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Abstract: Sewer pipeline failures pose significant threats to the environment and public health. To
tackle these repercussions, many deterioration models have been developed to predict the conditions
of sewer pipes, most of which are based on CCTV inspection reports. However, these reports are
prone to errors due to their subjective nature and human involvement. More importantly, there are
insufficient data to develop prudent deterioration models. To address these shortcomings, this paper
aims to develop a CCTV-based deterioration model for sewer pipes using Artificial Intelligence (AI).
The AI-based model relies on the integration of an unsupervised, multilinear regression technique
and Weibull analysis. Findings derived from the Weibull deterioration curve indicate that the useful
service life for concrete and vitrified clay pipes are 79 years and 48 years, respectively. The regression
models show that the R2 value for vitrified clay sewer pipes, concrete sewer pipes, and ductile
iron sewer pipes are 71.18%, 71.47%, and 81.51%, respectively, and 73.69% for concrete stormwater
pipes. To illustrate the impact of various factors on sewer pipes, sensitivity analyses under different
scenarios are conducted. These analyses indicate that pipe diameter has a significant influence
on sewer pipe deterioration, with little impact on stormwater pipes. These findings would guide
decision makers in identifying critical pipes and taking necessary precautionary measures. Further,
this provides a sound basis for prioritizing maintenance actions, which would pave the way for
designing sustainable urban drainage systems for cities.

Keywords: machine learning; deterioration models; maintenance; artificial intelligence; robot-based
inspection techniques

1. Introduction

To date, reactive management has been dominantly adopted in dealing with the
problem of sewer pipes deterioration [1], with repair and maintenance being carried out at
the point of pipe failure. However, this approach is considered unsustainable. An important
aspect of effective maintenance of sewer systems includes environmental performance and
sustainability [2]. In this regard, Iurchenko et al. [3] argued that sewer pipeline failure
in urban regions can pose a wide range of risks to the environment, by affecting the
safety of water, soil, air, etc. Several toxic gases are contained in sewers because of the
biodegradation of waste in pipelines. The combination of these toxic gases is dangerous
to nearby communities [4]. Held et al. [5] noted that sewer pipeline failure results in the
infiltration of wastewater into the ground, which ultimately penetrates the groundwater.

Buildings 2023, 13, 952. https://doi.org/10.3390/buildings13040952 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13040952
https://doi.org/10.3390/buildings13040952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-7347-4712
https://orcid.org/0000-0001-8675-736X
https://orcid.org/0000-0003-3249-7712
https://doi.org/10.3390/buildings13040952
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13040952?type=check_update&version=2


Buildings 2023, 13, 952 2 of 20

This leads to the contamination of the soil and underground water that is meant for drinking.
Sewer discharge poses a great contamination risk to nearby water bodies too [6].

With the above in mind, sewer pipes are expected to work efficiently for a period
if under normal operating conditions. The deterioration of pipes is caused by different
external environmental factors [7–9]. Zuo et al. [10] noted that the lifespan of pipes can be
increased through effective maintenance and rehabilitation programs. In order to ascertain
the condition of pipes, inspections are carried out. The Closed-Circuit Television (CCTV)
inspection method is the most commonly used to assess sewer pipes’ deterioration. It
involves the use of cameras to record videos and produce footage of the internal surface of
the pipeline above the flow line, continuously [11]. Videos and footage are then interpreted
by specialists and conclusions are made concerning the conditions of the sewers. Pipelines
are evaluated individually and rated according to the degree of recurrence of defects and
the severity. Using this rating approach, the operator assigns a score to each pipeline,
usually on a five-grade scale [12]. According to Salman and Salem [13], sewer rehabilitation
in urban cities is difficult due to the high number of sewer pipelines and limited resources.
It is, therefore, important to have an efficient and accurate tool for managing the pipes
based on their condition states.

There are several factors that play a role in the deterioration of sewer pipelines. For
instance, Salihu et al. [14] noted that age, material, length, size, soil type, water table, and
proximity to other utilities are among the factors that affect the performance of sewers and
contribute to pipe deterioration. Chughtai and Zayed [15], Chughtai and Zayed [16] argued
that physical, functional, and environmental factors affect sewer structural conditions.
Examples of these physical factors for pipes are the diameter, age, length, material, and
gradient. Functional factors include maintenance and operational approaches for sewer
and stormwater pipes. Moreover, there are some environmental factors that affect sewer
and stormwater pipes deterioration, including groundwater, waste type, soil type, traffic
intensity above the pipe, bedding material proximity to other underground utilities, and
frost-related factors [17].

Therefore, accurate data are required for the efficient management of stormwater
pipe networks, to assess the pipe network’s structural condition [18]. Governments at all
levels need to prepare yearly budgets, containing the stormwater network’s depreciation
value. Thus, a cogent method to evaluating deterioration is to relate it to the storm water
pipes’ structural depreciation [18]. Standard techniques must be applied to calibrate
models using data from the stormwater asset regional database in order to ensure the
accuracy of the results. For instance, the Markov model was found to be consistent with the
structural data. The diameter characteristics, soil type, construction material, and exposure
categorization influence the deterioration process. However, the required deterioration
techniques can considerably overestimate the structural deterioration of stormwater pipe
networks. For instance, the application of probabilistic neural network (PNN) to model
the structural depreciation of stormwater pipes [19]. The PNN model had more accurate
predictive power and uses significantly more data input variables than the discriminant
model. More significantly, the major for PNN model prediction are complex to explain,
implying that, besides accuracy on prediction, model interpretation is another major
concern which requires further analysis [19]. The neural network models for deterioration
and serviceability condition of buried stormwater pipes were analyzed by Tran et al. [20].
The predictive performance of neural network modelling (NNM) using Bayesian weight
computation was more accurate than using the traditional backpropagation and multiple
discrimination analysis (MDA) model. The age of pipes and location were the most
significant among the analyzed factors. However, the buried depth, soil, and structure were
insignificant factors. Thus, it was inferred that a more accurate and reliable data gathering
process can facilitate NNM predictive performance and identify significant factors [20].

To capture these factors and their impacts, many mathematical models have emerged,
aiming to properly model the deterioration of sewer pipelines [21]. These models include
physical models, Artificial Intelligence-based (AI) models, and statistical-based models.
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Physical models are concerned with the depiction of physical underlying factors and
processes that lead to pipe failures [22]. However, the AI-based models are used in por-
traying sewer deterioration state and condition rating of pipes [19,23,24]. In this regard,
regression has been used by many researchers for determining the probability of failure in
pipes [25–29]. For example, a binary logistic regression model was developed by Ari-
aratnam et al. [25] for the sewer network of Edmonton to predict the likelihood that a
sewer pipe is in a deficient state. Likewise, Ahmadi et al. [30], Ahmadi et al. [31] exam-
ined how regression-based modelling is useful for planning inspection strategies. On the
other hand, statistical-based models are employed to predict sewer pipe deterioration
conditions [21,26,27,32,33] and pipe breakages rates [33].

With the above in mind, the deterioration models developed hitherto have not yet
proposed a prudent framework for tackling the incompletion of data. That is, in many cities
all the influential data related to the constructed drainage networks are not fully provided,
due to poor data documentation [1]. Taking steps towards developing a comprehensive
deterioration model that can take care of the aforementioned shortcomings is, therefore,
needed. Considering this, the followings research questions are formulated:

1. How can a prudent deterioration model be developed based on pipe age and
structural grading?

2. How can a predictive-based model be developed when there are inconsistencies with
inspection data?

To provide answers to these questions, this study attempted to develop a model
for assessing the deterioration of sewer pipes using a theoretical approach to modeling
(Weibull analysis) and an independent empirical approach (CCTV, K-means clustering, and
multivariate regression).

1.1. Deterioration Models

The major statistical models that have been developed are survival analysis, Markov-
chain, regression, and discriminant analysis. Survival analysis and Markov-chain are
common types of statistical deterioration models at a network level [18,34–38]. In recent
years, several sewer pipe deterioration regression models have emerged, which include
linear regression [39], multiple regression [26], logistic regression [24,33,40,41], and multi-
nomial regression [42]. The common premise of these models is that a linear relationship
exists between the condition rating of pipes and pipe factors. Various studies have at-
tempted to improve the sewer pipe deterioration models by considering geospatial factors
like soil type, soil compaction, existence of trees, fluctuation in groundwater level, and
activities above the ground and underground [21,42]. Regression models were successfully
used in ascertaining the probability of failure of individual pipes [13,28–30,43–45].

Artificial intelligence-based methods were used in portraying sewer deterioration
states (i.e., the condition rating of pipes) [23,24,36,46]. In the prevailing literature, several
neural network models for predicting the deterioration of sewer pipelines have been
developed [1,24,47–49]. Khan et al. [50] used both Back Propagation Neural Networks
(BPNN) and Probabilistic Neural Networks (PNN) for structural condition assessment of
sewer pipes. Rajani et al. [51] presented how inspected pipe conditions can be classified
as a fuzzy set using the fuzzy set theory. Daher et al. [52] also developed a defect-based
condition assessment model using fuzzy. Additionally, the Random Forest method has
been used in developing deterioration models. Another artificial intelligence-based model
is the Support Vector Machines [35,53–55]. This technique has been adopted in many
other studies [24,56–58].

Deterministic models are developed through the grasp of the physical processes of
sewer deterioration. Therefore, Marlow et al. [59] noted that empirical deterministic models
require matching some forms of linear or nonlinear equations to the observed asset failure.
ExtCorr is a deterministic model developed within the Care-S project [60]. It estimates
the external corrosion of concrete pipes by evaluating the moisture of the soil, quality of
cement used for the pipe, and soil aggressiveness. The WATS model is another example of
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a “deterministic in-sewer process model” that is used to simulate internal corrosion. Sewer
deterioration is a complex challenge that is dependent on a lot of different factors [61].
Despite their variety and advancements, deterministic models are typically too simplistic,
making it difficult to show the real deterioration process. The shortage of data required to
accurately simulate the deterioration mechanisms reduces their applicability [62].

Prediction of hydraulic deterioration is essential for efficient management of stormwa-
ter drainage pipes [63]. Thus, a comparison of hydraulic deterioration models (PNN and
Ordered Probit) for stormwater drainage pipes revealed that the ordered probit deteriora-
tion model (OPDM) and PNN deterioration model (PNNDM) can be established using the
major factors as model inputs and the hydraulic condition as model input. Their analytical
performance revealed that the PNNDM was more appropriate for forecasting the hydraulic
deterioration and outperformed the OPDM. Many input factors including pipe age and
size were significant concerning stormwater pipes’ hydraulic deterioration [63]. Modelling
the structural deterioration of an urban stormwater drainage pipe network system is essen-
tial for understanding the current state of the art in statistical methods [64]. Stormwater
collection and transportation structures are undergoing deterioration and aging, making
urban centers more vulnerable to their effects, e.g., flooding and collapse.

Stormwater pipe deterioration is considered a complex process which is influenced by
many factors. Therefore, predicting when a pipe will collapse or fail is a complex task. Ana
and Bauwens [64] suggested that the best technique to predict pipe deterioration is by using
a combination of empirical data and probability-based equations to evaluate the structural
condition of stormwater pipes throughout their lifespan. Interested readers are referred to
a detailed discussion of statistical methods used in forecasting the structural deterioration
of urban stormwater drainage system by Ana and Bauwens [64]. Forecasting structural
depreciation condition of different stormwater pipes using PNN and multiple logistic
regression (MLR) models was attempted by Tran et al. [65]. The depreciation pattern of
stormwater pipes is built based on individual pipe and has its own rate of deterioration
because of its pipe factors. Thus, Tran et al. [3] used two statistical models (PNN and MLR),
which were established to forecast the structural condition of different types of pipes. The
PNN model was trained using a genetic algorithm and the PNN model calibrated using
the maximum likelihood technique. The CCTV data was used to compare the predictive
performance of the two models. The PNN model’s result was more suitable for forecasting
the structural deterioration of different types of stormwater pipes, compared against the
MLR model. Additionally, the application of genetic algorithm enhanced the PNN model’s
training results better than the trial-and-error technique. Depreciation, deterioration,
and serviceability of structural deterioration of stormwater pipes was conducted using a
Markov model [66].

The Bayesian methods were used to calibrate the model to the structural condition
data from the stormwater asset database. The Markov model was consistent with the data.
The pipe diameter categories, soil type, construction material, and exposure classification
were major factors influencing the deterioration process [66]. The rational approach to
the evaluation of deterioration is to relate it to structural deterioration. However, the
emphasis on structural condition is rather artificial and does not address the essential
issues concerning stormwater pipe assets’ management [66]. Hence, it is suggested that
the level of service offered by the pipe relies on its position in the network and on factors
lessening its original hydraulic capacity including sedimentation, tree roots, and collection
of debris. The defects identified in serviceability rating from SEWART surveys can be
apportioned loss coefficients. Using these coefficients in hydraulic model of the pipe
enables the assessment of surcharge frequency and hence the pipe’s serviceability. Thus,
a combination of both serviceability and structural conditions must be considered to
determine a strategy for stormwater pipe management.

Therefore, classifying the structural condition of stormwater deteriorating pipes using
support vector machine (SVM) was performed. Tran and Ng [67] attempted to enhance the
prediction or classification of structural condition of different types of storm water pipes.
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This type of predictive data can be used to rank pipes for maintenance and subsequent
inspection actions and, therefore, support water companies in implementing their proactive
management strategies [67]. Thus, a SVM was established, verified, and compared to
the backpropagation neural network (BPNN) model which has been previously used in
the literature. The established model was used for a case study using a sample of CCTV
examined pipes and analogous pipe factors. Concerning accurate prediction of structural
condition of different types of stormwater pipes, the SVM model significantly overtook the
BPNN in the train dataset and marginally in the test dataset. Likewise, many benefits of
the SVM model were found in relation to the BPNN model [67].

Therefore, a sustainable financing strategy for storm water asset management using a
system dynamics model was proposed [68]. The model comprised qualitative assessment
that utilizes casual loop diagrams to provide a theoretical framework presentation and
statistical formulation for qualitative evaluation. The model was utilized to search the
prospect for introducing stormwater fees in urban areas [68]. Further the model was helpful
in strategic infrastructure management decision making and was utilized to establish
arguments for executing proactive infrastructure management programs [68]. The Weibull
analysis, extrapolations and implications for assessing the condition of cast iron water
mains was considered [69]. Results indicated that the predicted strengths of the pipes are
close to the lower end of the measured distribution of pipe strengths. Consequently, the
model prediction of pipe strengths is near to the lower end of the measured distribution
of pipe strength. Thus, Belmonte et al. [69]’s study suggested that Weibull analysis is an
effective tool to assess the strength distribution of detached-from-cast-iron water pipes and,
thus, has the prospect of contributing in the evaluation of infrastructure condition.

1.2. Weibull Analysis

Weibull analysis is a popular method of analysis used for predicting failure and
malfunctions [70]. Mailhot et al. [71] used the Weibull distribution to determine the time to
first pipe break, i.e., failure and subsequent breaks. Moreover, Duchesne et al. [36] applied
the Weibull distribution to model waiting times in each deterioration state. Vladeanu and
Koo [72] developed a Weibull model that focused on the percentage probability of failure
for cast iron pipes. Lastly, Laakso et al. [73] used the Weibull regression to ascertain the
share of pipes in good condition based on the dataset used for the study.

1.3. Point of Departure

Based on the reviewed literature, this research has identified the following gaps:
Current existing deterioration models require a high volume of inspection data. In some
instances, these data are not readily available. The need to develop a model with a
limited database is critical to provide a guide for professionals in charge of managing
and maintaining the pipes. This acknowledges the importance of the first objective of
this study to develop a Weibull deterioration curve for different pipe materials using
the pipe age and structural grading of the pipes. The subjectivity of CCTV inspection
reports creates uncertainty about their accuracy. This creates a need for carrying out
unsupervised learning on data for different factors (that cause sewer deterioration) and
comparing the results of unsupervised learning with actual data to ascertain the percentage
of similarity. Furthermore, unsupervised learning assists in identifying hidden patterns in
the deterioration process that might not be identified during a physical inspection, as the
second objective of this paper.

2. Research Methods

The method adopted in this study follows a three-phased procedure. Phase A is
concerned with a literature review, data collection, and data sorting and cleaning, while
Phases B and C are, respectively, related to the development of the Weibull Deterioration
curve and an unsupervised-based, multilinear regression model, as illustrated in Figure 1.
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2.1. Phase A

Step 1: Relevant literature are reviewed. These cover subtopics of existing deterioration
models and Weibull analysis.

Step 2: In developing the model, CCTV inspection data were collected from the
drainage service department in Hong Kong. The data coverage was for Tsim Sha Tsui (TST).
The data comprised details of the pipe length, pipe material, pipe shape, pipe diameter, and
the structural grading ICG. The age of the oldest pipe in the data collected was 72 years. A
total of 1407 sewer pipes and 1448 stormwater pipes were used for model development.

Step 3: The data were sorted and cleaned by removing pipe units that did not have
the complete data. Thee comprised pipes without records for age, length, and diameter.
Furthermore, pipes without structural grading ICG were not considered.

2.2. Phase B

Step 1: Weibull analysis was carried out to develop a Weibull deterioration curve
based on the pipe age. This model was developed based on age and structural grad-
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ing ICG. It provides an answer to the first research question. The expected service
life for the different pipe materials was ascertained, the useful service life based on
the structural grading was determined and the Weibull formula was applied to get the
deterioration curve [70].

The Weibull probability distribution function is presented in Equation (1):

f (t) =
δ

τ

(
t − α

τ

)δ−1
× −( t−α

τ )
δ

(1)

where, α = location parameter, τ = scale parameter, δ = shape parameter, t = time.
The Weibull cumulative distribution function is as shown in Equation (2):

F(t) = 1 − e−( t−α
τ )

δ

(2)

Thus, the Weibull reliability function is represented as Equation (3):

R(t) = 1 − F(t) = e−( t−α
τ )

δ

(3)

The deterioration curve has the same shape as Weibull reliability curve; this is shown
as Equation (4) below:

P(t) = α × e−( t
τ )

δ

(4)

where;
P (t) = Performance index at time (t),

τ = service life

Estimating the parameters of the Weibull distribution can be either graphically, by
means of probability plotting paper, or analytically, by using the least squares or
maximum likelihood [74].

2.3. Phase C

Step 1: Unsupervised learning is the process of using automatic data analysis tech-
niques to unravel hidden relationships amongst variables in a dataset [75]. It enables
researchers to analyze data from different angles. Clustering is the vital feature of data min-
ing. It is a method of grouping data based on their similarity measures. Data in one cluster
are similar to each other and relate. Clustering is an unsupervised learning method [76].
It uses two algorithms: the hierarchical algorithm, which entails dividing a dataset into
smaller subset in a hierarchical pattern; and the partition algorithm, which entails dividing
a dataset into a desired number of sets in a single step. In this paper the partition algorithm
was adopted for the data using K-means clustering. K-means clustering is an unsupervised
learning technique that uses the partition algorithm. It uses an iterative approach, which is
widely used because of the accuracy of its results and the simplicity of use [77].

Unsupervised learning based on K-means clustering using RapidMiner software
version 9.9 was carried out. This is to answer the second research question. In carrying
out unsupervised learning, RapidMiner software was selected and K-means clustering
was used. The data were imported into the software after which the data was normalized.
The input data consists of three variables which are age, diameter, and length. The K-
means clustering operator was selected for the clustering. The value of K was set at 5.
This is because the structural grade ICG of the pipes is between 1 and 5. Consequently,
unsupervised learning was needed to produce five clusters of 1 to 5. The output of the
unsupervised learning contained the three variables and the new clusters.

Step 2: The result of the clustering was related to the actual data. It had an average
similarity percentage of 89%. The clustering result was then used to carry out a multilinear
regression analysis using the factors pipe diameter, pipe age, and pipe length as the
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independent variables and the structural grade ICG as the dependent variable. This
answered the third research question.

Step 3: The multilinear regression model was developed using Minitab statistical
software (version 19). Firstly, the best subset analysis was done to ascertain the factors to be
considered in the model and then the main analysis was carried out. The factors considered
in the model included age, length, and diameter which are the independent variables, and
the structural grading ICG which is the dependent variable. Regression equations were
generated, and other statistical tables were generated as seen in Section 3.2.

Step 4: Once the model has been developed, there is a need to ascertain how adequate
the model is. This is achieved by critically analyzing the coefficient of multiple determina-
tion, F test for the regression relation, and t-test for each of the regression parameters [78].

Step 5: The developed model was validated by plotting the actual structural grade
ICG with the predicted structural grade ICG. Additionally, the mean and standard de-
viation of the actual ICG and predicted ICG were calculated, as suggested by Anderson
and Davenport [78].

Step 6: Furthermore, sensitivity analysis for the data was conducted for different
pipe types and materials. The sensitivity analysis considered the changes in the ICG
at different diameters, including age and length. Sensitivity analysis was used to as-
certain how individual factors in the model can impact the deterioration process under
different conditions.

3. Findings and Discussion
3.1. Deterioration Model Using Weibull Analysis

The Weibull probability distribution function was defined according to Equation (4),
which was applied to generate the Weibull deterioration curve as shown in Figure 2.
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The deterioration curve for sewer pipes was generated based on the conditions defined
in Equations (5) to (7), as follows.

1. The newly installed pipes at t = 0 has an ICG of 0, which can be expressed as 1 on a
scale from 0 to 1:

1 = α × e−( 0
τ )

δ

1 = α
(5)

2. ICG = 5 at the end of the lifetime of the pipe, while ICG = 2 (critical performance
index), which is presented as 0.25 on a scale from 0 to 1 and it represents the end of
the useful service life (t):

0.25 = 1 × e−( 100
τ )

δ

, then

ln(0.25) = ln(1)−
(

100
τ

)δ

And finally:

τ =
100

(−In(0.25))1/δ
= 89.68 for concrete pipes (6)

τ =
60

(−In(0.25))1/δ
= 53.81 for vitrified clay pipes

3. The shape parameter δ = 3. 3 is chosen because it gives a better curve shape compared
to 1, 2,3, 4, etc.

Therefore, by substituting Equations (5) and (6) into Equation (4), the updated deterio-
ration curve can be defined as Equation (7).

P(t) = 1 × e−( t
τ )

3
(7)

The deterioration curve shows that ICG 0 to 0.5 is the equivalent of ICG 4 to 2; the
pipe is in its useful service life. For concrete, the useful service life of the pipes is 79 years,
while that of vitrified clay pipes is 48 years. As the ICG drops from 0.5 or 2 the pipes are
then getting to their critical point, with a higher deterioration rate and the likelihood of
failure. This implies that more frequent maintenance should be carried out on pipes at this
point to improve their functionality.

3.2. Deterioration Models Using Unsupervised K-Means and Multilinear Regression

To develop a multilinear regression model, unsupervised learning of the data was first
performed using K-means clustering, based on Equation (8). In carrying out unsupervised
learning, RapidMiner software and K-means clustering were used. The data were nor-
malized and imported into the software. The input data consisted of three variables: Age,
Diameter, and Length. The K-means clustering operator was selected for the clustering.
The value of K was set at 5. This is because the structural grade ICG of the pipes is between
0 to 4. Unsupervised learning was needed to produce five clusters of 0 to 4. The cluster
visualization is shown in Figure 3.

J =
k

∑
j=1

n

∑
i=1

∥∥xi
(j) − cj

∥∥2 (8)
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where J is the objective function, while k, n, xi, cj, and
∥∥∥xi

(j) − cj

∥∥∥ are, respectively, the
number of clusters, the number of cases, the ith case, the centroid for jth cluster, and the
distance function.

 
Figure 3. Visualization of clusters. 

 

 
 

     Cluster 1                      Cluster 2                      Cluster 3                   Cluster 4                       Cluster 5 

Figure 3. Visualization of clusters.

K-means Algorithm:

1. Clusters the data into k groups where k is predefined.
4. Select k points at random as cluster centers.
5. Assign objects to their closest cluster center according to the Euclidean distance function.
6. Calculate the centroid or mean of all objects in each cluster.
7. Repeat steps 2, 3, and 4 until the same points are assigned to each cluster in

consecutive rounds.

It comprised different types of pipes: vitrified clay sewer pipes, concrete sewer pipes,
ductile iron sewer pipes, concrete stormwater pipes, and ductile iron storm water pipes.
Assessing the CCTV-based deterioration patterns of sewer pipe is motivated by the need
to pay keen attention to the sewers to avert sewer failure [79]. A sustainable and smart
drainage system is largely reliant on the condition of existing sewer pipelines’ infrastructure
in urban networks. Different factors can cause deterioration of sewer systems; although
these factors are well established, the degree of impact each factor has on the sewer dete-
rioration process is not fully and explicitly defined [79]. Hence, this study has attempted
to develop a model for sewer pipes using CCTV and Artificial Intelligence. The output of
the unsupervised learning contained the three variables and the new clusters. This was
related to the actual dataset to ascertain the accuracy of the inspection results, as tabulated
in Table 1.
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Table 1. Similarity percentage of unsupervised model result with the actual data.

Pipe Type Percentage of Similarity with Actual Data

Vitrified clay sewer pipes 88%
Concrete sewer pipes 79%

Ductile iron sewer pipes 93%
Concrete stormwater pipes 90%

Ductile iron storm water pipes 95%

The similarity percentage (i.e., in comparison with actual data) indicates that the result
of unsupervised model does not have a large deviation from the actual data. Current
results agreed with the existing literature [80]. Therefore, the model developed using the
clustering result is a satisfactory representation of the actual data [81].

Minitab version 19 was used in building the regression models. The result of the
analysis generated a regression equation and other statistical test results, as illustrated in
Tables 2–5 for different pipe types and materials. Table 2 presents the regression analysis
of vitrified clay sewer pipe comprising: Coefficient (Coef), Standard Error Coefficient
(SE Coef), the calculated difference relative to the variation in data (T-value), probabil-
ity value (p-value), variance inflation factor (VIF), R-Square(R-Sq), Adjusted R-Square
R-sq(adj), Predicted R-Square R-sq(pred), The variance between the means (F-value),
Degree of freedom (DF), and adjusted mean square (Adj MS). The VIF is an outline
of a post-hoc method which estimates the VIF from the standardized regression coef-
ficient and semi partial correlation. Thus, it can be estimated from commonly reported
regression results [82].

Table 2. Regression analysis of vitrified clay sewer pipe.

Term Coef SE Coef T-Value p-Value VIF

Constant 1.4399 0.0193 74.53 0.000
Diameter (m) 0.7802 0.0213 36.62 0.000 1.22
AGE (year) −0.6915 0.0194 −35.62 0.000 1.01
Length (m) 0.0696 0.0214 3.25 0.001 1.22

Model Summary
S R-sq R-sq(adj) R-sq(pred)

0.679996 71.18% 71.11% 70.94%

Analysis of Variance
Source DF Adj SS Adj MS F-Value p-Value

Regression 3 1410.21 470.071 1016.60 0.000
Diameter (m) 1 620.12 620.125 1341.12 0.000
AGE (year) 1 586.57 586.571 1268.55 0.000
Length (m) 1 4.90 4.895 10.59 0.001

Error 1235 571.06 0.462
Lack-of-Fit 1227 571.06 0.465 * *
Pure Error 8 0.00 0.000

Total 1238 1981.27
* Note: Lack of fit for the p-value.

Table 3. Regression Analysis of Concrete sewer pipe.

Term Coef SE Coef T-Value p-Value VIF

Constant 1.8239 0.0716 25.47 0.000
Diameter (m) 0.4233 0.0784 5.40 0.000 1.19
AGE (year) −1.3519 0.0723 −18.70 0.000 1.01
Length (m) 0.0599 0.0786 0.76 0.447 1.20
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Table 3. Cont.

Term Coef SE Coef T-Value p-Value VIF

Model Summary
S R-sq R-sq(adj) R-sq(pred)

0.903053 71.47% 70.92% 69.58%

Analysis of Variance
Source DF Adj SS Adj MS F-Value p-Value

Regression 3 316.666 105.555 129.44 0.000
Diameter (m) 1 23.781 23.781 29.16 0.000
AGE (year) 1 285.156 285.156 349.67 0.000
Length (m) 1 0.474 0.474 0.58 0.447

Error 155 126.403 0.816
Total 158 443.069

Table 4. Regression Analysis of Ductile iron sewer pipe.

Term Coef SE Coef T-Value p-Value VIF

Constant 2.067 0.174 11.89 0.000
Diameter (m) −0.778 0.242 −3.22 0.008 1.80
AGE (year) 0.461 0.197 2.33 0.040 1.20
Length (m) −0.345 0.224 −1.54 0.152 1.55

Model Summary
S R-sq R-sq(adj) R-sq(pred)

0.672920 81.51% 76.46% 70.20%

Analysis of Variance
Source DF Adj SS Adj MS F-Value p-Value

Regression 3 21.952 7.3174 16.16 0.000
Diameter (m) 1 4.694 4.6945 10.37 0.008
AGE (year) 1 2.467 2.4673 5.45 0.040
Length (m) 1 1.071 1.0706 2.36 0.152

Error 11 4.981 0.4528
Total 14 26.933

Table 5. Regression Analysis of Concrete Stormwater pipe.

Term Coef SE Coef T-Value p-Value VIF

Constant 1.1298 0.0149 75.59 0.000
Diameter (m) 0.7252 0.0157 46.31 0.000 1.10
AGE (year) 0.3100 0.0150 20.70 0.000 1.00
Length (m) 0.3820 0.0156 24.43 0.000 1.09

Model Summary
S R-sq R-sq(adj) R-sq(pred)

0.568732 73.69% 73.64% 73.53%

Analysis of Variance
Source DF Adj SS Adj MS F-Value p-Value

Regression 3 1308.52 436.174 1348.48 0.000
Diameter (m) 1 693.56 693.556 2144.21 0.000
AGE (year) 1 138.54 138.538 428.31 0.000
Length (m) 1 193.11 193.108 597.02 0.000

Error 1444 467.07 0.323
Lack-of-Fit 1441 467.07 0.324 * *
Pure Error 3 0.00 0.000

Total 1447 1775.59
* Note: Lack of fit for the p-value.

The values of R2 and R2 (adjusted) for vitrified clay sewer pipes are to be 71.18% and
71.11%, respectively. It indicates that the model fitted the data. Similarly, the values R2 and
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R2 (adjusted) for concrete sewer pipes were 71.47% and 70.92%. The ductile iron sewer
pipes have a higher R2 and R2 (adjusted) value of 81.51% and 76.46% when compared
to vitrified clay and concrete sewer pipes. It indicates that the model has a better fit.
Furthermore, the concrete stormwater pipe had an R2 and R2 (adjusted) value of 73.69%
and 73.64%. In general, the models showed good fit. R2 shows that the predictors explain
a certain percentage of the variance in the structural grade ICG, while the R2 adjusted
accounts for the number of predictors in the model.

Additionally, a hypothesis test needs to be done for the F test to determine the P(F)
of the entire model. The null hypothesis (H0) assumes that all regression coefficients are
equal to zero. The alternate hypothesis (Ha) assumes that not all of them are equal to zero.
From the results, the p-value in the analysis of variance table is 0.000 for all material types.
It implied that the null hypothesis is rejected, inferring that the model is significant—at a
significance level of 0.05 hence—and at least one coefficient in the regression is not zero.

The next step was to test if all predictors are significantly related to the response
variable. The p-values for all the factors for vitrified clay sewer pipes were significantly
related to the response variable ICG at a significance level of 0.05. For concrete sewer pipes
the factor length had a p-value of 0.447. This shows that it is not significantly related to the
response variable at a significance level of 0.05. This is also seen in a ductile iron sewer
pipe. The factor length has a p-value of 0.152. Furthermore, for the concrete stormwater
pipes, all the factors excluding the length factor are significantly related to the response
variable at a significance level of 0.05.

The regression model was developed for the different pipe types and pipe materials.
The regression equations for the different categories are presented below.

Vitrified clay sewer pipes ICG = 1.4399 + 0.7802 Diameter − 0.6915 Age +
0.0696 Length.

Concrete sewer pipes ICG = 1.8239 + 0.4233 Diameter − 1.3519 Age + 0.0599 Length.
Ductile Iron Sewer pipes ICG = 2.067 − 0.778 Diameter + 0.461 Age − 0.345 Length.
Concrete Stormwater pipes ICG = 1.1298 + 0.7252 Diameter + 0.3100 Age +

0.3820 Length.

3.3. Model Validation

The model was validated by comparing actual ICG values with the predicted ICG
values generated with the regression equation. A graphical representation of the actual
ICG and the predicted ICG was plotted. The plot shows that the predicted ICG still falls
within the accepted limit of the actual ICG. There was no large variance between the two,
indicating that validation results are satisfactory. The plots for the different pipe type and
material are seen in Figure 4.

A descriptive analysis table of the validation is shown in Table 6. The result indicates
that the mean and standard deviation of the actual ICG and predicted ICG are close to each
other with little variation. Therefore, it shows that the model results are satisfactory.

Table 6. Descriptive statistics for model validation.

Descriptive Statistics

Pipe Type Mean Standard Deviation

Actual Predicted Actual Predicted

Vitrified Clay Sewer pipes 2 1 0.51 0.74
Concrete Sewer pipes 3 2 1.42 1.62

Concrete Stormwater pipes 3 3 1.31 1.02
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3.4. Sensitivity Analysis

Sensitivity analyses helped to ascertain how different values of an independent vari-
able impact a dependent variable based on a given set of assumptions. Sensitivity analysis
was, therefore, conducted for observing the impacts of defined variables on the ICGs, as
explained below.

The regression equation generated from the regression analysis was used to develop a
scatter plot for the pipes at different diameters and age ranges. For vitrified clay sewer pipes
and concrete sewer pipes, it was discovered that the diameter of pipes has a significant role
to play in pipe deterioration. Pipes with smaller diameter deteriorate faster than pipes with
larger diameter. This observation echoes the findings of previous studies [18]. As can be
seen in Figure 5a,b, this is exponentially (Expon) ductile in observed for the ductile iron
sewer pipes—shown in Figure 5c. “As can be seen in Figure 5a–c, the ductile iron follows
an of an exponential trend”.
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Furthermore, sensitivity analysis was also carried out for concrete stormwater pipes.
The scatter plots indicate that the diameter of pipes does not have a significance effect on
the deterioration process of stormwater pipes, since there is a severe impact for a diameter
increase from 900 to 1500 mm, as seen in Figure 5d.

3.5. Model Summary

The deterioration modelling was established based on Weibull distribution, to con-
struct a system based on the analyzed models of pipes deterioration assessment. The model
did not consider the entire data, rather the structural condition scale ICG and the pipe age
were factored in. Moreover, regression analysis was based on more factors and the result of
unsupervised learning. The Weibull analysis indicated that concrete and vitrified clay pipes
reach their useful service life at the age of 79 and 48 years, respectively—their expected
service life are 100 and 60 years. Therefore, attention should be paid to pipes within that
age range in terms of maintenance.

The sensitivity analysis result shows that the diameter of sewer pipes has a significant
influence on the deterioration process, whereas for stormwater pipes, the diameter has
little impact. For all pipe types and materials, the ICG of the pipes reduces with age. It,
therefore, means that the age of the pipe is also significant to the deterioration process.
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From the result, the pipe length has little or no impact on the deterioration process. Using
large-diameter pipes for sewers can reduce the deterioration rate and improve the service
life of these pipes.

Based on the comparison between the Weibull analysis result and the regression result,
it was noted that Weibull only predicts using time, which in this case is the pipe age.
Therefore, it can be relied upon as a useful prediction guide when there are insufficient data
to develop a more detailed model. In other words, it is a good approach when the expected
service life of the pipes and few inspection details with its structural grading are known.
Nonetheless, the regression model considered other factors such as length and diameter.
The regression model can, therefore, help in predicting the deterioration of pipes with a
particular diameter, length, and age at any point in time. When values are submitted into
the model it can give the structural class of the pipe at that point in time or in the future.
This serves as a useful guide for prioritizing when preparing for maintenance. Therefore,
this study’s model results can be used to construct a system-based framework for assessing
pipes deterioration.

4. Practical Implications

The model developed in this research will be beneficial for professionals in charge of
sewer infrastructure in several ways:

1. Having an understanding of the useful service life of the various pipe materials will
help in making decisions on the best material to use while designing new sewer lines
and replacing old ones.

2. The Weibull deterioration curve will help professionals when planning for mainte-
nance. The need to prioritize pipes that have exceeded their useful service life and the
frequency of maintenance to be carried out on such pipes will be well planned. This
will improve the lifespan of the pipes.

3. The validation of CCTV inspection results through unsupervised learning will aid
professionals to better understand the deterioration patterns given certain conditions
and factors. Also, it helps them to ascertain the level of accuracy of inspection reports.

4. The multilinear regression model developed in this study will be used in predicting
the future condition state of pipes and when it is likely to fail. This will help in cost
saving as measures are put in place to avoid such failure.

5. One of the major impacts of sewer deterioration and failure is on the environment.
This is because it can lead to the contamination of soil, drinking water sources,
beaches, etc., thereby posing a risk to the health of the populace. The predictive model
developed in this study would preclude such risks as a more proactive method of
management and maintenance.

Limitation and Future Works

Some limitations are to be acknowledged. That is, drawing the Weibull curve for
ductile iron could add value to the study. That was not possible due to a lack of sufficient
data, which remains to be addressed in future studies on the topic.

Besides, the developed model does not consider the impact of traffic on pipes; therefore,
it cannot be used for any pipes buried under highways. In addition, the developed
model only considered three pipe material types which are vitrified clay, concrete, and
ductile iron. Future studies should consider more external factors such as high surface
pressure, poor pipe structure, human error, variation in temperature, and digging. Besides,
environmental stressors such as earthquakes and tremors, etc., that cause sewer pipeline
deterioration should be identified, and their impacts need to be further analyzed. Quite a
good number of external factors affect the sewer system directly or indirectly. Therefore, it is
important to ascertain to what extent these factors contribute to deterioration and how they
can be minimized.
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5. Conclusions

In this paper, deterioration models for sewer pipes and stormwater pipes were devel-
oped for different pipe materials which are concrete, vitrified clay, and ductile iron. The
models were developed using multilinear regression analysis and Weibull analysis. The
deterioration prediction was based on the Internal Condition grade ICG of 0 to 4. The
conclusions drawn from the models developed offer novelty in several ways.

1. Use of Weibull deterioration curve for concrete and vitrified clay pipes based on the
pipe age and structural grading. It is a good analysis tool for modeling deterioration
when there is not enough data to develop a more detailed model. There is a need to
develop a Weibull-based model that takes into account the impact of both pipe age
and overall structural grade, i.e., Internal Condition Grade (ICG) of pipe.

2. Utilize unsupervised-based learning of CCTV inspection data using K-means cluster-
ing. Most CCTV inspection reports are done based on the inspector’s observation and
there is often a likelihood to experience human error. Thus, the use of unsupervised
learning can overcome such rampant concern, since it identifies patterns and relation-
ships in an unlabeled dataset where insufficient data are provided. With the help of
unsupervised learning, the accuracy of these reports can be validated and ascertained,
achieving a more reliable model.

3. The results produced from this study give managers a good basis to make decisions
and avert the risk that sewer failure would have on the environment.
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