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Abstract: In order to avoid the tedious and time-consuming measuring process for thermal conduc-
tivity, many random models have been proposed, but the construction of those random models is
still inefficient, which limits the further application. In this paper, a construction method of three-
dimensional random asphalt models for predicting thermal conductivity based on the background
grid and the moving-and-densifying algorithm was proposed which greatly improves construction
efficiency. The influence of the random factors on models’ stability was studied and the range of the
key factors within all random factors was restricted. Further, a conflict judgment method for the
convex aggregate and the improved take-and-place method based on the background grid method
and the moving-and-densifying algorithm was realized by MATLAB code to construct aggregate
mixture models. Finally, the aggregate mixtures model was imported into ABAQUS 2022 to predict
the thermal conductivity based on the steady-state plate method, and the validity of the predicting
result was verified by experimental result. With this construction method, the stability index is
improved by more than 80.71%, and packing efficiency is 198.98% higher than before. Additionally,
the 3D random model showed a smaller prediction error range (less than 5%) than the 2D models
(more than 10%) and was more accurate than the 2D prediction model. This research focused on
improving the construction efficiency of the 3D random asphalt concrete model which contributes to
full utilization and laying a foundation for further improvement.

Keywords: random model; thermal conductivity; asphalt concrete; background grid method; moving-
and-densifying algorithm

1. Introduction

As a prominent construction material, asphalt concrete is widely used in all aspects
of civil engineering. Along with the rapid development of the discrete element method
(DEM) and the finite element method (FEM), many researchers have developed a series of
numerical models to predict some properties of asphalt concretes [1–6]. Thermal conduc-
tivity is among the most important properties of asphalt concrete, and a lot of mesoscale
numerical models have been developed to aid prediction [4,5,7,8]. Most prediction models
are two-dimensional (2D) models and differ greatly from reality. Some other researchers
have constructed three-dimensional (3D) thermal conductivity prediction models, but the
construction efficiency of those models is relatively low. Therefore, it is very important
to improve the construction method of the prediction model to meet the requirement of
efficiency and accuracy in real cases. The key to efficiently constructing a 3D model is to
improve the construction efficiency of the aggregate mixture model which includes the
generation and packing of aggregates in sequence.

Two main methods are currently used for the construction of the aggregates model.
One is based on image recognition, applying computer tomography (CT) equipment to scan
the real aggregate to obtain a more accurate geometric model [9–11]. Although an accurate
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and realistic aggregate model can be obtained by this method, it is not only expensive
but also time consuming. In particular for the 3D aggregate model, a large number of
3D aggregate databases need to be constructed, which greatly reduces the usefulness of
the image scanning method. Another method is to construct a random geometric model
of aggregates based on the geometric characteristics of aggregates and the Monte Carlo
algorithm. This method was widely used for the ability to generate aggregate models
quickly and massively [2,5,12]. The difficulty in constructing a random geometric model
lies in the description of aggregates’ geometric characteristics. For the two-dimensional
aggregate model, researchers usually replace the aggregates with simple geometric shapes
such as circles [6,13,14], ellipses, and polygons. Additionally, for a 3D aggregate model,
various geometric features of aggregates were selected as the random factors to construct an
aggregate model randomly and in reality. However, too many random factors could lead to
massive computational difficulty in model construction [6,15,16]. Most researchers utilized
three to four random factors to control the shape of the aggregate model and constructed
the aggregate model either directly or in two steps [17,18], thus the aggregate models had
enough randomness while the amount of computation was greatly reduced. However,
the simplified random model showed numerous undesirable geometric features such as
being needle like and sharpness [19], which led to unsatisfactory stability and additional
computational difficulty.

The keys to packing aggregates are the judgment function of the conflicted relationship
in aggregates and the packing algorithm. The packing algorithm varies according to the
geometric characteristics of the aggregate. For a two-dimensional aggregate model, due
to less computation, the commonly used packing method is the take-and-place method,
and its conflict judgment method often applies the analytical method, the Gilbert–Johnson–
Keerthi distance algorithm, and other methods [6,19]. The take-and-place method is a
“fill-in” algorithm, which means the random aggregate is placed one by one through the
Monte Carlo method. If placed successfully, the coordinates of the aggregates are recorded;
otherwise, coordinates are re-selected until the aggregates are placed. Because of its nature
of filling vacancies, its packing efficiency will decrease with the decrease in vacancies, and
this method is more applicable in the less calculation two-dimensional model. The packing
methods are more diverse for the 3D aggregate model. Zhao et al. [20] imported aggregate
models into PFC3D to achieve a denser packing of aggregates within a set time by setting
boundary conditions and applying loads. However, the low computational efficiency limits
its usefulness. In addition, some researchers took the take-and-place method as the packing
algorithm [21,22]. However, the problem where the packing efficiency of the take-and-place
method decreases with an increase in the placed aggregates still exists. Many studies have
improved the packing efficiency of the take-and-place method. Ouyang et al. [23] imported
the background grid to reduce the unnecessary placement of the take-and-place method.
Zhou et.al and Zhang et al. [24,25] made the model denser by applying displacement
to the placed aggregates. Although those studies have improved a certain defect of the
take-and-place method, few studies simultaneously improved both the defects.

In this study, a more stable aggregate geometry-generating method and a more efficient
packing method were proposed to construct the 3D random model with less computation
and meet the requirement of the practice. Firstly, several random factors were set, and
the range of those random factors was reasonably restricted with the index of stability.
Secondly, the aggregate model was constructed with high randomness and enough sta-
bility based on the restricted random factors. Thirdly, a conflict judgment method for
convex polyhedral aggregates and an improved take-and-place method combining the
background grid method and the moving-and-densifying (MAD) algorithm were proposed
and realized by MATLAB code. Finally, the generated geometric model was constructed
by the above methods and imported into the ABAQUS 2022 to construct the thermal con-
ductivity prediction model, and the accuracy of the prediction model was verified by the
experiment results.
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2. Generation of 3D Random Model
2.1. The Aggregates Target Volume for Model Generation

The target volume of different size grade aggregates is the upper limit for the aggregate
generation which could be determined by gradation and specimen size. The grading curve
used in this study is shown in Figure 1, where Gradation 1#, Gradation 2#, and Gradation
3# denote three different gradations of the asphalt concrete. The specimen size was set
to 100 mm × 100 mm × 75 mm, the bitumen content of asphalt concrete is 4%, and the
bitumen content of asphalt mortar is 8.32%. The gradation curve is the mass percentage
curve, which can be converted to the target volume of different size grade Vi, according to
Equation (1). 

Vi =
(p i−pi+1)(1−Vair)Vspecimen

(1+ma)Vallρi

Vall =
n
∑

i=1

pi−pi+1
(1+ma)ρi

(1)

where Vi is the target volume of the ith size grade of aggregates; pi, pi+1 is the passing
ratio of the ith size grade; Vair is the porosity of the specimen, which is defined as 0.04 in
this paper; Vspecimen is the total volume of the specimen; ma is the mass fraction of asphalt.
In this study, ma for asphalt mortar and asphalt concrete is defined as 4% and 8.32%; ρi
is the density of the ith size grade aggregate, which is defined as 2600 kg/m3; Vall is the
percentage of aggregate volume to the sum of asphalt volume and aggregate volume.

Buildings 2023, 13, x FOR PEER REVIEW 3 of 18 
 

was constructed by the above methods and imported into the ABAQUS 2022 to construct 
the thermal conductivity prediction model, and the accuracy of the prediction model was 
verified by the experiment results. 

2. Generation of 3D Random Model 
2.1. The Aggregates Target Volume for Model Generation 

The target volume of different size grade aggregates is the upper limit for the aggre-
gate generation which could be determined by gradation and specimen size. The grading 
curve used in this study is shown in Figure 1, where Gradation 1#, Gradation 2#, and 
Gradation 3# denote three different gradations of the asphalt concrete. The specimen size 
was set to 100 mm × 100 mm × 75 mm, the bitumen content of asphalt concrete is 4%, and 
the bitumen content of asphalt mortar is 8.32%. The gradation curve is the mass percent-
age curve, which can be converted to the target volume of different size grade Vi, accord-
ing to Equation (1). 

⎩⎪⎨
⎪⎧𝑉 = (𝑝 − 𝑝 )(1 − 𝑉 )𝑉(1 + 𝑚 )𝑉 𝜌𝑉 = 𝑝 − 𝑝(1 + 𝑚 )𝜌  (1)

where Vi is the target volume of the ith size grade of aggregates; pi, pi+1 is the passing ratio 
of the ith size grade; Vair is the porosity of the specimen, which is defined as 0.04 in this 
paper; Vspecimen is the total volume of the specimen; ma is the mass fraction of asphalt. In this 
study, ma for asphalt mortar and asphalt concrete is defined as 4% and 8.32%; ρi is the 
density of the ith size grade aggregate, which is defined as 2600 kg/m3; Vall is the percent-
age of aggregate volume to the sum of asphalt volume and aggregate volume. 

 
Figure 1. The gradation of the asphalt concrete and asphalt mortar. 

2.2. Aggregate Generation 
In this study, the aggregate was defined as a convex polyhedron with 16 to 20 vertices 

partly because 3D convex polyhedrons are more consistent with the geometric character-
istics of general mineral aggregates than spheres and ellipsoids, and partly to simplify the 
modeling process of aggregates and reduce the amount of computation. 

Some random factors (such as the shape coefficient η, spherical radius r, number of 
vertices n, and the vertex random distribution factor ζ) are set as the control condition for 
the aggregate generation to improve the randomness for aggregate models. Based on the 
relationship between each factor and the stability of the aggregate model the random dis-
tribution factor ζ was distributed in [0.4, 0.9] and the shape coefficient η was distributed 
in [1.46, 1.73]. The construction steps of the random convex aggregate model are as 
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2.2. Aggregate Generation

In this study, the aggregate was defined as a convex polyhedron with 16 to 20 vertices
partly because 3D convex polyhedrons are more consistent with the geometric characteris-
tics of general mineral aggregates than spheres and ellipsoids, and partly to simplify the
modeling process of aggregates and reduce the amount of computation.

Some random factors (such as the shape coefficient η, spherical radius r, number of
vertices n, and the vertex random distribution factor ζ) are set as the control condition
for the aggregate generation to improve the randomness for aggregate models. Based on
the relationship between each factor and the stability of the aggregate model the random
distribution factor ζ was distributed in [0.4, 0.9] and the shape coefficient η was distributed
in [1.46, 1.73]. The construction steps of the random convex aggregate model are as follows.
Firstly, the vertices of an aggregate were selected from a random size sphere surface, and
the vertices number of the upper hemisphere can be determined by Equation (2).

n1i = round(0.5× ni + ζ × w) (2)

where the ni is the total number of vertices of the ith aggregate, and its value is an integer
between 16 and 20; the round function serves to round the expressions in parentheses; the ζ
is a random factor with a value that is distributed in [0.4, 0.9]; w is a fluctuation factor, and
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the larger its value, the greater the difference in the distribution of vertices on the upper
and lower hemispheres, and w is defined as 2 in this paper; n1i is the number of vertices
in the upper hemisphere of the ith aggregate. Accordingly, the number of vertices in the
lower hemisphere of the ith aggregate, n2i is defined as

n2i = ni − n1i (3)

Secondly, in the spherical coordinates system, the azimuth of each vertex before
stratification can be calculated by Equations (4) and (5) according to n1i and n2i.

∅1ij = 2π/n1i + rand(1)× π × ζ/n1i (4)

∅2ij = 2π/n2i + rand(1)× π × ζ/n2i (5)

where rand(1) function serves to create a random value between 0 and 1; Φ1ij and Φ2ij
represent the azimuth values of the jth vertex of the upper and lower hemispheres of the
ith aggregate before stratification, respectively. Additionally, then the vertices of the upper
and lower hemispheres are stratified by Equations (6) and (7), respectively.

ϕ1ij =
j

∑
k=1

ϕ1ik + ∅1ij × o× π/
n1i

∑
j=1

∅1ij (6)

ϕ2ij =
j

∑
k=1

ϕ2ik + ∅2ij × o× π/
n1i

∑
j=1

∅2ij (7)

where ϕ1ij and ϕ2ij are the azimuth values of the jth vertex of the upper and lower hemi-
spheres of the ith aggregate, respectively; o is the total azimuthal angle after stratification,
and o is defined as 4π in this paper. Further, the value of the zenith angle of each vertex is
obtained by Equations (8) and (9).

θ1ij =
π

4
+ u×

ϕ1ij − 2π∣∣ϕ1ij − 2π
∣∣ × rand(1) (8)

θ2ij =
π

4
+ u×

ϕ2ij − 2π∣∣ϕ2ij − 2π
∣∣ × rand(1) (9)

where θ1ij and θ2ij are the azimuths of the jth vertex of the ith aggregate on the upper
and lower hemispheres, respectively. Then, the vertex coordinates of the aggregates are
converted from the spherical coordinates to the Cartesian coordinates by Equation (10).

xij
yij
zij

 =


ri × sin

(
θ1ij
)
× cos

(
ϕ1ij

)
ri × sin

(
θ1ij
)
× sin

(
ϕ1ij

)
ri × cos

(
θ1ij
)

0 < j < n1i

xij
yij
zij

 =


ri × cos

(
θ2ij
)
× cos

(
ϕ2ij

)
ri × cos

(
θ2ij
)
× sin

(
ϕ2ij

)
−risin

(
θ2ij
)

n1i < j < n2i

(10)

where xij, yij, zij are the Cartesian coordinate values of the jth vertex of the ith spherical
aggregate; ri is the random radius of the ith spherical aggregate and can be obtained by
Equation (11).

ri = 0.25× rand(1)× dmin + 0.25× rand(1)× (dmax − dmin) (11)
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where dmin and dmax are the lower and upper limits of the size grade, respectively. Finally,
the shape coefficient η is used to further control the aggregate shape with the Equation (12).

Xij = xij × (η(1) + rand(1)× (1− η(1)))
Yij = yij × (η(2) + rand(1)× (1− η(2)))
Zij = zij × (η(3) + rand(1)× (1− η(3)))

(12)

where η(1), η(2), and η(3) are the three components of the η, the mold of the shape coefficient
is distributed in [1.458, 1.732] and the value of η(1) is 1, which means 2.13 < (1 + η(2)2

+ η(3)2) < 3; Xij, Yij, Zij are the Cartesian coordinate values of the jth vertex of the ith
random convex aggregate. Furthermore, the discrete vertex coordinates of aggregates
were transformed into triangles pair by the Delaunay triangulation function and convex hull
algorithm and output in the stl format [26].

The flowchart of aggregate generation is shown in Figure 2, where num is the number
of aggregates; VVa is the total volume of aggregates in this cycle; VVb is the total volume of
aggregates in the previous cycle; n is the number of aggregate size grade. When generating
an aggregate, the vertices coordinate information is determined by the above process, the
volume V is obtained by the Delaunay triangulation function within MATLAB. Additionally,
in each loop, the total volume VVa and the volume limitation was compared to make sure
that the generated aggregate model is consistent with the designed gradation curve shown
in Figure 1. Additionally, the volume limitations for each size grade of aggregates can be
obtained from Section 2.1.
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2.3. Packing of Aggregates

There are two defects that led to the low packing efficiency of the take-and-place
method. First, the random placement makes the aggregate loosely distributed in the
placement space and forms many small voids among the aggregates, which leads to
increased difficulty in packing aggregates. Second, the success rate of the placement
selection decreases as the proportion of placed aggregates increases. The improved take-
and-place method improves the two defects through the background method and the
moving-and-densifying algorithm.

Figure 3 shows the flowchart of the packing process, and the steps of the improved
take-and-place method are as follows. Firstly, the background grid was created in the
placement space, which means the placement space was discretized into many points,
and each point owns a unique serial number. Secondly, two sets named setpoint and
unsetpoint are created to record the serial numbers of placed aggregates and unplaced
aggregates, and the transition from any point coordinate to the serial number can be
realized by Equation (20). Thirdly, select an aggregate generated in Section 2.2 and pick
a random point from the unsetpoint, then place the chosen aggregate to the chosen point
which can be realized by coordinate calculation (superposition of aggregate and random
point coordinates). After that, the location of the aggregate was judged, to make sure all
coordinate of the aggregate was in the range of the placement space. Then, acquire the
points information of the aggregate through the conflict judgment method introduced in
this section and retrieve the repeat serial number of the aggregate from the setpoint. If there
is no repeat serial number in the newly placed aggregate, random rotations are applied
to the placed aggregate to densify the placement space until the conflict happens. The
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random rotations could be generated by Equation (13) and applied to the aggregates by
Equation (14).

M =

 cosα 0 sinα
0 1 0

−sinα 0 cosα

1 0 0
0 cosβ −sinβ
0 sinβ cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 (13)

pts = pts·M (14)

where M is the rotation matrix; α, β, and γ are the rotation angles in the x, y, and z directions,
respectively, which are taken as a random angle between 0◦ and 45◦ in this study; pts is the
vertex coordinates of the aggregates.
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Then, return the last rotation to keep the aggregate from conflict and utilize the MAD
algorithm to further densify the placement space, where the process of the MAD algorithm
can be seen in Figure 4. The point numbers of the placed aggregates are recorded to the
setpoint and removed from the unsetpoint. After that, determine whether all aggregates in
Section 2.2 have been placed; if so, output all aggregate coordinate data in the stl format;
otherwise, start from the third step.

The MAD algorithm was used to make the newly placed aggregate closer to the placed
aggregates with several rotations and displacements. Additionally, the steps are as follows.
First, apply random displacement [I, J, K] to the newly placed aggregate until the conflicts
happen, where I, J, and K are integers between −1 and 1. Second, apply a rotation M to
the aggregate and then create k to record the number of rotations applied on the aggregate.
After each rotation is applied, make a judgment about the conflicts; and if not, record the
coordinate information of the aggregate and stop the MAD algorithm. Otherwise, repeat
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the second step until the k reaches the maximum trying times (in this study, it was set as
10), then record the coordinate information of the aggregate and stop the MAD algorithm.
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In order to improve the accuracy, an aggregate conflict judgment method was proposed
based on the geometric properties of 3D convex aggregates. The complex geometric
problems were transformed into simple algebraic problems by splitting the aggregate
model. Firstly, the convex polyhedral aggregate was split into dozens of tetrahedrons
containing the surface triangles and the center point, which can be realized by the Delaunay
triangulation function. Figure 5 is the schematic of aggregate splitting. Secondly, the vertex
coordinates of the tetrahedron were substituted into Equation (15) to obtain the vertex
equation for each tetrahedron.

||| f1| − 2 f2|+ | f1|+ f3 − 3v|+ || f1| − 2 f2|+ | f1| − 3v = 0 (15)

where the f 1, f 2, and f 3 are intermediate variables that can be calculated by Equation (16),
Equation (17) and Equation (18), respectively, and the tetrahedral volume v can be calculated
by Equation (19).

f1 =

∣∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1

x3+x4
2

y3+y4
2

z3+z4
2 1

∣∣∣∣∣∣∣∣ (16)

f2 =

∣∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1

x2+x3
2

y2+y3
2

z2+z3
2 1

x2+x4
2

y2+y4
2

z2+z4
2 1

∣∣∣∣∣∣∣∣ (17)

f3 =

∣∣∣∣∣∣∣∣
x y z 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ (18)

v =

∣∣∣∣∣∣∣∣
x y z 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ (19)

where x1, y1, z1, x2, y2, z2, x3, y3 and z3 are the coordinates of the three vertices of the surface
triangle of the convex polyhedron; x4, y4, z4 are the coordinates of the center point of the
convex polyhedron. The analytic equation set for convex aggregates could be formed by
combining all the vertex equations which can be used to judge if the point coordinated
by (x,y,z) located in the aggregate. Substituting the coordinates of the arbitrary point
coordinates into the analytic equation set for calculating, if there was a non-negative value
in the result, the point is surrounded by the aggregate. The BGM discretized the placement
space into many points. Thus, the coordinates of aggregates’ points can be determined by



Buildings 2023, 13, 990 8 of 18

substituting all the points that located in the calculation area into the analytic equation
set. Furthermore, the coordinates of aggregates’ points were converted into serial numbers
with Equation (20). Additionally, the conflicted relationship among aggregates could be
judged by determining whether the serial numbers of the newly placed aggregate and that
of the placed area were repeated.

num = xc/coordi(1) + yc/coordi(2) × NumX + zc/coordi(3) × NumX × NumY + 1 (20)

where num is the serial number of points, coordi(1), coordi(2), and coordi(3) are the spacing
of discrete points in the x, y, and z directions, respectively, and NumX and NumY are the
point numbers in the x and y direction; xc, yc, zc are the coordinates. In order to reduce
the amount of computation in the simulation, the generated aggregate mixture model
only contains the first three sizes of the gradation. Figure 6 is the constructed aggregate
mixture model.
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In this chapter, both defects of the take-and-place method were improved based on
the background grid method and the moving-and-densifying algorithm which improved
the generation efficiency of a random model and meet the requirement of real cases.
Additionally, a novel analytic conflict judgment method focused on convex polyhedral was
proposed, which provide a new approach to judge the conflict of geometry model.

3. Construction of the Thermal Conductivity Predicting Model
3.1. Method Selection

The transient method and the steady-state method were developed to measure thermal
conductivity, both of which are based on Fourier’s heat transfer equation The transient
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method has the advantages of simple operation and shorter test time, which is more suitable
for practical application, while the steady-state method has a simple model and is more
adaptable to simulation. Many studies [15,27] have found that the difference between the
transient and steady-state methods for asphalt concretes was less than 5% and it mainly
came from the accuracy of the experimental instruments and the errors formed by improper
environmental control. Additionally, different test methods show little difference for the
unmodified asphalt concrete [28]. Therefore, the steady-state plate method was used in the
simulation of thermal conductivity, and the transient plane source method (TPS) was used
for the verification test of thermal conductivity.

3.2. Determination of Thermal Conductivity

The geometric model of the asphalt concrete is set as a two-phase structure, including
the continuous phase consisting of asphalt mortar and pores, as well as the dispersed
phase of the first three grade aggregates. The thermal conductivity of asphalt concrete
and asphalt mortar was obtained as the parameters required for simulation and model
validation with the TPS method. The schematic of the TPS method is shown in Figure 7.
The test temperature was 20 ◦C, and the test device was DRE 2C produced by XIANGTAN
INSTRUMENT company. In this study, the limestone was used as coarse aggregate, and its
thermal properties were derived from the literature [29–31], and the specific heat capacity
of asphalt mortar and asphalt concrete was calculated by Equation (21)

Cv = Cvbitumen × Pbitumen+Cvaggregate×Paggregate (21)

where Cv is the calculated specific heat capacity, Paggregate and Pbitumen denote the mass
fraction of aggregates and bitumen, and Cvaggregate and Cvbitumen denote the specific heat
capacity of aggregates and bitumen, which are set to 850 (J/(kg·K) and 1000 (J/(kg·K)
in this study according to Zou et al. [32]. The gradations of asphalt mortar and asphalt
concrete used in the thermal conductivity test are shown in Figure 1. The gradation of
asphalt mortar was set as 2.08 times the gradation of asphalt concrete below 4.75 mm to
ensure that the thermal conductivity of the asphalt mortar was consistent with that of the
continuous phase of the asphalt concrete.
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disk sensor.

Three Φ 63.5 mm × 101 mm cylindrical specimens were prepared for asphalt mortar
and 3 gradations of asphalt concrete separately, and two cross-sections were cut in every
specimen. To ensure the accuracy of thermal conductivity measurement, three different
measuring points were randomly selected from the same cross-sections. Table 1 lists the
thermal properties obtained through experiments as well as from the literature.
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Table 1. Thermal property of materials used in simulation.

References Asphalt Mortar Limestone
[29–31] Gradation 1# Gradation 2# Gradation 3#

Thermal conductivity (W/(m·K)) 1.90 2.58 2.09 2.09 2.06
Standard deviation. (W/(m·K)) 0.07 0.45 0.09 0.07 0.08
Specific heat capacity (J/(kg·K) 862 850 856 856 856

3.3. Construction of the Element Model

In the finite element software, the finest aggregate with full details takes more than
90% units due to the big quantity and small mesh when meshed with the model of the
first four size grade aggregate. In order to add more grades of aggregate, the aggregate
models were transformed into element models, which means the aggregate model will
be replaced by several elements in the same location. The process was shown in Figure 8.
Firstly, the placement space was dispersed into numbered elements. Creating a set to
record the element number of aggregate, the element belonging to aggregate models can
be calculated by Equation (15). Then, the element of the mortar was generated with the
Boolean operations, which means removing the elements belonging to aggregate from all
the numbered elements.
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The steady-state plate method is a method for determining the thermal conductivity
by constructing the one-dimensional steady heat conduction. The schematic diagram of the
test device is shown in Figure 9a. The specimen is surrounded by a hot plate, a cold plate,
and the insulation layer. During the experiment, the hot plate is applied to a constant heat
flow while the cold plate is kept constant temperature, which creates a one-dimensional
steady heat conduction process from the hot plate to the cold plate. Figure 9b shows
the finite element model for the steady-state plate method, by using the model shown in
Figure 9b, the thermal conductivity of the asphalt concrete is predicted as follows:
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Firstly, the properties (include thermal conductivity, specific thermal capacity, and
density) of aggregates and asphalt mortar were given. Secondly, the DC3D20 (the 20-node
linear hexahedral thermal conductivity element) was applied to the element model for the
thermal transfer calculation. Thirdly, since the one-dimensional steady-state heat transfer
process of the model, creating a steady-state analysis step and setting the interrelationships
to thermal contact. Additionally, then, a heat flow of 1 W/m2 was applied on the heating
plate and a temperature boundary condition of 15 ◦C was applied on the cooling plate of
the model. Finally, the job was submitted to obtain the temperature field of the model, and
the thermal conductivity of the specimen is calculated by Equation (22).

λ =
q · h
∆T

(22)

where the λ is the thermal conductivity of the specimen, W/(m·K), q is the heat flow rate of
the heating plate input, W/m2; h is the height of the specimen, m; ∆T is the temperature
difference between the upper and lower surfaces of the specimen, ◦C.

4. Prediction Results and Validation

In this study, three different gradations of asphalt concrete were simulated, and the
gradations of aggregates are shown in Figure 1. Three different specimens for each grada-
tion were prepared with the process introduced in Section 3.3. The thermal conductivity
of limestone aggregates and asphalt mortar was set to the mean value shown in Table 1,
which is 2.58 W/(m·K) and 1.90 W/(m·K), respectively.

The average temperature on the hot surface and cold surface can be calculated with the
plug-in volume-weighted average temperature. Then, the average temperatures of both the
upper and lower surfaces of each specimen were substituted into Equation (23) to calculate
the thermal conductivity. Figure 10 shows the prediction results for thermal conductivity.

REi = 100×
∣∣∣∣1− λi

λexp

∣∣∣∣ (23)

where REi denotes the relative error between the simulated value and the experimental
value, %; λi is the average value of simulated thermal conductivity, and λexp is the average
value of experimental thermal conductivity, W/(m·K). The RE value of all the simulation
value can be calculated from Figure 10, the maximum RE value is 3.88%, the average RE
value for all gradations is 3.21%, and the value range of RE is less than 5%. Additionally,
from Figure 10, we know that in simulation, the gradation and the distribution of aggregates
have no significant effect on the thermal conductivity. Additionally, in the experiment, the
thermal conductivity changes a lot with the test value. Because the thermal conductivity
is very changeable in asphalt concrete. Additionally, the TPS method can just acquire
the thermal conductivity of the test point, thus repeated and random measurements are
required. Therefore, the prediction model could be a more accurate and efficient method to
acquire the thermal conductivity of a mixture such as asphalt concrete. Table 2 shows the
2D thermal conductivity prediction models constructed by other studies. The maximum
RE value was 16.58%, the minimum RE value was 1.44%, and the value range of RE is more
than 10% which was because the 2D prediction model acquires the thermal conductivity
from a random section, and a section was hard to represent the whole specimen. Thus, the
3D random model in this study was more closed to the real value of thermal conductivity
than the 2D model and showed less prediction error than the TPS method. That is, we
could acquire a more accurate prediction value of the thermal conductivity through the 3D
random model.
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Table 2. The prediction error of some 2D thermal conductivity prediction models.

Reference Max RE Min RE Avg RE

Mirzanamadi et al. [33] 10.40 1.44 4.32
Jiaqi Chen et al. [34] 16.59 4.73 11.45

KeMu et al. [7] - - 9.00

5. Discussions
5.1. Restricted of Geometry Random Factors Based on the Stability

In order to ensure that the generated aggregate model has both high randomness and
sufficient stability, on one hand, multiple random factors were set to improve the aggregate
model with the randomness, where the random factor included the shape coefficient η,
spherical radius r, number of vertices n, and the vertex random distribution factor ζ. On the
other hand, the range of some key random factors was restricted to improve the aggregate
models’ stability reasonably. Additionally, the initial range of each random factor is shown
in Table 3. Since the shape coefficient is a 3D vector, only the range of its mold (|η|) is
restricted in Table 3 while the direction angle is not restricted.

Table 3. Initial range of each random factor.

Random Factor Lower Limit Upper Limit

Vertex random distribution factor ζ −1 1
Sphere radius r 0.5 dmin 0.5 dmax

Vertex number N 16 20
Mold of shape coefficient |η| 1.21 1.73

Aggregate models with higher stability have less undesirable geometric features (such
as sharpness and needle- like). When packing aggregates with the same gradation of
Gradation 2# shown in Figure 1, the aggregate model with the factor range listed in Table 4
generated 5813 pieces and the packing time was 5522 s. Additionally, the aggregate model
with the factor range listed in Table 3 generated 6041 pieces and the packing time was 5780 s.
Thus, the stability has a significant impact on packing efficiency because the poor stability
model generates more pieces of aggregates and requires more packing time, and reducing
the stability of the aggregate model is a feasible way to improve packing efficiency.
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Table 4. Property comparison of ζ and |η| properties before and after the restriction.

Random
Factor Max Min P Mean r_range Mean

Decrease
r_range

Increment

|η| 1.46 1.73 54.07 130.51 128.60 546.13 300.39
ζ 0.40 0.90 50.00 54.94 0.36 13.08 72.09

The stability of the aggregate model can be improved by restricting the value range
of random factors. However, different random factors have a different influence on the
stability. In order to obtain the key factors and make a reasonable restriction, the effect of
each random factor on the stability of the aggregate models was studied. The number of
small edges and small facets of the geometric model is used as the index to evaluate the
model’s stability. It is expressed by defect, which is defined as follows.

de f ect = de f ect(l < 0.1dmin) + de f ect
(

s < 0.01d2
min

)
(24)

where the defect denotes the total number of aggregate defects, dmin is the lower limit of
aggregate size grade, defect(l < 0.1 dmin) is the total number of edges with a length that is
less than 0.1 dmin, and defect(s < 0.01d2

min) is the total number of facets with an area less than
0.01 d2

min.
The control variable method was used to study the relationship between each random

factor and model stability. In every simulation, only the random factor to be studied is
changed and other factors remain unchanged, and the aggregate models with a volume
of 50,000 mm3 were generated and the defect number of the models was counted. The
simulation was repeated 100 times for each data point, and the mean value was taken as
the representative value. According to the fitting relationship between random factors
and the defect, the random factors were divided into linear and non-linear related random
variables. Linearly related random variables are shown in Figure 11a,b and non-linearly
related random variables are shown in Figure 12a,b.
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than 0.01 𝑑  . 
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Figure 11. Linearly related random variables: (a) number of vertices; (b) spherical radius.

The percentage of the restricted range to the total range is expressed by P, which
is used to quantitatively describe the randomness. Additionally, the relative range is
expressed by r_range, which is used to quantitatively describe the stability of random
factors. The r_range is defined as follows.

r_range =
de f ect

meanvalue× percentage
× 100% (25)

where r_range is the relative range of the data point, percentage is the percentage of each
data point’s range to the entire range, and the meanvalue is the mean value of each random
factor’s defect. The r_range of the spherical radius r and the number of vertices n are 28.07%
and 2.67%, respectively; and the r_range of the |η| and the ζ are 428.99% and 72.45%,
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respectively. Additionally, the r_range of every random factor in each data point is shown
in Figure 13.
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It can be seen that the effect of both the linearly related random variables on stability
are not as significant as the two non-linearly related random factors. Additionally, for
the linearly related random variables, through restricting the value range, the increase in
stability is also linearly related to the loss of randomness. Therefore, the ζ and the |η|
are taken as the key random factors, and only the range of those key random factors is
restricted. Additionally, Table 4 shows the property comparison of ζ and |η| properties
before and after the restriction. After the restriction on the value range, the r_range value of
the |η| and ζ is reduced by 70.52% and 99.50%, respectively; and the mean value of the
|η| and ζ is reduced by 80.71% and 18.70%, respectively.

5.2. Efficiency Improvement of the Packing Algorithm
5.2.1. Efficiency Improvement of the Improved Take-and-Place Method

The essence of the BGM is to discretize the placement space into a finite number of
points, which enables the recording and the calling of the placed aggregates during the
packing process. According to the BGM, this study divided the placement space into the
placed area and the unplaced area. Additionally, the placement points were selected only
in the unplaced area, which avoids the defect of repeated selection in the placed area and
thus greatly improved the success rate of the placement selection.

The size of the placement space is set as 100 mm × 100 mm × 75 mm; as a result, the
volume of the first five grades of aggregates is 78,468 mm3, 197,118 mm3, 197,921 mm3,
143,192 mm3, and 62,011 mm3, respectively. Additionally, the aggregate number of the
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first five particle size grades is 53, 259, 806, 4695, and 22,107, respectively. Figure 14 shows
the time consumption of each work condition for placing each piece of aggregate with
the increasing volume percentage. In Figure 14, the original method follows the process
shown in Figure 3, but does not create the background grid nor adopt the MAD algorithm
to the placed aggregate. Accordingly, the method with the BGM does not adopt the MAD
algorithm to the placed aggregate, the method with MAD does not create the background
grid, and the method with the MAD and BGM algorithms follows the process shown in
Figure 3.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 18 
 

Table 4. Property comparison of ζ and |η| properties before and after the restriction. 

Random Factor Max Min P Mean r_range Mean Decrease r_range Increment 
|η| 1.46 1.73 54.07 130.51 128.60 546.13 300.39 
ζ 0.40 0.90 50.00 54.94 0.36 13.08 72.09 

5.2. Efficiency Improvement of the Packing Algorithm 
5.2.1. Efficiency Improvement of the Improved Take-and-Place Method 

The essence of the BGM is to discretize the placement space into a finite number of 
points, which enables the recording and the calling of the placed aggregates during the 
packing process. According to the BGM, this study divided the placement space into the 
placed area and the unplaced area. Additionally, the placement points were selected only 
in the unplaced area, which avoids the defect of repeated selection in the placed area and 
thus greatly improved the success rate of the placement selection. 

The size of the placement space is set as 100 mm × 100 mm × 75 mm; as a result, the 
volume of the first five grades of aggregates is 78,468 mm3, 197,118 mm3, 197,921 mm3, 
143,192 mm3, and 62,011 mm3, respectively. Additionally, the aggregate number of the 
first five particle size grades is 53, 259, 806, 4695, and 22,107, respectively. Figure 14 shows 
the time consumption of each work condition for placing each piece of aggregate with the 
increasing volume percentage. In Figure 14, the original method follows the process 
shown in Figure 3, but does not create the background grid nor adopt the MAD algorithm 
to the placed aggregate. Accordingly, the method with the BGM does not adopt the MAD 
algorithm to the placed aggregate, the method with MAD does not create the background 
grid, and the method with the MAD and BGM algorithms follows the process shown in 
Figure 3. 

For the BGM, with the increase in the volume percentage of the placed area, the in-
fluence of the property that only selects placement point in the unplaced area on the place-
ment efficiency increases, and the placement efficiency is increased by 53.5% when the 
volume percentage of the placed area reaches 47.35%, which means the packing method 
with the BGM can place 1.535 pieces of aggregates while the original method can just place 
1 piece of aggregate at the same time. 

 
Figure 14. Time consumption for placing each piece of aggregate. 

In this study, additional displacement and rotation were applied to the placed aggre-
gate by the MAD algorithm to compensate for the defects of the loose aggregate distribu-
tion of the take-and-place method, which increased the capacity of the placement space 
and improved the placement efficiency. As the results in Figure 14, when the volume per-
centage of placed area is 7.85%, the efficiency difference between the take-and-place 
method with the MAD algorithm and the original one is only 2.20%. When the volume 

Figure 14. Time consumption for placing each piece of aggregate.

For the BGM, with the increase in the volume percentage of the placed area, the
influence of the property that only selects placement point in the unplaced area on the
placement efficiency increases, and the placement efficiency is increased by 53.5% when the
volume percentage of the placed area reaches 47.35%, which means the packing method
with the BGM can place 1.535 pieces of aggregates while the original method can just place
1 piece of aggregate at the same time.

In this study, additional displacement and rotation were applied to the placed aggre-
gate by the MAD algorithm to compensate for the defects of the loose aggregate distribution
of the take-and-place method, which increased the capacity of the placement space and
improved the placement efficiency. As the results in Figure 14, when the volume percentage
of placed area is 7.85%, the efficiency difference between the take-and-place method with
the MAD algorithm and the original one is only 2.20%. When the volume percentage of the
placed area reaches 47.35%, the efficiency difference expands to 98.70%, which means the
MAD algorithm greatly improves the placement efficiency of the model.

The packing efficiency of the improved take-and-placed method with the BGM and
the MAD algorithms was 198.98% higher than that of the original one when the placed area
reached 47.35%. Additionally, packing efficiency increased with the increase in placed area.

5.2.2. Efficiency Improvement by Minimizing the Calculation Area

The conflict judgment function was called repeatedly in the packing process, so its
computational efficiency was very important for packing efficiency. The operation time
of the conflict judgment function is closely related to the point number contained in the
calculation area, and the amount of computation for conflict judgment can be greatly
reduced by minimizing the calculation area.

Due to the randomness of aggregate shape, if the maximum aggregate size is used
as the basis for dividing the calculation area, the additional amount of computation is
generated. In this study, the size of each aggregate was taken as the basis for dividing
the conflict judgment area to improve calculational efficiency. The maximum coordinate
differences of the aggregate in the x, y, and z directions are rounded upwards and set as
the length, width, and height of the cuboid calculation area, respectively. Additionally,
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the setting area precisely surrounds the convex polyhedral aggregate. By minimizing the
calculation area, the average time used for single conflict judgment of the first three grades
of aggregates is reduced to 0.3646 s from 0.4635 s. Additionally, the calculational efficiency
of the conflict judgment function for the first three grades of aggregates was improved
by 27.13%.

6. Conclusions

In this paper, a method that could efficiently construct a 3D random asphalt concrete
model for predicting the thermal conductivity of asphalt concrete was proposed to improve
construction efficiency. The main conclusions are summarized as follows:

1. A four-random-factors aggregate generation method was proposed, and the key
factors in the four random factors were confirmed with the index of defect number. In
this case, the key factors include the mold of the shape coefficient |η| and the vertex
random distribution factor ζ. By restricting the value range of the key factors, the
relative variation ranges of the stability index were reduced by 70.52% and 99.50%,
respectively, and the averages were reduced by 80.71% and 18.70%, respectively.

2. The take-and-place method was improved by the BGM and the MAD algorithms,
respectively, and the packing efficiency of both methods increased with the increase
in the aggregate volume percentage. When the volume percentage of aggregates
reached 47.35%, the packing efficiency of the take-and-place method with the MAD
algorithm was 98.65% higher than that of the original take-and-place method, the
take-and-place method with the BGM improved packing efficiency by 53.5%, and the
packing efficiency of the improved method with the BGM and MAD algorithms was
198.98% higher than that of the original take-and-place method.

3. A conflict judgment method for convex polyhedral aggregates was proposed. Addi-
tionally, the increase in computational efficiency for conflict judgment reached 27.13%
by minimizing the calculation area.

4. The thermal conductivity of the asphalt concrete model was simulated by the steady-
state plate method. Compared with the experimental measurements, the maximum
prediction error of the 3D random models was 3.88%, and the average was 3.21%. The
3D random model showed a smaller prediction error range (less than 5%) than the 2D
models (more than 10%) and was more accurate than the 2D prediction model.

5. It is important to adjust the developed model for use in real cases; although packing
efficiency was greatly improved by this construction method the two-phase structure
ignored the impact of the pore in the asphalt concrete which should be studied in
further work. Further, the aggregate generation method can be replaced with a more
efficient or real method to meet the requirement of the application. Additionally,
further studies should investigate the application of the random models in other
properties of asphalt concrete.
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