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Abstract: The development of Structural Health Monitoring (SHM) and Non-Destructive Testing
(NDT) techniques has rapidly evolved and matured over the past few decades. Advances in sensor
technology have facilitated deploying SHM systems for large-scale structures and local NDT of struc-
tural members. Although both methods have been successfully applied to identify structural damage
in various systems, Environmental and Operational Condition (EOC) variations can influence sensor
measurements and mask damage signatures in the structural response. EOCs include environmental
conditions, such as temperature, humidity, and wind, as well as operational conditions, such as mass
loading, vibration, and boundary conditions. The effect of EOCs can significantly undermine the
reliability and robustness of damage assessment technologies and limit their performance. Thus,
successful SHM and NDT systems can compensate for changing EOCs. This paper provides a state-
of-the-art review of the effects of EOCs on SHM and NDT systems. It presents recent developments
in advanced sensing technology, signal processing, and analysis techniques that aim to eliminate the
masking effect of EOC variations and increase the damage sensitivity and performance of SHM and
NDT systems. The paper concludes with current research challenges, trends, and recommendations
for future research directions.

Keywords: structural health monitoring; non-destructive testing; environmental and operational
conditions; sensor network; temperature variations

1. Introduction

The early 1980s marked the beginning of vibration-based structural monitoring for
civil infrastructure. Monitoring the health of structures was primarily based on modal
characteristics, and acquired data, such as frequency, mode shapes, mode curvature, and
the dynamic flexibility matrix [1–4], were correlated with damage. For the functioning of
modern society, it is vital to maintain structures in a safe and reliable condition during their
service lives [5,6]. Accordingly, the health of a structure can be defined as the present ability
of a system to perform its intended function safely and cost-effectively against the antici-
pated risks during its service life. To ensure structural integrity, SHM systems have been
developed for periodic health assessment [7] and employed for various structures, such as
buildings [8–13], cultural heritage structures [14–17], bridges [18–24], underground struc-
tures [25,26], dams [27], offshore structures [28–33], wind turbines [34–38], ships [39–42],
and aerospace infrastructure [43–46].

An SHM system comprises various components, including networks, data transmis-
sion systems, data acquisition and processing units, damage identification algorithms, and
decision-making procedures [47–49]. Depending on the application, various SHM methods
have been developed and investigated [42,50–54].
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SHM can be classified into two primary approaches: passive SHM and active SHM [55].
In passive techniques, different operational parameters are passively measured, and the
results are interpreted to determine the state of the structure’s health. While passive
methods can be successful for specific applications, they lack accuracy, and damage might
stay undetected [56,57]. On the other hand, active SHM enables the direct and targeted
detection and evaluation of structural damage resulting in more reliable and accurate health
assessment. By comparison, this approach to SHM is similar to non-destructive evaluation
(NDE) [58], except that active SHM takes a step further and employs permanent sensors to
allow for continuous on-demand structural health assessment [59,60]. The configuration of
active and passive SHM systems is illustrated in Figure 1.
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Figure 1. Passive and active SHM systems.

SHM methods can be implemented utilizing different types of sensors, such as ac-
celerometers [61,62], vibrating wire transducers [63], fiber optic sensors [64], linear variable
differential transformer (LVDT) [65], strain gauges [66], load cells [67], temperature sen-
sors [68], acoustic emission sensors [69], an inclinometer (slope indicator) [70], a tiltmeter
[71], antenna sensors [72], Resonant(LC)/Resistor–Capacitor(RC) circuit sensors [73,74],
and Micro-Electro-Mechanical System sensors (MEMS) [75]. MEMS and LC/RC circuit
sensors can be employed in active and passive SHM approaches. On the other hand,
antenna sensors are limited to passive SHM systems.

Using numerical tools, measured data in an SHM system can be converted into
meaningful information that can detect damage and indicate its location and severity [76].
Some methods include Finite Difference Techniques [77], the Finite Element Method [78],
Perturbation Techniques [79], the Boundary Element Method [80], and the Spectral Finite
Element Method [81]. Mathematical models in SHM are described by partial differential
equations (PDEs) that are emanated using assumptions regarding the behavior of field
variables. Generally, in both cases of hyperbolic and elliptic PDEs, obtaining an analytical
solution is challenging; hence, numerical techniques are required. The Weighted Residual
Technique (WRT) was developed to indicate the most suitable numerical method. Various
numerical techniques and their applications in SHM are presented in Table 1.
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Table 1. Numerical methods and their applications in SHM.

Numerical Method Some of the Application(s) Refs.

Finite Difference
Techniques

- Simulating Lamb wave propagation through Single Lap Joints.
- Validating the behavior of 3D Photonic Crystals for SHM.

[82]
[83]

Finite Element
(FE) Method

- Lamb wave propagation in composite plates.
- Modeling matrix cracks in composite beams.
- Obtaining crack parameters.
- Modeling cracks to perform fracture mechanics study.

[84]
[85]
[86]
[87]

Perturbation
Techniques - A detailed assessment of the damages’ locations and severities. [88]

Boundary Element
Method

- Modeling smart structures instrumented with piezoelectric actuators and sensors.
- Modeling ultrasonic Lamb waves in plates for SHM applications.
- Numerical simulations of SHM applications for plate structures.

[89]
[90]
[91]

Spectral Finite
Element Method

- Structural damage detection.
- Simulating guided waves in orthotropic as well as isotropic plates.
- Modeling Lamb wave propagation in the plates with attached piezoelectric wafer active sensors.

[92]
[93]
[94]

As a result of technological advancements in the Internet of Things (IoT), this tool
enables SHM to be incorporated into the Internet for continuous data tracking regardless
of time or location [95,96].

SHM approaches vary based on the monitoring objective, site, system conditions,
available sensing equipment, expert knowledge, and budget. As such, various SHM
approaches have been developed that consider one of the following items:

• The type of measured data, such as vibration [97] or static response measurements [98].
• The type of damage signatures, such as modal strain energy, precursor transformation,

modal flexibility-based deflection and curvature, Kolmogorov–Smirnov (KS) statistical
test distance, and model residual errors [99–101].

• The monitored section of the structure, such as the entire system or subspace identifi-
cation [102].

• The type of data analysis algorithm used, such as neural networks and machine-
learning-based algorithms. A detailed list and description of these algorithms are
presented in Section 4 [103].

It has been demonstrated that SHM technology can provide significant economic and
life-safety benefits [104,105]. Nevertheless, due to the multidisciplinary characteristics of
SHM technologies, using SHM in real-world applications is still challenging and demands
ongoing research [106,107]. Challenges in SHM include insufficient data from existing
structures [108], cost restrictions [109,110], a large variety of systems, and the effects of
EOCs. Since the 1980s, a considerable volume of research on SHM has been conducted. Over
20,000 papers have been published in the last two decades (according to a Google Scholar
search on “structural health monitoring” completed in March 2023). Figure 2 displays the
number of papers published between 2003 and 2023 with the words “structural health
monitoring” or “environmental and operational conditions” in the title. A breakdown of
various EOCs investigated for SHM applications, including temperature, wind, humidity,
boundary conditions, and mass loading, is presented in Figure 3. SHM methods can
generally be classified as local or global methods. Figure 4 displays various methods
divided into global and local approaches.
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Figure 2. Number of publications with SHM or EOCs in their title.

Figure 3. Breakdown of various EOCs studied for SHM.
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Figure 4. Classification of SHM methods.

Compared to SHM methods, NDT techniques are generally one-time evaluations
carried out manually or semi-manually to assess the condition of a material or a structure.
They are typically used to detect hidden damage or map deterioration and identify its
underlying cause within a structure. NDT applications are often operated contactless to
avoid damage to the material integrity and functioning of the system under assessment.
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Various NDT techniques are implemented into routinely scheduled inspection and mainte-
nance operations for the continuous monitoring and management of civil structures and
also play an integral role in SHM systems [111]. The selection of suitable NDT technology
depends on various factors, including the type and physical properties of the material
or structure, the desired parameters, assessment aims, available expert knowledge, and
budget restrictions. Often, it is necessary to use a combination of different types of NDT
methods. By integrating multiple techniques, additional parameters can be evaluated and
added to the measurement process, which in turn enhances accuracy [112,113]. Significant
challenges in NDE are noise exposure, and analysis and interpretation of measurement data,
which often require expert knowledge [54,114–116]. Commonly used NDT methods are
eddy-current, ultrasonic, acoustic emission, laser scanning, and ground penetration radar
(GPR) technologies. As such, laser scanning is a remote sensing technology that utilizes
focused pulses of coherent light. Distances are calculated by measuring the transmission of
light beams reflected from structures. The availability of a large quantity of data allows
for detailed assessment. The scans generated by point clouds contain data of all collected
points from the material or structure being tested and are typically transformed into precise
and highly detailed 3D maps. These cloud maps include valuable information that can
reveal structural characteristics and help identify the extent of possible deterioration. Over
time, applying this technique can provide a clear picture of damage progression [117,118].
Due to these capabilities, laser scanning has become increasingly popular for NDT and
SHM applications [119,120].

GPR is often used for civil engineering applications due to its affordability and rapid
processing, particularly for defect inspections where cracks and voids could threaten
concrete and masonry integrity [121]. This method requires a balance between penetration
depth and the desired solution. For instance, a higher resolution is achieved with a higher
operating frequency and a lower penetration depth [122].

A significant challenge in SHM and NDT arises from varying environmental and
operational conditions. EOCs can mask the signature of damage in the structural responses
in both passive and active assessment techniques. Variations in EOCs may cause a more
significant impact on structures than damage-induced changes. By overlooking these
influences, damage detection accuracy may be affected and lead to unreliable conclusions.
Some common EOCs are described below:

• Environmental conditions

- Temperature: Due to temperature-related expansion and contraction of materi-
als, the dynamic properties of a structure can change. The findings of several
studies have been reported on the influences of temperature changes on signal
measurements from SHM systems [123,124].

- Humidity: Due to the absorption of moisture, material properties can be altered,
potentially leading to false damage features and incorrect damage identifications
[125].

- Wind: Wind-induced vibration plays a critical and influential role in SHM systems
of long-span bridges. Li et al. [126] studied the effects of wind excitation on
damage assessment.

• Operational conditions

- Mass loading: Mass loadings, such as traffic, can introduce challenges to SHM
techniques as another operational variable. Several papers on SHM have studied
the effects of mass loading on the measured signals from SHM systems [127,128].

- Marine growth in offshore structures: Offshore structures are known to be ad-
versely affected by marine growth. The roughened surfaces can increase the drag
coefficient of the structure. Moreover, this phenomenon causes changing mass
loads to the structures. Therefore, this challenge should be considered in SHM
systems of marine structures [129].
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EOCs can influence various material and structural properties, such as stiffness and
boundary conditions, as well as vibration characteristics, including natural frequencies,
mode shapes, and damping. Temperature affects material and vibration properties in sev-
eral ways, including solar radiation, day-night alternations, and seasonal shifts. Generally,
structures are simultaneously exposed to different EOCs. Temperature variations can cause
significant and slow changes in stress, leading to fast-loading changes in structures such as
TV towers [130].

A comparative analysis was conducted using a weigh-in-motion roadway scale on
the consequences of thermal stresses and traffic loads on a steel bridge. It was reported
that thermal stresses are significantly more influential than stresses induced by traffic [131].
Vibration properties of in-service structures can change over time as EOCs vary. Therefore,
it is necessary to compensate for these variables in SHM measurements. Table 2 summarizes
the effects of typical types of damage and EOCs on the properties of composite materials,
including stiffness, mass, damping, conductivity, and boundary conditions. As can be
seen, damage and EOCs can have similar effects on the material properties, leading to false
damage identifications. Recent studies considering the impact of EOCs on laser scanning
and GPR testing are presented in Table 3.

Table 2. Relationship between environmental conditions and local properties of composite material:
(◦) average, (+) strong, and (−) weak influence; (N) Notch, (FC) Fiber crack, (MC) Matrix crack, (Dl)
Delamination, (Dt) Dirt, (T) Temperature, (M) Moisture, (ER) Electromagnetic Radiation and (ML)
Mechanical Load [58].

Condition Effect N MC FC Dl T Dt M ER ML

Damping − ◦ ◦ ◦ ◦ + ◦ − −
Material conductivity + ◦ + ◦ ◦ − ◦ ◦ ◦
Boundary formation + − − + − ◦ − − −
Mass − − − − − + + − −
Material stiffness ◦ ◦ + ◦ + − + − −

Table 3. Examples of studies considering the effects of EOCs on NDE using laser scanning and
GPR techniques.

Ref. NDT Approach Considered EOC(s) Model Description

[132] Laser Scanning Temperature
Humidity Wind Bridge infrastructure

This paper discusses the development
and functionality of the bridge condition
decision support system.

[133] Laser Scanning General Aluminum plate
This paper presents an automated crack
visualization method using ultrasonic
wave-field images.

[134] Laser Scanning Vibration Cantilever beam

This study demonstrates that multipoint
laser-vibrometry with laser excitation can
measure the effects of changing vibration
in scanning laser–Doppler vibrometry.

[135] GPR Humidity Bridge deck

This paper discusses the characteristics
and condition of asphalt concrete overlay
and the environmental effects of moisture.
It also discusses their effects on the
resulting GPR surveys.

[136] GPR Temperature
Wind

Glass fiber-reinforced
polymer (GFRP)
bridge decks

This study compared the efficiency of
NDT of GFRP bridge decks Using GPR
and infrared thermography.
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Table 3. Cont.

Ref. NDT Approach Considered EOC(s) Model Description

[137] GPR Temperature
Humidity Pavement foundation

In this paper, two segments of asphalt-paved
roads in the USA were investigated using an
air-launched GPR system.

[138] GPR Humidity Asphalt pavement

This report summarizes the Minnesota
Department of Transportation’s (MnDOT)
efforts at validating the use of GPR to monitor
the moisture in the pavement foundations.

[139] GPR Temperature
Humidity

Reinforced
concrete slab

This study attempts to see how GPR signals
change over time and how they affect the
reflection amplitude of steel bars.

2. Effects of Varying EOCs in SHM

As outlined above, varying EOCs have a significant effect on damage signatures and
have been recognized by the research community as a major concern for the reliability and
accuracy of current SHM systems [140]. Environmental conditions include temperature,
wind, and humidity. Seasonal changes are a crucial factor causing various environmental
changes. Mass loadings, such as permanent loads, ship impact, highway, traffic, and
railway loads, are examples of operational conditions. Figure 5 provides an overview of
the mechanisms by which various EOCs can influence modal properties.

Geometric size

Material properties

Boundary conditions

Aerodynamic coupling of
structure and wind

Mass

Boundary conditions

Added mass

Nonstationary excitation

Temperature

Humidity

Wind

Traffic load

Physical states change in
structural components

Instantaneous fluctuation of
frequency

Changes in modal
properties

Figure 5. Influence mechanisms of EOCs on modal properties [141].

Civil structures under EOCs often exhibit inherent non-stationary dynamic responses,
and quasi-static signals can obscure any shifts in the measured structural response due to
damage. As a result, any occurrence or progression of a structural fault or a variation in
performance malfunction can be challenging to detect. Sohn [142] stated that some SHM
methods neglect the considerable effect of changing EOCs. Indeed, the confounding effects
resulting from EOCs represent one of the main obstacles to the widespread application
of SHM in the industry. Hence, to ensure accurate and reliable condition monitoring, it
is therefore essential to consider the effects of EOCs. Some reviews on several potential
solutions for dealing with the critical effects of variations in EOCs on structural responses
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can be found in [143–146]. The following sections address the effect of different EOCs in
SHM systems.

2.1. Temperature

The temperature sensitivity of structural responses is the most widely studied aspect
of EOCs on damage-sensitive features [147,148]. SHM systems are continuously subjected
to various temperature-induced effects, such as seasonal transitions, day-night shifts, and
solar radiation. Temperature and structural responses are strongly correlated [149,150].
As such, the temperature can significantly affect the dynamic response of structures. This
is due to its effects on the stiffness of elements and their potential impact on a system’s
material properties and boundary conditions. A comprehensive review of the relationship
between ambient temperature and vibration properties of long-span bridges was published
by Zhou and Yi [151]. Under the same damage scenarios, temperature variations can
increase the severity of structural damage. In an experimental study, Farrar et al. [152]
anticipated a reduction in the stiffness of girders’ elements and natural frequencies as a
result of the inflicted damage trend. Although the actual observed outcomes were not
as expected, the girder’s natural frequency rose for the first two faults before decreasing.
It was found that the initial rise in the girder’s frequency was caused due to ambient
temperature changes in the laboratory. Xia et al. [153] developed a novel technique based
on structural vibration variations versus the structure’s non-uniform temperature field to
quantify the environmental effects on the structural vibration characteristics. The authors
used thermodynamic models to estimate the temperature of various system elements at
different times. This enabled the analysis of the structure’s natural frequencies through FE
analysis. The authors repeated the procedures at different times to calculate the variation in
the frequencies. They observed a significant linear correlation between the recorded natural
frequencies rather than the air or surface temperatures. Zhou and Sun [154] addressed the
mechanisms of temperature-induced changes in mid-span and girder length deflection
through plane geometries. They analyzed a cable-stayed bridge using FE analysis based on
recorded field measurements from the case study. Kromanis et al. [155] conducted research
aiming to understand bridge behavior under variations in environmental conditions by
analyzing long-term records. Data from the Cleddau Bridge was used to analyze thermal
effects in steel box-girder bridges, and numerical models were developed to estimate the
forces at the supports resulting from bearing movements. The authors demonstrated the
importance of considering a spectrum of temperature distribution cases that exceed those
in design codes for the purposes of evaluating thermal effects in a reliable manner.

The temperature has been reported to influence wave propagation within materials.
Roy et al. [156] studied the effect of ambient temperature on structural wave propagation.
Numerical simulations and analytical models were used to compensate for the effect of
temperature on piezo-sensor responses. This method only requires a small set of baseline
sensor data for estimating unknown model parameters, making it efficient and practical
for structural condition monitoring. Moreover, the proposed method was shown to be
capable of damage localization. Schubert et al. [157] investigated the effects of structural
features and damage on the propagation and measurement of Lamb waves in combination
with environmental conditions. An analysis of changes in sensor responses caused by
reflections and interactions with stiffness discontinuities, unrelated and related to damage,
was carried out using the local temporal coherence technique. As the report indicates, even
in a climate-controlled laboratory environment, the effects of varying EOCs are inevitable.

Not only does temperature affect structural responses, but it can also affect deployed
sensors’ characteristics, resulting in misleading sensor readings. For instance, Ai et al. [158]
reported that temperature affected electromechanical admittance responses. Moreover, they
observed different behaviors of electromechanical admittance signatures in surface-bonded
and inside-embedded PZT transducers. Hoshyarmanesh et al. [159] found that elevated
temperature can affect the impedance signals obtained from piezoelectric wafers. As such,
a rise in temperature was found to lead to a slight decrease in the number of anti-resonance
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peaks and the actual impedance amplitude. Moreover, piezo films exhibited an increase in
permittivity and capacitance of piezo-sensor networks due to rising temperatures.

Statistical distance metrics have been employed for detecting damage in structures
under severe environmental variations. For instance, Deraemaeker and Worden [160] dis-
cussed using Mahalanobis squared distance of multivariate feature vectors obtained from
damaged and healthy structures for robust novelty detection under significant environmen-
tal variability. Studies found a significant correlation between the structural response and
the ambient temperature in concrete dams. For instance, Kang et al. [161] developed a dam
health monitoring approach using recorded air temperatures for simulating temperature
effects using kernel extreme learning machines. The proposed model examined recorded
data of a concrete gravity dam, and it was shown to be practical for concrete dam behavior
prediction. Caspani et al. [162] presented an approach to evaluate the efficacy of an SHM
system accounting for temperature compensation. A primary focus of the study was on
condition-state parameters describing the long-term response trend of pre-stressed concrete
bridges, such as shrinkage and creep effects. An equation was developed for estimating
the uncertainty associated with the long-term response trend of measurements with tem-
perature compensation. The study showed that the recorded signals, model uncertainties,
initiation time, and monitoring period affected the condition-state uncertainty.

Some techniques rely on historical data to construct a baseline against which the
abnormal behavior of a structure can be pinpointed. Thus, a baseline is obtained based
on the expected behavior of a healthy system subjected to varying temperature effects.
For instance, Yue and Aliabadi [163] proposed a data-driven approach to reconstruct
temperature baselines that can be applied to various structures with identical materials.
According to the experiments, temperature effects on the phase and amplitude of guided
wave measurements can be recognized as a dimensionless compensation factor. The
researchers used a stiffened panel and a simple flat plate as case studies. They employed
the extracted compensation factors to reconstruct baselines at different temperatures for
guided wave measurements in these structures. Detecting and locating the damage was
efficiently and accurately performed by taking advantage of the extracted temperature
compensation factors. Mariani et al. [164] proposed a novel compensation approach to
address both phase and velocity changes due to temperature variation. The proposed
method reduced the residual signal from a set baseline and enabled more satisfactory
damage detection performance than the typical baseline signal stretch technique. Aiming
to address the effects of temperature, Salmanpour et al. [165] developed an approach based
on baseline signal stretch with an improved minimum residual to derive a signal correction
over an extensive range of temperatures. In addition to the technique’s application to a
baseline comparison, they analyzed the efficacy and accuracy of the method for damage
detection and localization through experiments on aluminum and carbon fiber-reinforced
polymer panels. Yarnold et al. [166,167] developed a quantitative structural assessment
technique based on responses induced by temperature variations, termed the Temperature-
Based Structural Identification (TBSI) method. This approach can be used to assess the
effects of thermal-induced strains on global displacements and member forces. A crucial
aspect of this input-output relationship is its sensitivity to factors that pose modeling
challenges, such as continuity and boundary conditions. Hence, it is highly beneficial for
model updating. The method exploits the correlation between the boundary, the captured
transfer function, and continuity conditions. It was found to be capable of detecting both
linear and nonlinear behavior and is highly efficient in capturing signal patterns for long
periods. Figure 6 shows the process of TBSI and general temperature-based SHM.

New sensor arrays have been developed for compensating the effect of the temperature
signature on sensors’ data. For instance, Dhingra et al. [168] developed a sensor for SHM
at different temperatures based on Bragg grating (BG). As both the temperature and
strain increase simultaneously, a direct proportionality relationship was observed in the
Bragg wavelength. The results demonstrated the improved capability of the presented
sensor. Such sensor arrays are often equipped with software to interpret the recorded data.
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For instance, Lambinet and Khodaei [169] developed a software platform for acquiring
ultrasonic guided waves for the SHM of industrial-scale composite fuselage panels. The
authors developed an SHM measurement platform and evaluated it under varying EOCs
using a variety of sensors and sensor networks. The platform was found to be simple
to operate, reliable, and scalable to large sub-components with handling protocols and
optimized information acquisition. Other researchers employed numerical techniques
to interpret the sensor array’s data without developing specific software. For instance,
Bastani et al. [170] proposed a novel method using sensor arrays and statistical metric
analysis to identify signal changes resulting from environmental variations and/or damage.
The results were expected to show that environmental variations affect the output signals
of different row sensors similarly. However, changes caused by damage did not affect all
row and column sensors similarly. Hence, statistical metrics analysis was developed to
identify environmental disturbances resulting from damage detection. This method was
shown to be reliable in identifying damage through experimental validations.

Sensing technologies must be designed to withstand harsh environmental conditions.
Sensors must resist high temperatures over sustained periods, as in sodium-cooled fast re-
actors, requiring specialized developments and evaluations. Laffont et al. [171] studied the
development of temperature-resistant wavelength-multiplexed fiber Bragg gratings, which
are increasingly used in nuclear power plant instrumentation, particularly for components
exposed to high temperatures and radiation levels. Gao et al. [172] developed a PZT-based
Lamb waves SHM strategy for long-term aircraft storage tanks under cryogenic conditions.
This work performed a series of tests to identify the durability of PZT-epoxy sensor systems
and the functionality of the NDT method under cryogenic conditions in long-term storage
tanks. Experimental results indicated that the developed SHM technology was practical at
cryogenic and room temperatures under high strain and long-term operation.

Output

Member Strains
Displacements

Rotations

Input

Monitored
Structure

Data Acqusition

Sensors

Tem
perature

Alert/Reporting

Parameter Identification  
(through model-experiment correlation)

Long-term performance tracking

Conclusion

Signature Identification

Temperature-based 
 structure identification

Temperature-based 
 structure health monitoring

Figure 6. SHM system based on TBSI technique.

2.2. Wind

Bridge systems with long spans are particularly susceptible to wind loads, and as such,
high winds can significantly affect these structures. Wind loads are defined by two main
features, wind speed, and wind direction. These loadings influence the aerodynamic
coupling between the structure and wind, modal parameters, and response amplitude.
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During strong winds or typhoons, wind-induced vibrations contribute more energy to a
system than damping, causing it to flutter or buffet.

As the number of bridge systems across seas and rivers has grown in recent decades,
there has been a large increase in research work addressing bridge wind engineering
issues [173,174]. Studies found that high wind conditions have a complex effect on dynamic
structural properties [129,175–177]. In general, in high winds, it is difficult to accurately
identify a bridge’s modal parameters, and their estimates are subject to a substantial degree
of uncertainty. A decrease in wind velocity was found to cause a reduction in the modal
damping and the natural frequency of a suspension bridge. A quadratic function can be
designated as the vertical amplitude of the bridge’s response to the wind speed. Moreover,
the damping ratio depends on the vibration amplitude [178,179]. Advancements in NDT
and SHM technologies have emerged as an option to equip in situ information platforms
to study the wind resistance of long-span bridges. Weijtjens et al. [180] discussed how
vibration measurements could assist operators in making more informed decisions on
the structural health of their equipment. They found that wind conditions like wind
speed and turbulence affect turbine vibration levels. Additionally, the authors investigated
the interaction between loads and tower dynamics. Li et al. [181] investigated the wind-
induced response of an air-supported structure. They reported that the equivalent static
wind load technique based on the fundamentals of maximum displacement equivalence
could be used to calculate wind-induced displacement responses. According to the study,
the recommended approach is practical for wind resistance design; however, displacement
responses were slightly higher than actual responses. During six tropical cyclones, Wang
and Ni [182] collected field measurements of wind influence on a supertall structure.
Field measurements were used to determine the dynamic properties of the system. This
study provided practical information for wind-resistant designs and considered the wind
effects on the SHM of skyscrapers. Zhou and Sun [183] investigated the influence of
high winds on vibrational signals and changes in the modal parameters of a sea-crossing
cable-stayed bridge system. The authors reported that most of the vehicles crossing the
bridge are heavy-load container trucks. This work was defined as field evidence for
the performance evaluation and the wind-resistant design of bridge systems in identical
operational conditions considering wind effects. Zhu et al. [184] conducted a computational
fluid dynamics study on a full-scale bridge. The simulated varying wind condition satisfied
the characteristic of field data. This approach was shown to be adequately practical in
bridge studies under fluctuating wind conditions.

Li et al. [185] studied the dependence of the modal shapes, modal frequencies, and as-
sociated damping ratios on wind velocity and temperature. The study employed nonlinear
PCA (NLPCA) and ANN techniques. According to numerical results, the modal parameters
pre-processed by NLPCA were capable of retaining the majority of the characteristics of
the original signals. The damping ratios and the pre-processed modal frequency were
also influenced by wind velocity and temperature. The ANN regression models showed
the fine mapping of the relationship between modal frequency and environmental factors
and damping ratios. Wang et al. [186] proposed a Bayesian probabilistic approach for
characterizing wind-induced responses of high-rise structures. This approach enabled
accounting for the uncertainty in the monitored responses. Tsai and Alipour [187] moni-
tored a cantilever traffic signal structure under different wind conditions. They proposed a
data-driven algorithm for wind-excited structures based on the long-term monitoring data
of this structure.

2.3. Humidity

Humidity [188,189] is another environmental factor affecting SHM systems. Effects of
variations in humidity can be reflected in changes in boundary conditions and structural
mass. A slow process of changes occurs as the moisture content increases, and the structural
frequencies tend to be reduced as a consequence.
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Xia et al. [190] found that humidity has a relatively small impact on stiffness in long-
span structures. Zhou et al. [114] monitored a 600 m high supertall building with an active
tuned mass damper over two years. The structure underwent five typhoons and ambient
environmental factors. The authors indicated that ambient humidity has limited effects on
the modal parameters of the structure. In 2001, based on observing a bi-linear distribution
of modal frequencies of the Z-24 bridge centered around the freezing point, Peeters and
De Roeck [191] found that ambient moisture content changed the effect of temperature on
the structure.

Kullaa [192] conducted experimental research for distinguishing between sensor fault,
structural damage, and EOCs in SHM. They considered temperature and humidity as the
main environmental factors. Bekas et al. [193] developed a novel lightweight diagnostic film
for metal and composite structures. The film provided durable and reliable performance
in withstanding the variable harsh humidity and temperature. He et al. [194] introduced
a frequency-modified method for continuous beam bridges considering environmental
effects. The proposed technique can eliminate the effects of humidity and temperature
on structural responses. He et al. [195] proposed a reliability assessment approach for
bridge structures. This method is capable of eliminating temperature and humidity effects.
Dong et al. [196] developed multifunctional cementitious composites with integrated self-
sensing based on conductive graphene nanoplates and silicone hydrophobic powders. This
piezoresistive cementitious composite containing a novel cement-based sensor showed less
sensitivity to moisture than conventional cement-based sensors.

2.4. Mass Loading

Mass loadings are primarily due to changing traffic, resulting in added mass and
non-stationary excitations acting on a structure. Traffic loads are typically subject to
daily or weekly fluctuations. As mass increases, natural frequencies decrease, as can be
inferred from an equivalent spring-mass model. A non-stationary excitation primarily
affects the stiffness of a system due to amplitude changes in vibrations that cause random
fluctuations [197]. The temporal variability of traffic loads particularly affects bridges. The
interaction between bridges and vehicles can be characterized by a time-variant oscillating
system. Accordingly, each identified modal parameter corresponds to this system. Since
mass is recognized as the most significant consequence of crossing vehicles, its effects on the
bridge structure have been investigated by the SHM community in recent decades [198,199].

Short-span bridges are significantly more affected by traffic-induced mass variations
than stiffness changes caused by environmental conditions. For middle to long-span
bridges, due to the mass ratio between the vehicle and the overall bridge structure, traffic-
induced variations of natural frequencies are insignificant. Accordingly, lighter bridges
are more affected by variations in mass. The modal variations induced by traffic can be
considered to arise in dynamic and static forms [200,201]. The dynamic modal changes
induced by traffic are not linear and may tend to decrease as the load increases. However, in
the case of static variations, they are shown to be directly correlated with mass. This effect
makes vibration-based monitoring challenging for in-service bridges since the determined
variations in the modal parameters of a bridge may represent the response of the interaction
between a crossing vehicle and the healthy bridge. Several variables characterize the
vehicle-bridge loading, such as vehicle velocity, vehicle weight, bridge weight, the number
of vehicles, and other EOCs [202–204].

Rahim [205] developed a method for detecting and identifying damage severity under
the effects of different loading conditions. The author extracted the structure’s natural
frequencies and used Principal Component Analysis (PCA) as a feature-reduction technique.
The PCs were used as input for an ANN model to predict various damage severity levels
under the effects of different loading variables. It was found that nonlinear PCA and kernel
Gaussian PCA can improve the chance of detecting damage and reduce false negative
damage detection. Wang et al. [206] evaluated the dynamic responses of vehicles on a
long-span bridge using a monitoring-based approach considering the effects of random
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traffic and wind loads. Several factors contributing to vehicle vibration were investigated,
including road roughness, bridge vibration, and wind loads. According to the results,
bridge vibration was the primary contributing factor to the vertical vehicle vibration,
while wind forces and bridge vibration were the dominant factors contributing to the
lateral and torsional vibration of the vehicle, respectively. The presented monitoring-based
approach offers the possibility of estimating the dynamic responses of a moving vehicle
on a bridge with high reliability, regardless of its operational condition. In addition, the
method provides real-time information that can be used to assess the serviceability and
safety of the structure.

Since lightweight structures may be affected by mass loading, such as heavy contact
sensors, Sarrafi et al. [207] recommended using digital video cameras to rapidly collect
high-density spatial data. The practicality of performing non-contact video measurements
was demonstrated by the researchers for structural damage detection. Operational deflec-
tion shapes and derived resonant frequencies were used to perform the first level of SHM,
i.e., detecting the presence of damage.

In summary, EOC variations can significantly impact the accuracy of SHM systems.
Temperature, wind, humidity, and mass-loading effects are all factors that can alter the
behavior of a structure, making it difficult to acquire reliable data from monitoring sensors
and obtain accurate monitoring results. For instance, temperature variations can result
in structural expansion or contraction, leading to changes in the structure’s mechanical
characteristics, such as natural frequency and mode shapes. Wind can cause structural
vibrations, which can impact the accuracy of the sensors and can lead to false systems
estimations. Humidity and mass-loading effects can induce changes in the structure’s
weight due to loading and unloading, resulting in changes in the sensors’ reading and
the SHM system’s reliability. It has also been argued that sensors can render misleading
data when affected by EOC changes. Therefore, the future trend leans more toward
developing robust sensors that are less sensitive to EOC changes. It was also noted that
sensor arrays could be employed to cancel out any effects from EOC. However, such
a sensor network requires software explicitly developed for real-time interpretation of
recorded data. Alternatively, numerical techniques may serve offline data analysis for
interpreting data recorded from such sensor networks.

Most studies focus on evaluating the effect of EOC on long-term structural condition
monitoring, and likewise, the developed techniques are primarily designed for monitoring
large-scale structures over a long period. However, it was argued that EOC variations could
affect wave propagation within materials. This implies that one needs to consider these
effects when interpreting NDE techniques’ results. This demands more work performed in
this area in the future.

While mass loading can decrease the natural frequencies of a structure, cold temper-
atures can have an elevating effect. While the former is a dynamic effect, the latter effect
usually stays static over short-term monitoring. Therefore, the interaction of different EOC
factors can complicate the monitoring of a structure. As another example, high humidity
can affect the structure’s weight and response to wind loads. These interactions can create
complex patterns of behavior that require sophisticated analysis techniques. As such, it
is essential to carefully consider EOCs when designing and deploying health monitoring
systems to ensure their accuracy and reliability in real-world applications.

3. Sensing Technologies

SHM and NDT systems typically involve a sensor network or a single sensor that
measures various structural, material, or environmental quantities. These sensor readings
thereby reflect either the structural behavior, material properties, or external factors, such as
EOCs, that can affect the sensor measurements or behavior of the system. Detecting damage
requires sensor data that are sensitive to the damage to provide a direct correlation to the
health of the structure. A sensor that is robust to variations in EOCs can be of significant
advantage in accurately and reliably detecting damage in structures. An overview of the
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typical EOCs affecting civil infrastructure and the sensors suitable for measuring these
effects in SHM systems is provided in Table 4. In general, sensors convert parameters of a
physical nature to electronic signals. These physical parameters can be acceleration, strain,
light, humidity, temperature, pressure, or moisture. Sensing techniques can be divided into
conventional and advanced sensing technologies depending on their stage of development
and establishment status. Examples of conventional sensors used for SHM systems and
NDT are strain gauges, accelerometers, ultrasonic transducers, eddy current sensors, and
temperature gauges [208].

As compared to conventional methods, advanced sensing techniques rely on emerging
technologies based on multi-physics and include more complex system setups and data
analysis methodologies [209]. In recent decades, a wide variety of advanced sensing
technologies have been developed based on different physical working principles. As many
of these techniques are relatively new technologies for most civil engineering applications,
many of them are currently used only for research or on a small scale in the field or
pilot projects. Application examples of advanced sensing systems are the monitoring of
infrastructure [210,211], electricity and water distribution systems [212], and transportation
systems [213].

Table 4. Typical EOCs and appropriate sensors for SHM systems [141].

EOCs Sensory Systems

Temperature
- Fiber optic sensors
- Temperature sensors
- Thermocouples

Wind

- Barometers
- Hygrometers
- Ultrasonic and propeller anemometers
- Visibility and precipitation sensors

Railway traffic - Static/dynamic strain gauges
- High-definition video cameras

Highway traffic
- Static/dynamic strain gauges
- Dynamic weigh-in-motion stations
- High-definition video cameras

The advantages of advanced sensing systems include

• suitability for continuous monitoring,
• capability for remote sensing,
• less sensitivity to EOC variations,
• more accuracy and reliability,
• automatability,
• less labor intensivity,
• more cost-effectiveness.

Selecting the most appropriate sensor based on the system requirements and limi-
tations depends on assessing specific sensor characteristics, such as (1) susceptibility to
damage, (2) susceptibility to noise, (3) susceptibility to variations in the EOC, (4) suscepti-
bility to chemical influences, (5) susceptibility to mechanical influences, (6) measurement
accuracy, (7) error-proneness, and (8) cost. Advanced sensing technologies used for SHM
systems and NDT can be grouped as follows:

• Fiber optic sensing technologies: These sensors are already widely applied in several
areas due to their benefits, such as small size, corrosion resistance, high precision,
flexibility, lightweight, and anti-electromagnetic interference property [214,215]. Fibre
optic sensors include Fibre Bragg grating (FBG) sensors [216], polymer optical fiber
sensors [217], and Rayleigh scattering distributed sensors [218].
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• Electrochemical sensors: the three main types of these sensors are (1) potentio-
metric sensors [219,220] (2) amperometric sensors [221,222] and (3) conductometric
sensors [223,224].

• Wireless monitoring via wireless sensors: In recent decades, the development of wireless
sensor technologies has been based on advancements in microelectromechanical systems
(MEMS) technology, digital electronics, and wireless communications [225–227]. The
two main subsystems of this system are (1) Portable Inspection and Maintenance
Strategy (PIMS) [228,229] and (2) Portable Data Acquisition Strategy (PDAs) [230].

• Remote-sensing technologies: remote-sensing technologies can be divided into five
main groups, including (1) mathematical morphology-based methods [231], (2) object-
oriented methods Li et al. [232], (3) edge detection-based methods [233], (4) road
information-based methods [234] and (5) statistics-based methods [235].

The development of next-generation sensing techniques as a result of recent advance-
ments in sensing and robotic technology is outperforming conventional and advanced
sensors. Next-generation measurement technology for SHM has grown in response to the
need for automated and efficient sensing systems. Robotic sensors, cloud services, wireless
sensors, GPS, drones, machine vision, smartphones, and high-speed cameras are examples
of next-generation sensors that are employed to monitor various systems.

While advanced sensing technologies that are insensitive to EOCs and sensitive to
damage are crucial for reliable damage detection in structures, some gaps still need to be
addressed. One of the main challenges is the high cost and complexity of these sensing
technologies rendering them difficult to implement on a large scale. Additionally, some
advanced sensing technologies require calibration and elaborate maintenance work, which
can be time-consuming and expensive. Another challenge is the lack of standardization in
sensing techniques, which makes it difficult to compare and evaluate different technologies.
Furthermore, the performance of these sensors can be affected by the structure’s mate-
rial properties, making it challenging to apply the same technology to different types of
systems. Overall, more research and development are needed to address these gaps and
provide advanced sensing technology that is more accessible and practical for widespread
implementation in SHM applications.

4. Data Analysis for EOC Compensation

Sensor measurements typically undergo a process of data acquisition, signal condi-
tioning, data transfer, data storage, signal processing, and data interpretation for damage
detection. Over the years, a variety of data analysis techniques have been introduced
and are constantly being further advanced. Rapid advances and innovations in artificial
intelligence (AI) and data mining have led to the transformation and renewal of data analy-
sis methodologies for SHM and NDT technology. Although traditional signal processing
methods are used to execute and test models and hypotheses on datasets, regardless of
the volume of data, AI techniques, including deep learning, are operated to detect hidden
patterns in large data sets [236].

Swarm intelligent algorithms are widely used for structural optimization and com-
pensating for EOCs. These algorithms include genetic algorithm (GA), Moth Flame Opti-
mization (MFO), and Whale Optimization Algorithm (WOA) [237,238]. Novel algorithm
developments have focused on data analysis techniques that can compensate for the effects
of EOC variations. These algorithms can be classified into two main groups based on the
available data type, i.e., (1) input-output and (2) output-only methods. The input usually
refers to information about varying EOCs, such as temperature variations. The output
relates to structural response characteristics containing damage-sensitive features, such as
natural frequencies or mode shape data. While input–output methods aim to establish a
map between the input and output data, output-only methods rely only on the available
information about the structural response. Examples of data analysis algorithms used for
EOC compensation are described below [239–241].
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• Support vector machine (SVM): SVM is an algorithm for analyzing data relations.
The technique is beneficial for pattern recognition and can be used for regression
analysis [242–244].

• Artificial neural network (ANN): ANN is an input and output method. Using historical
data, it approximates the nonlinear function between inputs and outputs with high
accuracy [245–247].

• Machine learning (ML): ML algorithms can be input–output or output-only al-
gorithms. They can interpret signals or images to analyze, inspect, and examine
material integrity [248–250].

• Genetic algorithm (GA): GA provides an effective solution to both constrained and
unconstrained optimization problems by mimicking the process of biological evolution
through natural selection. Several individual solutions are modified repeatedly by the
algorithm [251,252].

• Autoregressive-exogenous (ARX): An ARX model simulates datasets. Existing struc-
tural vibration data are fitted to the model, and observations are removed. Using
ARX(n, m), the current system output is defined as a function of n previous outputs
and m previous inputs [253,254].

• Linear regression (LR): The LR model is one of the most popular and straightforward
regression analysis methods. A linear relationship exists between temperature and
structural response. The structural response can be calculated using temperature data
from a single point [255,256].

• Principal component analysis (PCA): As a multivariate statistical analysis technique,
PCA can reduce the data dimension. High-dimensional related variables are thereby
transformed into low-dimensional uncorrelated variables [257,258].

• Swarm intelligent algorithms: By discovering different combinations of values, these
algorithms assist in improving fitness functions in combinatorial and numerical opti-
mization problems [259,260].

• Auto-associative neural network (AANN): AANN is an ANN structure with the same
input and output layer. The program is typically used to simulate a nonlinear PCA
process and solve problems related to feature extraction, pattern recognition, and
dimensionality reduction [261,262].

• Variational mode decomposition (VMD): VMD is a time-frequency analysis strategy
for analyzing non-stationary and nonlinear signals based on decomposing the original
signal into several sets of intrinsic mode functions (IMF) [53,263].

Table 5 presents recent papers on input–output and output-only data analysis tech-
niques considering temperature variations.

Damage-detection strategies for health monitoring can be categorized into model-based
and data-based methods [264]. In model-based approaches, damage detection techniques
are based on initial physics models of a structure. Here, damage can be identified by
updating the initial properties of the structure and comparing these with real properties.
Data-based techniques, on the other hand, are based on structural measurements. The
effects of EOC variations can be considered using both approaches. Table 6 presents recent
research on model-based and data-based damage detection methods that use vibration
data and compensate for temperature effects. For static-based ways that compensate for the
effects of EOCs, Table 6 presents two developed approaches. The first method is based on
temperature-removed responses. This method can efficiently analyze the results of other
factors, such as traffic load; it may, however, lead to the loss of critical information. The
second method is based on temperature-induced responses and can apply the excitation
by temperature in structure identification. In this approach, a uniform temperature field
can cause challenges in accurately obtaining the model input. Furthermore, the nonlin-
ear relationship between structural characteristics and temperature responses can cause
model uncertainty.
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Table 5. Recent papers on data analysis algorithms considering temperature variations.

Ref(s). Input-Output Output-Only Type Description

[265] X SVM A novel SVM was proposed that gradually tunes the kernel parameter and
determines the necessity of model updating.

[266] X SVM Genetic algorithm, grid-search, and partial swarm optimization were presented for
damage detection based on SVM.

[267] X ANN
An ANN was evaluated for predicting the modal parameters accurately;
additionally, the model error of the ANN was validated as an indicator for
detecting anomalous structural functions.

[268] X ANN A damage detection approach under temperature variation was developed using a
sensor-clustering-based time-series analysis combined with ANNs.

[269] X ARX
A long-term continuous SHM system was presented to perform under seismic and
environmental excitation. The application of ARX was for modal identification
under seismic excitation.

[270] X LR
A model to separate temperature influence from structural strain responses was
addressed. A tied arch bridge was employed in the case study, and LR mapped the
strain responses with temperature.

[271] X LR
Regressive analysis was used to determine the experiential regressive equation
based on the correlating factors between temperature and structural response.
Moreover, the influence of temperature was separated from the response.

[272] X GA GA was employed for structural damage identification considering the effect of
varying temperatures.

[273] X MFO A damage identification method was proposed based on the MFO and SVM.

[274] X WOA A damage identification method was developed based on the WOA compensating
for the noises.

[275] X AANN
A multilayer ANN, which resembles an AANN while employing temperature
variables alongside frequencies, was studied for identifying patterns in frequencies
of undamaged structures under changing temperatures.

[276] X
Kernel PCA
(KPCA)

A data normalization method based on the KPCA method was proposed to
enhance damage detection sensitivity under changing temperatures and reduce
false warnings resulting from these alternations.

[277] X EMD
A feature extraction approach for determining the temperature influences on
structural responses was proposed where EMD and some other techniques were
employed for mode decomposition.

Table 6. Examples of data analysis techniques considering EOCs.

Ref. Technique Type Description

[278] Vibration-based Model-based
In this study, a guided wave path-synthesis accumulation technique was
presented for damage detection in complex composite structures under
time-varying conditions.

[279] Vibration-based Data-driven
This paper proposed a temperature compensation approach for Lamb wave
SHM to consider a representation of the piezo-sensor signal using its
Hilbert transform.

[280] Static-based Temperature-removed responses

A static polynomial model was developed to characterize the relationship
between determining natural frequencies and measured temperatures
aiming to “remove” the temperature effects from the determined
natural frequencies.

[281] Static-based Temperature-induced responses
In this paper, the authors developed a comprehensive long-term SHM
system to analyze a large structure’s temperature- and wind-induced
quasi-static responses.

Data analysis techniques developed for structural health monitoring under EOC of-
ten require a threshold to be set for identifying any abnormal behavior of the structure.
One challenge with these methods is the lack of a robust dynamic threshold-setting strat-
egy for differentiating between normal and abnormal behavior of the structure. This is
mainly because historical data, on which a static threshold is usually based, might not
cover the entire spectrum of EOC changes over the monitored period. Therefore, false posi-
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tives/negatives may occur in the process of structural condition monitoring. Accordingly,
future work needs to focus on techniques that rely on developing dynamic threshold-setting
strategies. As a result, by creating a dynamic threshold setting, these techniques can be
made baseline-independent.

On the other hand, most of these techniques rely upon a predictive model whose
prediction error is taken as a damage-sensitive feature. Nonetheless, real-time condition
monitoring of structures demands non-predictive-based models that do not need to be
trained a priori. These methods will facilitate online condition monitoring of targeted
systems without requiring any predictive models to be developed in advance.

5. Conclusions and Discussion

This paper comprehensively reviewed recent developments in SHM and NDT methods
considering EOC variations, including temperature, moisture, wind, and traffic loads.
Background information on SHM and NDT technology was provided, and uncertainty
challenges of EOCs for civil infrastructure assessment were discussed. To provide the reader
with an overview of the latest research on sensing technologies and data analysis algorithms
capable of EOC compensation, tables are provided summarizing research findings and
discussing advantages and disadvantages.

The significance of understanding the challenges associated with EOC variations in
developing SHM methods for monitoring complex systems, automotive, civil infrastruc-
tures, and mechanical systems is evident. Below, we summarize challenges and future
research recommendations related to the compensation of EOC variations.

- Most researchers have developed compensation techniques and strategies for tem-
perature effects. However, in actual practice, the effects of other EOC variations,
such as traffic or wind loads, are unavoidable in SHM systems. Thus, studying and
developing compensation techniques for other EOC factors is critical.

- SHM methods have not been adequately examined in practice for the effects of mois-
ture and applied loads. In order to achieve accurate monitoring, these key variations
need to be addressed.

- Baseline-free methods only employ the current recorded signals for damage identifica-
tion. These techniques apply the signal energy or amplitude to detect system damage.
However, EOC variations can affect current recorded signals’ features (e.g., ampli-
tude). Baseline-free methods can be integrated with EOC compensation techniques
and strategies to increase the efficiency of these methods.

- With the applications of AI, ML, and Deep Learning (DL) algorithms, more advanced
damage detection techniques have been proposed to tackle the effects of EOC varia-
tions on SHM and NDT methods. ML has shown promise in addressing the drawbacks
associated with current NDT methods. AI algorithms can potentially make SHM and
NDT techniques simple, time-efficient, and affordable. Nevertheless, addressing the
limitations of the input dataset is required for training and algorithm accuracy.

- Last but not least, based on our literature review, only minor work has been conducted
on the combined effects of EOC factors on SHM techniques. This research area needs
to be given special attention in future work.

The presented study will be useful to researchers working on a significant bottleneck
issue of in-service assessment of civil structures subjected to varying EOC.
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