutions are more
efficient and should be easier to utilize in evaluating the dynamic response of the tapered
pile foundation. Many studies have proposed theoretical analysis methods for the vertical
dynamic response of tapered piles [21–25]. In addition, several studies examined the
effects of fixed and free boundary conditions of the pile tip and taper angle on the vertical
dynamic characteristics of tapered piles [26,27]. Dehghanpoor and Ghazavi [28] evaluated
the seismic response of tapered piles and investigated the variation of their resonance
amplitudes as a function of the taper angle. Wang et al. [29] and Guan et al. [30] analyzed
the vertical and torsional dynamic impedance of tapered piles considering construction
disturbance and demonstrated that the dynamic stiffness at the pile head increases with the
degree of soil compaction due to pile installation, while the damping decreases with the
increase of soil compaction. However, in all the above studies, tapered piles are idealized as
a combination of multisegmented cylinders. Although these methods involve a simplified
calculation procedure similar to conventional cylindrical piles [31–33], the accuracy of the
results is highly dependent on the number of segments used to discretize the tapered pile,
which reduces the efficiency of the analytical approach, and the computational time and
cost can be high.

To effectively consider the interaction between the tapered pile and soil, this paper
develops a dynamic Winkler model along the pile shaft incorporating distributed lateral
and axial springs and dashpots, in addition to a concentrated axial spring and dashpot at
the pile tip. The analytical expression for the vertical dynamic impedance is established
in the frequency domain and is integrated with the transfer matrix method to yield the
dynamic response of the tapered pile. The proposed method is validated by comparing its
predictions with both the analytical solutions for cylindrical piles and the results from finite
element analysis for tapered piles. The proposed approach is demonstrated to be accurate
and efficient for analyzing and designing tapered piles subjected to dynamic loading. The
influence of the taper angle and soil parameters on the vertical dynamic characteristics of
the tapered pile is illustrated with an example.

2. Physical Models

A tapered pile−soil system is shown in Figure 1. The analysis considers a tapered
pile with pile length L and pile tip radius rb embedded in layered soil. The following
assumptions are adopted in developing the model:

(1) The tapered pile is elastic and perfectly bonded to the soil. The pile has a circular
cross-section and is tapered along its shaft with a constant taper angle of θ.

(2) The soil has m layers, and each layer is isotropic and homogeneous. Young’s modulus,
density, damping ratio, and shear wave velocity of each soil layer are Esi, ρsi, βsi, and
Vsi for the i-th section, respectively, and soil nonlinearity is neglected. The ground
surface is free of normal and shear forces.

(3) The tapered pile is subjected to a steady-state harmonic excitation with an amplitude
Veiωt with frequency ω. There is no force or deformation out of the plane Oyz.
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Figure 1. Tapered pile embedded in layered soil.

In the following, a tapered pile divided into n frustum segments is considered. The
tapered pile is subjected to a vertical harmonic load at the pile head and shear force pti
and normal force pni (I = 1~n) along the tapered pile segment shaft, as shown in Figure 2.
The thickness and radius of the i-th segment are assumed to be hi and ri, respectively. The
tapered pile is divided into segments of the same thicknesses as the adjacent soil layers.
The soil segment surrounding the pile is idealized as distributed complex springs to model
its resistance to the pile. The frequency-dependent dynamic stiffness and damping of the
complex springs, kvi and cvi, account for the soil stiffness and energy loss due to wave
propagation and hysteretic dissipation. The vertical spring kvb and dashpot cvb are used
to simulate soil resistance at the pile tip. A dynamic Winkler model is then developed,
incorporating the distributed complex springs along the pile shaft and below the pile tip,
as illustrated in Figure 2.

Figure 2. Dynamic Winkler model of a tapered pile.

3. Formulation

The equilibrium of the i-th frustum segment of the tapered pile in the vertical direction
is given by the following governing equation [27,34,35]

ρp Ap(z)
∂2w(z, t)

∂t2 + pi − Ep Ap(z)
∂2w(z, t)

∂z2 − Ep
∂Ap(z)

∂z
∂w(z, t)

∂z
= 0 (1)

where ρp is the density of the pile, Ep is Young’s modulus of the pile, Ap (z) is the cross-
sectional area at depth z, w (z, t) is the displacement at depth z and time t, pi is the soil
resistance to the dynamic harmonic motion of the tapered pile, and ω is the circular
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frequency of the loading force. pi can be decomposed into the shear force pti and normal
force pni to the pile shaft as

pi = pti cos θ + pni sin θ (2)

Under vertical vibration, pti and pni are functions of the complex stiffness and displace-
ment along the normal and tangential force directions and can be expressed based on the
Winkler model assumption as

pti = (kti + iωcti )w(z, t) cos θ (3)

pni = (kni + iωcni )w(z, t) sin θ (4)

where kti and cti are the complex stiffness and damping coefficients parallel to the pile
surface in plane Oyz, and kni and cni are the complex stiffness and damping coefficients
perpendicular to the pile surface in plane Oyz, respectively.

Substituting Equations (3) and (4) into Equation (1) and considering the commonly
adopted assumption that the vertical dynamic response is given by w (z,t) = w (z)eiwt when
the pile is under axial steady-state harmonic vibration [36–38], Equation (1) can be rewritten
in the following form

Ep Ap(z)
∂2w(z)

∂z2 + Ep
∂Ap(z)

∂z
∂w(z)

∂z
=
[
kvi + iωcvi − ρpω2 Ap(z)

]
w(z) (5)

where kvi and cvi are the dynamic stiffness and damping constants of soil surrounding the
pile shaft, which are defined as

kvi = kti cos2 θ + kni sin2 θ (6)

cvi= cti cos2 θ + cni sin2 θ (7)

The nontrivial general solution of Equation (1) is

w(z) = C1 Jµ(H(z)) + C2Yµ(H(z)) (8)

where C1 and C2 are complex constants that are determined by the boundary conditions; Jµ

(H (z)) and Yµ (H (z)) are the spherical Bessel functions of order µ of the first and second
kinds, respectively. µ and H (z) are defined as

µ =
1
2

(√
4kvi + 4iωcvi

πEp tan2 θ
+ 1− 1

)
(9)

H(z)= −ω

√
ρp

Ep

rb + (L− z) tan θ

tan θ
(10)

With the differential relationship between the vertical displacement w (z) and axial
force N (z), the axial force N (z) can be calculated from the pile displacement w (z) as

N(z) = −Ep Ap(z)
dw(z)

dz
= C1F(H(z)) + C2G(H(z)) (11)

F(H(z)) =
ω

2

√
ρp

Ep

[
−

Jµ(H(z))
H(z)

+ Jµ−1(H(z))− Jµ+1(H(z))
]

(12)

G(H(z)) =
ω

2

√
ρp

Ep

[
−

Yµ(H(z))
H(z)

+ Yµ−1(H(z))−Yµ+1(H(z))
]

(13)
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For the i-th segment of the tapered pile embedded in a homogeneous soil, the relation-
ship between the vertical displacement w (z) and the axial force N (z) at the ends of the
section can be formulated as{

w(Li)
N(Li)

}
= [T]i

{
w(Li−1)
N(Li−1)

}
=

[
T11 T12
T21 T22

]
i

{
w(Li−1)
N(Li−1)

}
(14)

where {w (Li−1), N (Li−1)} and {w (Li), N (Li)} are the dynamic vertical displacement and
axial force at the top and bottom ends of the i-th pile segment, respectively. The transfer
matrix is then given as

[T]i =
[

Jµ(H(Li)) Yµ(H(Li))
F(H(Li)) G(H(Li))

][
Jµ(H(Li−1)) Yµ(H(Li−1))
F(H(Li−1)) G(H(Li−1))

]−1

�
[

1 −1/Ep A(Li−1)
−Ep A(Li) A(Li)/A(Li−1)

]
(15)

where A (Li−1) and A (Li) are the cross-sectional areas of the top and bottom of the i-th
pile segment, and � is the Hadamard product operator. The vertical displacement and
axial force at any depth in a pile can be determined by the transfer matrix method with the
continuity condition (see Figure 3) as{

w(Ln)
N(Ln)

}
= [Tw]

{
w(L0)
N(L0)

}
(16)

[Tw] = [T]n[T]n−1 · · · [T]2[T]1 =

[
Tw

11 Tw
11

Tw
21 Tw

22

]
(17)

Figure 3. Schematic of tapered pile segments.

To obtain the transfer matrix [Tw], the stiffness kv and damping cv constants of soil
around the i-th conical frustum pile segment should be determined first. The complex
stiffness and damping coefficients of the springs along the pile can be approximated by the
following empirical equations [34,39,40]

kti = 0.6Esi

(
1 +

1
2
√

a0i

)
(18)

cti ≈ 2βsi
kvi
ω

+ πρsiVsidia
− 1

4
0i (19)
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kni ≈ 1.2Esi (20)

cni ≈ 2βsi
kni
ω

+ 6ρsiVsidia
− 1

4
0i (21)

where Esi, βsi, ρsi and Vsi are the elastic modulus, damping ratio, soil density, and shear
wave velocity of the soil surrounding the i-th pile segment, respectively; a0i is the dimen-
sionless frequency, and di is the average diameter of the i-th conical frustum.

The vertical displacement w (Ln) and axial force N (Ln) at the pile tip can be determined
based on the solution of rigid circular footing with vertical vibration in an elastic half-space
given by Lysmer and Richart [41]:

N(Ln) = (kvb + iωcvb)w(Ln) (22)

kvb =
4Gbrb
1− vb

(23)

cvb =
3.4rb

√
Gbρb

1− vb
(24)

where kvb and cvb are the dynamic stiffness and damping coefficients at the pile tip, respec-
tively, and Gb, ρb, and vb are the shear modulus, mass density, and Poisson’s ratio of the
soil at the pile tip, respectively.

Substituting Equation (22) into Equation (14), the vertical dynamic impedance Γv of
the tapered pile can be obtained as

Γv =
N(L0)

w(L0)
= −

Tw
11(kvb + iωcvb) + Tw

21
Tw

12(kvb + iωcvb) + Tw
22

= Kv + iCv (25)

where Kv and Cv are the vertical dynamic stiffness and damping constants of the tapered
pile, respectively.

4. Validation and Convergence Studies
4.1. Validation on Small Taper Angle Solution

With the proposed dynamic Winkler model, the semi-analytical solution of the vertical
dynamic impedance of the tapered pile can be obtained by the transfer matrix method.
It should be noted that the proposed method does not apply to cylindrical piles. The
degeneration to cylindrical pile case is difficult to achieve, if not impossible because the
suitable asymptotic expansion of the spherical Bessel function of the first and second kinds
can hardly be found as θ goes to 0. To verify the small taper angle result, the vertical
dynamic response of the cylindrical pile is approximated by letting θ to be a small value in a
heuristic manner. The normalized vertical dynamic impedance of the cylindrical pile based
on the proposed method, cylindrical pile analytical solution [42], and boundary element
numerical solution [27] are compared in Figure 4. The pile slenderness ratio L/d is 15,
where d is pile diameter. The ratio between the pile elastic modulus and soil elastic modulus
Ep/Es is 1000, and the soil-to-pile mass density ratio ρs/ρp is 0.7. The soil damping ratio β
is 5%. The comparison shows that the proposed method agrees well with the solutions for
cylindrical piles.
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Figure 4. Normalized dynamic impedances of an axially loaded single pile [27,42].

4.2. Validation on Medium Taper Angle Solution

The proposed semi-analytical model for vertical dynamics of the tapered pile with a
medium taper angle is validated by comparing its predictions with the FEM results [20].
The tapered pile is embedded in homogeneous soil and is subjected to a vertical harmonic
load with varying frequencies from 0 to 60 Hz. The properties of tapered pile and soil
considered in the analysis are listed in Table 1.

Table 1. Properties of the tapered pile and soil.

Material Property Value

Pile

Equivalent radius req 0.1 m
Pile length L 5 m
Taper angle θ 1.5◦

Elastic modulus Ep 20 GPa
Density ρp 2400 kg/m3

Soil

Elastic modulus Es 30.6 MPa
Density ρs 1800 kg/m3

Shear wave velocity Vs 82.5m/s
Poisson’s ratio νs 0.25

The equivalent radius req is defined as the radius of cylindrical pile of the same volume
and length as the tapered pile:

r2
eq =

1
3

(
r2

0 + r0rb + r2
b

)
(26)

where r0 and rb are the radii of the head and tip of the pile, respectively.
Both floating and end bearing tapered piles are investigated by adjusting the soil

properties at the pile tip. The shear wave velocities of the soil at the pile tip are set to
82.5 m/s and 82,500 m/s for the floating and end bearing conditions, respectively. A mass
block of 5000 kg is applied at the pile head, and the dimensionless dynamic displacement
amplitude of the tapered pile is calculated by the dynamic impedance as

Aw =
ω2√(

Kv
M −ω2

)2
+
(

ωCv
M

)2
(27)
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where Kv and Cv are the vertical dynamic stiffness and damping of the tapered pile, M is
the pile head mass, and ω is the circular frequency.

Figure 5 illustrates the dimensionless displacement amplitude Aw at the top of the
tapered pile as a function of the excitation frequency based on the proposed approach and
the finite element analysis. Noting that the complex stiffness and damping coefficients are
evaluated at the middle of each pile segment, the accuracy of the transfer matrix method
would depend on the number of segments for the pile and surrounding soil. Therefore, the
sensitivity of the solution to the segment size is also investigated. Figure 5 demonstrates the
good agreement between the calculated dimensionless amplitudes from both the proposed
method and the finite element analysis for both floating and end bearing tapered piles.
Figure 5 also shows that the accuracy increases with the increase of the number of pile
segments n; even with a limited number of segments, the difference between the two sets
of results is still insignificant.

Figure 5. Comparison of dimensionless amplitude of (a) floating tapered pile; (b) end bearing tapered
pile [20].

5. Results and Discussion
5.1. Effect of Pile Slenderness Ratio

The pile slenderness ratio is a decisive factor in determining the number of pile
segments. In the following analysis, the pile tip radius rb = 0.5 m is used along with
slenderness ratios L/rb = 30, 70, and 110, which covers the common range of pile slenderness
ratios in engineering practice. To illuminate the effect of the tapered pile parameters on
its dynamic characteristics, the soil surrounding the pile is assumed to be homogeneous
with elastic modulus and mass density of 30 MPa and 1600 kg/m3, respectively. The same
physical parameters used in Kaynia [42] are adopted in the analysis: the pile-to-soil elastic
modulus ratio Ep/Es = 1000, soil-to-pile mass density ρs/ρp = 0.7, and soil damping ratio
β = 5%, taper angle θ = 1◦. Figure 6 displays the variation of calculated normalized vertical
stiffness Kv and damping Cvin Equation (25) with loading frequency. In Figure 6, Ksv is
the static stiffness of the tapered pile. To better employ tapered piles for improving the
performance of high-speed railway subgrades, the range of frequency of ground-borne
vibration from 20 to 300 Hz is of concern [43]. Therefore, the dynamic response of the
tapered pile is calculated within that frequency range (0–400 Hz).
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Figure 6. Vertical dynamic impedance for piles with different slenderness ratios: (a,c,e) normalized
stiffness for L/rb = 30, 70, and 110; (b,d,f) normalized damping for L/rb = 30, 70, and 110.

A clear oscillatory characteristic for both the stiffness and damping of the tapered pile
is observed in Figure 6, and the oscillation is more obvious as the pile length increases. This
phenomenon is the same as the longitudinal vibration response of the cylindrical rod [44].
Hence, the results from the proposed approach can be compared to the natural frequencies
of the longitudinal vibration of a fixed-free cylindrical rod given by Thomson [44] as

fi =
2i− 1

4Lr

√
Er

ρr
, i = 1, 2, 3 · · · (28)
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where fi is the i-th natural frequency of the fixed-free rod, Lr is the length of the rod, Er is
the elastic modulus of the rod, and ρr is the density of the rod. Equation (28) clearly shows
that the natural frequencies of the rod are closely related to its length.

For a pile with a slenderness ratio L/rb of 30, the 0–400 Hz frequency range covers
three natural frequencies of the cylindrical rod according to Equation (28), which is equal to
the number of oscillation periods of the tapered pile in Figure 6a. The number of oscillation
periods in the 0–400 Hz frequency range for the slenderness ratio L/rb = 70 and 110 is about
2.3 and 3.7 times the number of natural frequencies for L/rb = 30. Figure 6 also shows
that only 10 segments are sufficient to produce accurate results for piles with different
slenderness ratios, while the alternative analysis procedure that uses a stepping structure
requires more than 100 pile segments for accurate results [26,45].

5.2. Effect of Taper Angle

The vertical dynamic response of the tapered pile is also significantly influenced by
the taper angle [45,46]. In engineering practice, the taper angle is usually less than 5◦ for
construction convenience. To illustrate the taper angle effect on the dynamic characteristics
of tapered piles, four different taper angles θ = 0◦, 1◦, 2◦, and 3◦ are considered in this
section. The pile slenderness ratio L/rb = 30 is used in this analysis, and Ksv is the tapered
pile static stiffness for slenderness ratio L/rb = 30 and taper angle θ = 1◦. Other parameters,
such as pile length and pile tip diameter, are chosen to be the same as in Section 5.1.

Figure 7 presents the vertical dynamic impedance of the tapered pile for the different
taper angles. Figure 7 shows that the dynamic pile stiffness and damping increase as the
taper angle increases, especially for high loading frequency. This observation is consistent
with the results of Cai et al. [26]. Comparing the vertical dynamic impedance of the
cylindrical pile (i.e., θ = 0◦) and tapered pile with taper angle θ = 3◦, the stiffness and
damping increase about 15 times and 20 times, respectively, at f = 300 Hz, which indicates
the potentially significant vibration isolation performance of the tapered pile near the
loading frequency 300 Hz compared to the cylindrical pile. This large increase is attributed
to two reasons. First, for a tapered pile with the same pile length and pile tip diameter, the
diameter of the pile at the same depth increases as the taper angle increases (larger average
diameter and pile volume). Second, the shear force pt and normal force pn along the pile
shaft under unit displacement increase as the taper angle increases.

Figure 7. Effect of the taper angle on the vertical dynamic impedance of the tapered pile with
slenderness ratio L/rb of 30: (a) stiffness; (b) damping.

The natural foundation frequency is a main concern in engineering practice as reso-
nance can increase the dynamic response significantly. To investigate the resonant frequency
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of the tapered pile, the dimensionless vertical dynamic displacement responses of piles
with different taper angles are presented in Figure 8. The vertical dynamic displacements
are normalized by the static vertical displacement of the cylindrical pile (i.e., θ = 0◦) with the
same pile volume. Figure 8 reveals that the vertical displacement response of the tapered
pile is significantly reduced as the taper angle increases. Figure 8 also shows that the
resonant frequency gradually increases as the taper angle increases. Although the dynamic
impedance of the tapered pile increases significantly as the taper angle increase (as shown
in Figure 7), the increase in resonant frequency is not remarkable, which is consistent with
the effect of the taper angle on the oscillation period of the dynamic impedance of the taper
pile. This is because the overall mass involved in the vertical vibration of the tapered pile
increases simultaneously with the increase in the taper angle.

Figure 8. Dimensionless dynamic response of the tapered pile at different taper angles.

5.3. Discussion on Dynamic Impedance of Constant Volume Tapered Pile

From an economic point of view, the dynamic characteristics of different tapered piles
of the same volume (i.e., same material quantity) are of interest. There are two ways to
preserve a constant volume of taper pile: varying the pile tip diameter while keeping its
length constant or varying the pile length while keeping its tip diameter constant. In the
following, the vertical dynamic response of constant volume tapered pile with different
pile lengths and pile tip diameters is investigated for a typical slenderness ratio L/rb = 30.
The soil and pile parameters are the same as in Section 5.1 if not specified otherwise.

5.3.1. Varying Pile Tip Diameter with Constant Pile Length

In this section, the dimensions of different piles with taper angles θ = 0◦, 1◦, 2◦, and
3◦, are calculated employing Equation (26) considering a constant pile length, and their
dynamic impedances are shown in Figure 9. It is evident from Figure 9 that the dynamic
stiffness and damping of the different tapered piles are improved compared with the
cylindrical pile (i.e., θ = 0◦); for example, the increases in peak dynamic stiffness and peak
damping are 170% and 200%, respectively, for θ = 1◦ around f = 300 Hz. However, the
increases in peak dynamic stiffness of piles with θ = 2◦ and 3◦ are only 10% and 28% to that
of the tapered pile with θ = 1◦.
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Figure 9. Vertical dynamic impedance of constant volume tapered piles with the same pile length yet
different taper angles: (a) stiffness; (b) damping.

Figure 10 displays the dimensionless dynamic response of the tapered pile with
constant volume and the same length but different tip diameters. The vertical dynamic
displacements are normalized by the static vertical displacement of the cylindrical pile. The
results demonstrate that the dynamic response of the tapered pile is significantly lower than
that of the cylindrical pile, and the reduction in displacement amplitude is more significant
as the taper angle increases, especially in the low-frequency range. Figure 10 also shows
that the resonant frequency of the tapered pile increases compared to the cylindrical pile
with the same volume. This is because the overall dynamic impedance increases while the
mass of the pile foundation remains constant due to the constant volume.

Figure 10. Dimensionless dynamic response of constant volume tapered piles with the same pile
length yet different taper angles.

5.3.2. Varying Pile Tip Diameter with a Constant Pile Length

The dimensions of a constant volume tapered pile with constant tip diameter but
different lengths are determined using Equation (26). The dynamic impedances of constant
volume tapered piles of the same tip diameter, but different pile lengths are shown in
Figure 11. Both the vertical dynamic stiffness and damping increase as the taper angle
increases. The number of oscillation periods of the dynamic impedance also increases as
the taper angle increases, which is the same as in the constant pile length scenario. This is
because the pile length decreases as the taper angle increases, and the number of oscillation
periods decreases in the concerned frequency range. Figure 12 displays the dimensionless
dynamic response of the tapered pile with constant tip diameter but varying length. The
results exhibit the same pattern for the case of constant length but varying tip diameter, i.e.,
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the dynamic response decreases as the taper angle increases. However, as the taper angle
increases, the increase in resonant frequency is more significant for the constant pile length
case than for the constant pile tip diameter case.

Figure 11. Vertical dynamic impedance of constant volume tapered piles with the same pile tip
diameter yet different taper angles: (a) stiffness; (b) damping.

Figure 12. Dimensionless dynamic response of the tapered pile with the same pile tip diameter yet
different taper angles.

The results obtained collectively indicate that the dynamic performance of tapered
piles is superior to that of the cylindrical with the same volume at medium- and high-
frequency ranges. This is particularly advantageous for the performance requirements of
the high-speed railway subgrades. In addition, comparing the results in Figures 10 and 12
demonstrates that considering a constant pile tip diameter strategy yields a better vibration
improvement than the constant pile length strategy when choosing the design taper angle
for the concerned frequency range. Given that the settlement of a high-speed railway
subgrade is usually strictly controlled due to the high velocity of vehicles, lengthening
the pile foundation is commonly used as an effective measure to reduce settlement in a
high-speed rail subgrade. Therefore, the taper angle should be designed considering a
combination of the vibration and settlement requirements to achieve the best performance.

6. Conclusions

This paper proposed a simple method for evaluating the vertical dynamic response
of tapered piles based on the dynamic Winkler model and transfer matrix method. The
method is easily extended to the dynamic analysis of tapered piles in layered soil. The
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effects of the pile slenderness ratio and taper angle on its vertical dynamic characteristics
are assessed, and the following conclusions can be drawn:

(1) The proposed method retains high accuracy for calculating the vertical impedance
function and dynamic response of tapered piles with different taper angles and
slenderness ratios, while reducing the computational time and cost significantly.

(2) The dynamic stiffness and damping of the tapered pile are significantly improved
compared to the cylindrical pile with the same pile length and pile tip diameter,
especially in the high-frequency range. In addition, the tapered pile exhibits better
vibration performance than a cylindrical pile of the same volume.

(3) The vertical dynamic impedance of the constant volume and constant length tapered
pile increases as the taper angle increases. However, the increases in dynamic stiffness
and damping are limited for taper angles larger than 1◦. Meanwhile, the resonant
amplitude decreases, and the resonant frequency increases for tapered piles with
constant volume and length as the taper angle increases.

(4) The vertical dynamic impedance and its oscillation period of a tapered pile with
constant volume and constant tip diameter tapered pile increase significantly as the
taper angle increases. The resonant frequency increases and the resonance amplitude
decreases significantly as the taper angle increases. In addition, as the taper angle
increases, the number of response resonant peaks within the concerned frequency
range for high-speed railway subgrades decreases.

(5) For fixed-volume tapered piles, keeping the tip diameter constant while varying
pile length for different taper angles yields better vertical dynamic impedance than
varying the tip diameter and keeping the pile length constant. However, the selected
tapered pile length should also satisfy the subgrade settlement requirements. Since
the method can be easily implemented, it presents an attractive and efficient tool to
analyze and design tapered piles subjected to dynamic loading.
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