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Abstract: The numerical modeling of structures is a widely preferable approach to investigate the
structural behavior of RC beams since it delivers inexpensive predictions for confirming the required
goals concurrently with reducing casting, testing time, and effort. Shear-strengthening of reinforced
concrete (RC) beams using externally bonded (EB) fiber-reinforced polymers (FRPs) has attracted
much attention due to the fact that the FRP strengthening technique has the ability to alter the
distribution of stresses between the structural elements and increase the load-carrying capacity. A
significant number of experimental studies have been carried out to test the monotonic behavior of
FRP shear-strengthened RC beams. Conversely, limited numerical research has been performed to
investigate such performance. The VecTor2 software is developed based on the modified compression
field theory (MCFT) and is directed to examine the monotonic behavior of retrofitted specimens
using fiber-reinforced polymer (FRP) composites. To the authors’ knowledge, the behavior of FRP
shear-strengthened beams has not been explored in the literature using the MCFT modeling approach.
The main objective of this study is to detect the software’s capability of predicting the experimental
outcomes of FRP shear-strengthened RC beams. This research study is carried out in two stages.
Initially, the numerical study involves the development of an accurate finite element model to
simulate the control specimens. The quality of this model is assessed by comparing the numerical
results with the experimental outcomes. In the second phase of the numerical study, the control beam
model is modified to accommodate the presence of external FRP composites. The accuracy of this
model is again measured by comparing its predictions with the experimental measurements. The goal
of these phases is to ensure that the numerical model captures the actual behavior of the tested beams.
Additionally, two distinctive modeling approaches are investigated to represent the behavior of FRP
composites. The accuracy of the numerical models is verified through comparisons of numerical
predictions to experimental results in terms of ultimate loading capacity, load–deflection relationships,
and failure modes. It can be stated that the validated numerical model provides alternate means
for evaluating the monotonic behavior of both strengthened and non-strengthened RC beams. The
predicted results compare very well with the test results of the control specimens when discrete truss
elements are employed for the FRP composites. Furthermore, the numerical model provides useful
information on the crack patterns and failure modes.

Keywords: finite element simulation; VecTor2 software; reinforced concrete beams; fiber-reinforced
polymers; monotonic loading; shear strengthening; load–deflection response; smeared layer element;
discrete truss element; failure mode
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1. Introduction

An extensive number of existing reinforced concrete structures are persistently ex-
posed to damage induced by the deterioration of concrete, natural environmental effects,
and corrosion of steel. This might be attributed to the continuous increase in the load
requirements compared to what they were originally designed for, the change in the struc-
ture’s function, and the necessity to meet the current design standards [1]. Repair and
strengthening would be an efficient or economical option instead of removing all these
structures and replacing them with new ones [2,3]. As a contribution to filling this demand,
significant attention has been directed toward strengthening RC structures and restoring
their capacity as a viable and cost-effective method.

Among the available potential methods of structures rehabilitation and strengthening
techniques, external strengthening by the utilization of fiber-reinforced polymer composites
has gained vast popularity and massive acceptance by practical engineers [4] for their
leading potentials, such as limiting and controlling the cracks, improving the load-carrying
capacity, increasing stiffness with an effective cost exceeding those of conventional steel [5,6].

The shear strength of RC structures is usually affected by the existence of cracks,
loading history, and the heterogeneity of the concrete [7]. Shear failure of reinforced
concrete (RC) beams is known to be brittle. This occurs without prior sufficient warnings,
which in turn results in serious damages [8]. Therefore, the need for shear strengthening is
crucial and requires appropriate attention to hinder such catastrophic failure. The shear
failure of either strengthened or un-strengthened RC beams is usually initiated through a
critical major diagonal crack that starts with a flexural crack at the beam’s soffit, followed
by crack propagation rising to the top surface of the beam [9,10]. This mode of failure
is normally undesirable compared to the flexural mode of failure because the latter is
ductile, which makes it preferable [10]. This can be accomplished by increasing the shear
strength and activating the flexural mode of failure as the controlling one, hence providing
ductile behavior [11]. FRP shear-strengthening of RC beams is significantly required where
they are deficient in shear or if their shear capacity is less than their flexural capacity [8].
Accordingly, a formidable number of experimental studies available in the literature have
been carried out on statically loaded FRP shear-strengthened beams and investigated
their feasibility. These studies have concluded and proved the applicability of improving
(repairing and upgrading) the shear strength of RC members employed by externally
affixing the FRP composites perpendicular to both the member and the expected shear
cracks’ locations.

Non-linear finite element analysis (NLFEA) computer software simulation of rein-
forced concrete (RC) structural elements has attracted immense attention during the last few
decades due to their distinguished power to follow identical patterns of very complicated
real-life behavior [12]. It showed great capability in considering the complicated elements’
geometries, loading nature, and the complexity of the material’s constitutive relationships,
which failed to be considered in the traditional design equations [13]. However, to the best
of the authors’ knowledge, bounded numerical studies have particularly addressed the
monotonic behavior of FRP shear-strengthened beams [14]. One of these numerical studies
was carried out by Chen et al. [15,16] to examine the effect of the bond–slip relationship
by utilizing various material interfaces on the behavior of the FRP shear-strengthened RC
beams. These interfaces were whether between the concrete and internal reinforcement
(longitudinal and transverse) or between the external FRP and the concrete substrate. The
numerical investigation was implemented using ABAQUS software. Initially, it has been
validated against several studies in terms of load–deflection response, failure modes, FRP
strains, and crack patterns. The validated finite element model was extended afterward to
examine the influence of various bond–slip (concrete-to-reinforcement and concrete-to-FRP)
models on the shear behavior. The finite element model showed good agreement with
the experimental results regarding the crack pattern and the failure modes. For the same
experimental set, the control specimen failed in shear tension, whereas the strengthened
specimen failed in FRP debonding. The study emphasized the importance of adopting
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appropriate models regarding the concrete/longitudinal steel, concrete/transverse steel,
and concrete/FRP interfaces due to their serious effect on the performance of FRP shear-
strengthened RC beams and the accuracy of the numerical simulation.

Arduini et al. [17] carried out experimental and numerical programs on a two-span
beam to study the performance of RC beams strengthened with FRP sheets. A perfect bond
was assumed between the FRP and the concrete. Despite that the numerical predictions of
Arduini et al. roughly overestimated the peak loads and midspan deflections in addition to
a less ductile load–deflection response, the overall numerical estimations were compatible
with the experimental measurements.

An analytical model was developed by Malek and Saadatmanesh [18,19] through the
utilization of ABAQUS software, where a perfect bond was assumed between the FRP and
the concrete. The two-dimensional model resulted in a relative overestimation in the resulted
strains of the FRP even though they were in good agreement with the experimental results.

In the numerical study of Kachlakev and McCurry [20] using ANSYS finite element
software, the specimens were shear-strengthened by externally attaching the FRP laminated
on the concrete elements assuming a perfect bond. Although the experimental and the
numerical outcomes were well-matched, the midspan deflections and the peak loads
were insignificantly overestimated. Al-Mahaidi et al. generated a finite element model
using DIANA software to examine the behavior of FRP shear-strengthened beams. The
numerical predictions revealed that the tensile strain in the FRP composites was less than
the experimental results. Moreover, the estimated load-carrying capacities were inferior to
the experimental counterparts.

A numerical study was performed by Wong et al. [21] to examine the response of FRP
shear-strengthened beams using an in-house finite element model. The bond–slip response
between the concrete and the FRP was adopted by including two distinctive bonding
relationships: (i) linear–elastic and (ii) linear–plastic. It was concluded that the numerical
predictions obtained using the latter were more reliable and accurate. A premature failure
was obtained due to the implementation of the second FRP to concrete relationship.

This research paper ultimately aims to create a valid, viable, and robust two-dimensional
finite element model that has the potential to simulate the performance of both un-
strengthened and FRP shear-strengthened (RC) beams when subjected to monotonic load-
ing using the VecTor2 software. Its modeling library includes an enormous variety of
models to represent the concrete’s strengths, post-peak behavior, failure modes, crack
patterns, deflections, etc. Furthermore, the software is characterized by its potential to
represent the member’s diverse material properties, their complicated geometries, and the
type of loading. The software has the potential to perform the analysis under different
types of loads positioned into three categories: monotonic, cyclic, and reverse cyclic load-
ings [12,13]. Eventually, once the accuracy of the developed finite element (FE) models is
confirmed, they can be utilized for achieving the following objectives:

1. Improve understanding of the VecTor2 software to model the behavior of control
specimens under monotonic loading;

2. Simulate the behavior of FRP shear-strengthened RC beams subjected to monotonic
loading using the VecTor2 software;

3. Compare the effectiveness of two methodologies to model the FRP composites for
shear strengthening to select the method that captures the actual response.

2. Modified Compression Field Theory (MCFT)

VecTor2 software is a computer program for two-dimensional non-linear finite element
analysis (NLFEA) of reinforced concrete members. The concrete model of this software was
established on the basis of MCFT. The theory was developed by Vecchio and Collins [22]
and approved by the ASSHTO and CSA design codes [23]. They have carried out an
experimental program to examine the behavior of reinforced concrete panels subjected to
biaxial stresses (combined normal and shear stresses) along with pure shear. An analytical
model for cracked concrete was proposed by considering a new material with different
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stress–strain properties. In addition, they anticipated a pattern for the load–deflection
relationship of RC elements subjected to in-plane normal and shear stresses [12,13,22].
In the MCFT theory, the cracked concrete is treated as an orthotropic material, and the
smeared rotating crack approach is implemented to achieve compatible crack patterns with
those detected in many RC members [24–26]. Additionally, the smeared rotating cracks
are automatically redirected without any restraint to be aligned with the direction of the
principal concrete compressive stress field [12,27]. Furthermore, the MCFT relies on several
major assumptions [12,28]:

1. The smeared rotating cracks are uniformly distributed;
2. The reinforcements are uniformly distributed;
3. Full contact bond between the concrete and the reinforcing steel;
4. The cumulative strain history is neglected, and each strain phase is independent of

the precedent;
5. The three sets creating the MCFT are expressed in the form of average stresses and strains;
6. At crack locations, local strains and stresses are accounted for.

The MCFT concrete model considers the features of compatibility, equilibrium, and
constitutive relationships. In addition, the model employs failure envelopes to define failure
in either tension or compression. It also adopts a mechanism to model the post-cracking
and post-crushing behavior of the concrete.

Compatibility, Equilibrium, and Constitutive Relationships

Regarding the compatibility relations, the MCFT considers the average strain of the
concrete and steel, as depicted in Figure 1.
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Figure 1. Average Concrete Strains [12,29].

The MCFT assumes a perfect bond between the concrete and the reinforcing steel. The
average strains experienced by both the concrete and the reinforcing steel are expected to
be identical. Accordingly, the compatibility equations are expressed as follows [12,28]:

εx = εcx = εsx (1)

εy = εcy = εsy (2)

where εx and εy indicate the total strain in the x and y directions, respectively; εcx and
εcy denote the average concrete strain in the x and y directions, respectively; and εsx
and εsy represent the average steel strain parallel to the x and y directions, respectively.
The free-body diagram for the average stresses in the concrete and the reinforcing steel
( fcx, fcy, fsx, fsy) is presented in Figure 2.
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The applied stresses (σx, σy) should be in balance with the applied stresses for the
concrete and reinforcing steel [12,28]. Thus, the equilibrium equations can be expressed in
the following forms:

σx = fcx + ρsx fsx (3)

σy = fcy + ρsy fsy (4)

where σx and σy are the applied stress in the x and y directions, respectively; fcx and fcy
are the average concrete stress parallel to the x and y directions, respectively; fsx and fsy
represent the reinforcement stresses in the x and y directions, respectively; and ρsx and ρsy
are the reinforcement ratios in the x and y directions, respectively.

The compatibility equations (strains) and the equilibrium conditions (stresses) are
linked to formulate the constitutive models, particularly for cracked concrete under com-
pression and tension. The principal compressive stress fc2 is related to the principal
compressive strain εc2 in terms of concrete in compression. The compression softening
phenomenon is detected through experimental tests. Whenever the compressive strength
and the stiffness decrease, the principal tensile strain increases based on the following
expression [12]:

fc2 =
f ′c[2

(
εc2
εo

)
−
(

εc2
εo

)2
]

0.8− 0.34( εc1
εo
)

(5)

where fc2 represents the concrete principal compressive strength; εc2 indicates the corre-
sponding concrete principal compressive strain; εo is the concrete cylindrical strain, which
corresponds to its peak compressive stress usually designated as f ′c; and εc1 refers to the
concrete tensile strain. It may be worth noting that the denominator in Equation (5) exempli-
fies the softening phenomenon of the principal tensile strain. As for the concrete in tension,
the principal tensile stress fc1 is correlated with the principal tensile strain εc1. The cracking
tensile strength f ′t must be initially computed as well as the cracking strain εcr as follows:

f ′t = 0.33
√

f ′c (6)

εcr =
f ′t
Ec

(7)

where the concrete initial tangent stiffness Ec is computed in accordance with the follow-
ing equation:

Ec = 5000
√

f ′c (8)
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3. Finite Element Modeling

The VecTor2 software applied the constitutive relationships of the MCFT. Thereafter, its
power has been expanded to closely resemble the cracked concrete by means of encounter-
ing second-order material models such as compression softening, tension softening, tension
stiffening, etc. [12,23,26]. The VecTor2 adequately models reinforced concrete structures as
it employs a fine mesh of low-powered elements, which fulfills the need to simulate the
crack patterns with high numerical stability [12,23,26,28]. In this section, the properties
of the computer software to simulate the behavior of concrete, reinforcing steel, and FRP
composites are provided.

3.1. Material Modeling

Concerning the constitutive laws, the VecTor2 software library contains numerous
options to represent the behavior of concrete, steel, and FRP reinforcements. Table 1 lists
the appropriate models that are selected to accurately simulate the response of the control
as well as the FRP shear-strengthened RC beams.

Table 1. Materials Models for Concrete, Reinforcing Steel, and FRP [30,31].

Material Factor Constitutive Model

Concrete

Compression Pre-Peak Hognestad (Parabola)

Compression Post-Peak Modified Park–Kent

Compression Softening Vecchio 1992-A (e1/e2-Form)

Tension Stiffening Modified Bentz 2005

Tension Softening Non-Linear (Hordjik)

Confined Strength Kupfer/Richart

Cracking Criterion Mohr–Coulomb

Steel Reinforcement Reinforcement Stress–Strain Elastic–Plastic

FRP FRP Stress–Strain Linear Elastic

3.1.1. Concrete

The ascending branch of the concrete stress–strain response (compression pre-peak) is
modeled using the Hognestad (Parabola) model. This model is adopted according to the
comparison between numerical predictions and experimental results for various pre-peak
models available in the software, as shown in Figure 3a. Hognestad (Parabola) model is
preferred because it provided better numerical predictions in terms of peak load compared
to the experimental results. The Hognestad (Parabola) model is characterized by linear
behavior until reaching approximately 70% of the concrete compressive strength. After-
ward, the stress–strain relationship converts to non-linear behavior up to failure [32–34], as
depicted in Figure 3b.

For the descending branch of the stress–strain concrete curve (compression post-peak),
the widely used “Modified Park-Kent” model was implemented based on the comparison
shown in Figure 4a between the models available in the software. In Figure 4b, f ′c and εo
refer to the concrete compressive strength and the corresponding concrete compressive
strain, respectively. Additionally, 0.2 f ′c and εc20 represent 20% of the concrete compressive
strength and the corresponding compressive strain, respectively. In the “Modified Park-
Kent” model, a gradual linear decrease in the concrete strength is observed to a value of
about 20% of its peak. Additionally, the model considers the confinement effect to enhance
the concrete ductility and strength.



Buildings 2023, 13, 898 7 of 23

Buildings 2023, 13, x FOR PEER REVIEW 7 of 24 
 

Afterward, the stress–strain relationship converts to non-linear behavior up to failure [32–

34], as depicted in Figure 3b. 

 

 

(a) (b) 

Figure 3. Concrete Compression Pre-Peak Response: (a) Comparison between Concrete Compres-

sion Pre-Peak Models Available in VecTor2; (b) Concrete Hognestad (Parabola) Pre-Peak Model 

[32,33]. 

For the descending branch of the stress–strain concrete curve (compression post-

peak), the widely used “Modified Park-Kent” model was implemented based on the com-

parison shown in Figure 4a between the models available in the software. In Figure 4b, 

𝑓′𝑐  and 휀𝑜  refer to the concrete compressive strength and the corresponding concrete 

compressive strain, respectively. Additionally, 0.2𝑓′𝑐 and 휀𝑐20 represent 20% of the con-

crete compressive strength and the corresponding compressive strain, respectively. In the 

“Modified Park-Kent” model, a gradual linear decrease in the concrete strength is ob-

served to a value of about 20% of its peak. Additionally, the model considers the confine-

ment effect to enhance the concrete ductility and strength.  

 
 

(a) (b) 

Figure 4. Concrete Compression Post-Peak Response: (a) Comparison between Concrete Compres-

sion Post-Peak Models Available in VecTor2; (b) Concrete Modified Park–Kent Pre-Peak Model 

[32,35]. 

In tension, the concrete behaves as linear elastic up to the point where cracking is 

initiated, as shown in Figure 5. The tension stiffening, which occurs beyond the ultimate 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

L
o

a
d

 (
k

N
)

Deflection (mm)

Experimental Results

Hognestad (Parabola)

Popovics (NSC)

Popovics (HSC)

Smith-Young

Lee et al. (2011)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

L
o

a
d

 (
k

N
)

Deflection (mm)

Experimental Results
Modified Park-Kent
Popovics/Mander
Hoshikuma et al.
Lee et al. (2011)
Montoya 2003

Figure 3. Concrete Compression Pre-Peak Response: (a) Comparison between Concrete Compression
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Figure 4. Concrete Compression Post-Peak Response: (a) Comparison between Concrete Compres-
sion Post-Peak Models Available in VecTor2; (b) Concrete Modified Park–Kent Pre-Peak Model [32,35].

In tension, the concrete behaves as linear elastic up to the point where cracking is initi-
ated, as shown in Figure 5. The tension stiffening, which occurs beyond the ultimate tensile
strength, is simulated by employing the Modified Bentz model [24,35–37]. The tension
stiffening is a significantly required feature to capture the load–deformation relationship.
Generally, the compressive strength, f ′c, is extracted from the experimental data.
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3.1.2. Steel Reinforcement

The steel reinforcement has identical elastic–plastic behavior in tension and compres-
sion, as depicted in Figure 6. It initiates with a linear response that terminates at the
yielding stress, followed by a yielding plateau. The strain hardening can be modeled as
linear or non-linear behavior based on the type of steel, whereas the effect of non-linear
strain hardening is excluded by the ACI guideline; hence, a linear stage has been proposed
for the strain hardening [23,39].
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3.1.3. Fiber-Reinforced Polymers

The behavior of the FRP materials is taken as a linear elastic material, where it usu-
ally behaves elastically linear until the rupture point with the absence of any yielding
stage [14,23,39,42–45], as shown in Figure 7.
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3.2. Structural Modeling (Concrete and Reinforcement Elements)

The VecTor2 software provides three element types, which are constant strain triangle
elements (CST), plane stress rectangle elements, and quadrilateral elements. In this study,
the concrete elements are modeled using four-node plane stress rectangular elements
with eight degrees of freedom (two degrees of freedom per node). The structural steel
plates, which are placed on the locations of the applied loads and the support points,
are modeled likewise. For the steel reinforcements, whether longitudinal or transverse,
two-node discrete truss elements of two degrees of freedom at each node are adopted. The
steel reinforcement is assumed to be perfectly bonded to the concrete elements, as this has
been proven to be reliable and workable in many studies [46].

The VecTor2 software provides two possible options to model the FRP composites:
(1) discrete truss elements and (2) smeared layer elements [47]. The latter method focuses on
simulating the FRP composites as continuous FRP sheets with fibers aligned vertically (90◦
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from the x-axis). The former method functions by converting the FRP into equivalent truss
elements with a specific diameter and cross-sectional area. Considerable numerical models
investigated the modeling of FRP composites using one of the previous methods, whereas
few investigations verified both methods simultaneously [23,28,45]. To the best of the
authors’ knowledge, there is no published numerical study investigating the two methods
to model the FRP composites for shear strengthening response of RC beams using the
VecTor2 software. In this study, both methods of simulating the FRP composites are carried
out; hence, each FRP shear-strengthened specimen is modeled twice: once with a smeared
layer element and once with a discrete truss element. This is followed by comparing the two
modeling methods to eventually recommend the best one that can be utilized to accurately
model the FRP composites.

Regarding the concrete-to-FRP bond, debonding of FRP composites from the concrete
substrates is usually of vital importance and major concern. The actual bond behavior
between the FRP composites and the concrete should be taken into account to attain an
inclusive and thorough finite element model. However, no debonding failure was observed
in the tested beams considered for the current finite element model verification. Therefore,
a perfect bond between the FRP composites and the concrete is assumed.

3.3. Sensitivity Analysis

To study the effect of the meshing size on the accuracy of the developed FE models,
different mesh sizes are attempted to specify the sufficient mesh size. It should be men-
tioned that a mesh sensitivity analysis is carried out for each control specimen to specify
the appropriate mesh size. For instance, a square mesh size of 25 × 25 mm for Murthy
et al. [48] showed load–deflection behavior similar to the experimental one, as illustrated
in Figure 8. Furthermore, the maximum loading capacity of this mesh size is comparable to
the experimental one.

Buildings 2023, 13, x FOR PEER REVIEW 10 of 24 
 

Figure 8. Furthermore, the maximum loading capacity of this mesh size is comparable to 

the experimental one.  

 

Figure 8. Sample of Mesh Sensitivity Analysis (Murthy et al. [47]). 

3.4. Modelled Test Specimens 

In this study, a total number of eleven tested specimens from the available literature 

are extracted, modeled, and addressed. A full description of the adopted specimens re-

garding their geometry, designation, and loading conditions is provided in Table 2, 

whereas Tables 3 and 4 illustrate their material properties.  

Table 2. Specimens Geometrical Characteristics. 

Number Specimen 
Beam Dimensions (mm) 

𝒂/𝒅 6 Cross-Section Beam Status 
𝑳 1 𝒃𝒘 2 𝒃𝒇 3 𝒉𝒘 4 𝒉𝒇 5 

1 [31] CBA 1200 100 - 200 - 2.00 R-Beam Control 

2 [31] C 1500 150 - 200 - 2.50 R-Beam Control 

3 [34,35] N-1 1220 152.4 - 152.4 - 2.67 R-Beam Control 

4 [34] FB30-1 

1500 150 - 300 - 1.67 R-Beam 

Control 

5 [34] FB30-2 
Strengthened 

6 [34] FB30-3 

7 [37,38] CON-S0 

3110 152 508 304 102 3.00 T-Beam 

Control 8 [37,38] CON-S1 

9 [37,38] CON-S3 

10 [39–41] S1-0.33R 
Strengthened 

11 [39–41] S3-EB 
1 Span length; 2 web width; 3 flange width; 4 web height; 5 flange height; 6 shear span-to-depth ratio. 

Table 3. Specimens Material Properties. 

Number Specimen 
𝒇′𝒄 1 

(MPa) 

Longitudinal Steel 
Transverse Steel 

Top Bottom 

Dia. 2 

(mm) 

Yield Stress 

(MPa) 

Dia. 

(mm) 

Yield 

Stress 

(MPa) 

Dia. (mm) at 

Spacing (mm) 

Yield 

Stress 

(MPa) 

1 [31] CBA 35 2 ∅ 8 300 2 ∅ 10 590 ∅ 6 @ 100 240 

2 [31] C 35 2 ∅ 8 300 3 ∅ 12 420 ∅ 8 @ 120 300 

3 [34,35] N-1 39.3 2 ∅ 13 427 2 ∅ 13 427 ∅ 10 @ 50 320 

4 [34] FB30-1 
25 2 ∅ 8 330 2 ∅ 14 410 ∅ 6 @ 150 240 

5 [34] FB30-2 

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

L
o
a
d

 (
k

N
)

Deflection (mm)

Experimental Results
Mesh Size 10x10 mm
Mesh Size 15x15 mm
Mesh Size 20x20 mm
Mesh Size 25x25 mm
Mesh Size 30x30 mm

Figure 8. Sample of Mesh Sensitivity Analysis (Murthy et al. [48]).

3.4. Modelled Test Specimens

In this study, a total number of eleven tested specimens from the available literature
are extracted, modeled, and addressed. A full description of the adopted specimens
regarding their geometry, designation, and loading conditions is provided in Table 2,
whereas Tables 3 and 4 illustrate their material properties.

The first set of numerically simulated specimens was experimentally tested by Murthy
et al. [48]. The control specimen of this study labeled as “CBA” had 35 MPa concrete
compressive strength and rectangular cross-section (200 × 100 mm), as illustrated in
Figure 9. The beam was tested under four-point bending spanned over 1200 mm. For the
longitudinal reinforcement, two bars of 10 mm and another two of 8 mm were placed at
the bottom and top of the beams, respectively.
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Table 2. Specimens Geometrical Characteristics.

Number Specimen
Beam Dimensions (mm)

a/d 6 Cross-Section Beam Status
L 1 bw

2 bf
3 hw

4 hf
5

1 [48] CBA 1200 100 - 200 - 2.00 R-Beam Control

2 [49] C 1500 150 - 200 - 2.50 R-Beam Control

3 [50,51] N-1 1220 152.4 - 152.4 - 2.67 R-Beam Control

4 [7] FB30-1

1500 150 - 300 - 1.67 R-Beam

Control

5 [7] FB30-2 Strengthened
6 [7] FB30-3

7 [52,53] CON-S0

3110 152 508 304 102 3.00 T-Beam

Control8 [52,53] CON-S1

9 [52,53] CON-S3

10 [2,54–56] S1-0.33R
Strengthened

11 [2,54–56] S3-EB
1 Span length; 2 web width; 3 flange width; 4 web height; 5 flange height; 6 shear span-to-depth ratio.

Table 3. Specimens Material Properties.

Number Specimen f ′c
1

(MPa)

Longitudinal Steel
Transverse Steel

Top Bottom

Dia. 2

(mm)
Yield Stress

(MPa) Dia. (mm) Yield Stress
(MPa)

Dia. (mm) at
Spacing (mm)

Yield Stress
(MPa)

1 [48] CBA 35 2 ∅ 8 300 2 ∅ 10 590 ∅ 6 @ 100 240

2 [49] C 35 2 ∅ 8 300 3 ∅ 12 420 ∅ 8 @ 120 300

3 [50,51] N-1 39.3 2 ∅ 13 427 2 ∅ 13 427 ∅ 10 @ 50 320

4 [7] FB30-1

25 2 ∅ 8 330 2 ∅ 14 410 ∅ 6 @ 150 2405 [7] FB30-2

6 [7] FB30-3

7 [52,53] CON-S0

31 6 ∅ 10 480 2 ∅ 25 500

None -

8 [52,53] CON-S1 ∅ 8 @ 175 540

9 [52,53] CON-S3 ∅ 8 @ 260 540

10 [2,54–56] S1-0.33R ∅ 8 @ 175 540

11 [2,54–56] S3-EB ∅ 8 @ 260 540

1 Concrete compressive strength; 2 bar diameter.

Table 4. Mechanical Properties of FRP Materials.

Number Specimen FRP
Type

tf
1

(mm)
wf

2 (mm) at
Spacing

Ultimate
Strength (MPa)

E 3

(GPa)
Ultimate

Strain (%)

5 [7] FB30-2 CFRP Strips 0.11 50 @ 50 4103 242 1.7

6 [7] FB30-3 GFRP Strips 0.27 50 @ 50 3400 73 2.7

10 [2,54–56] S1-0.33R CFRP Sheet 0.11 - 3450 230 1.33

11 [2,54–56] S3-EB CFRP Sheet 0.11 - 3450 230 1.33
1 FRP thickness; 2 FRP strip width; 3 FRP modulus of elasticity.
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Another set of experimental programs that were tested under four-point bending by
Banjara and Ramanjaneyulu [49] is investigated in this study. The control beam designated
as “C” is modeled. The concrete compressive strength of the specimen was 35 MPa, and
it was made of a rectangular cross-section (200 × 150 mm), as shown in Figure 10. The
flexural reinforcement of the specimen is composed of three steel bars of 12 mm in the
beam’s tension zone and two 8 mm bars in the compression zone. Transverse steel of 8 mm
was spaced at intervals of 120 mm.
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As a means of further exploration of the monotonic behavior of RC beams, the con-
trol specimen labeled as “N-1” of the experimental study carried out by Papakonstanti-
nou [50,51] is considered. The RC beam had a concrete compressive strength of 40 MPa
and a rectangular cross-section of 152.4 × 152.4 mm in a span length of 1220 mm and was
tested under monotonic loading, as shown in Figure 11. The beam was reinforced with
two bars of 13 mm located at both the compression and tensile zones. The internal steel
stirrups were 10 mm in diameter and spaced at 50 mm intervals.
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Figure 11. Detailed Geometry of Papakonstantinou et al. Specimens (N-1) [50,51].

An extra set of experimentally investigated specimens by Dong et al. [7] and having
a concrete compressive strength of 25 MPa are considered in the current study. These
specimens had a rectangular cross-section (300× 150 mm) over an effective span of 1500 mm
and were tested under four-point bending, as depicted in Figure 12. Furthermore, these
beams were reinforced with two bars of 8 mm in the compression zone and two bars of
14 mm in the tension zone. Steel stirrups of 6 mm were placed at every 100 mm interval.
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Additionally, a control specimen labeled as “FB30-1” and two FRP shear-strengthened
specimens labeled as “FB30-2” and “FB30-3” are numerically simulated in this study. The
shear strengthening was externally applied in a U-wrap arrangement as FRP sheet strips
for “FB30-2” and “FB30-3” specimens, respectively, as provided in Figure 13.
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To further evaluate the reliability of the non-linear FE models, an additional set of
experimental tests conducted by Chaallal et al. [52–56] is considered. The experimental
programs consisted of three groups of specimens with three control ones. All the beams
typically comprised a T-cross-section (508 × 102 mm for the flange and 304 × 152 mm for
the web) with an effective span length of 3110 mm, as presented in Figure 14. The unique
aspect that distinguishes these three control specimens is the existence of steel stirrups,
where the “CON-S0” specimen was free of steel stirrups, while the other two specimens
contained steel stirrups spaced at 175 mm and 260 mm and were labeled as “CONS-S1”
and “CON-S3”, respectively. The longitudinal steel reinforcement at the bottom of the
beam was of four bars of 25 mm located in two layers. However, six bars of 10 mm were
positioned at the top of the cross-section. The three control specimens are numerically
analyzed in this research paper. The research study of Chaallal et al. involved two FRP
shear-strengthened with continuous sheets along the shear span designated as “S1-0.33R”
and “S3-EB” [2,54–56], as shown in Figure 15. The two specimens were tested under
monotonic loading. Note that all mentioned parameters of Table 2 are shown in Figure 16.
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Various numerical models are generated under monotonic loading and validated
against the experimental results to evaluate their reliability in predicting the monotonic
behavior of both control and FRP shear-strengthened specimens. Figure 17 demonstrates a
typical beam model of the present study.
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4. Results and Discussions

The results presented in the subsequent sections are in terms of ultimate load carrying
capacity “Pult,exp” and the corresponding deflection “δult,exp” in addition to the load at fail-
ure “Pf ,exp” and the corresponding deflection at failure “δ f ,exp”. The numerical predictions
are compared to experimental results for the different simulated specimens. Note that the
ultimate load-carrying capacity corresponds to the peak loading value.
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4.1. Validation of Control Specimens

The fundamental stage of the present study is to verify the accuracy of the proposed
non-linear finite element models against a series of control specimens that were experimen-
tally tested under monotonic loading and published in the literature.

4.1.1. Load–Deflection Response

The load–deflection relationships for seven control specimens are presented in Figure 18.
The load–deflection response in Figure 18a,b compares the numerical and the experimental
load–deflection response for beams CBA and FB30-1, respectively. Initially, the behavior of
both specimens was linearly elastic, up to a load of approximately 20 kN for the FB30-1
specimen and 25 kN for the CBA specimen. Subsequently, the beams behave non-linearly
until reaching a maximum load of 100 kN and 68 kN for FB30-1 and CBA specimens,
respectively. This is followed by a yielding stage as an indication of flexural behavior for
both specimens.

The load–deflection curves of the test specimens (C) and (N-1) are illustrated in
Figure 18c,d, respectively. It can be stated that the actual response was satisfactorily cap-
tured by the developed finite element models. The comparison between the experimentally
and numerically obtained results confirmed the reliability of the proposed finite element
models in predicting the experimental outcomes. Although the specimens demonstrated a
slight initial stiffness deviation, overestimation, or underestimation of the loading capacity
and the deflection, they offered a good overall response such that both the experimental
and the numerical patterns exhibited ductile behavior under monotonic loading. This has
been observed through the acceptable degree of matching between the experimental and
the numerical peak loads together with the corresponding deflections, the yielding loads,
maximum deflections, and pre and post-cracking stiffness.

Figure 18e–g represent the load–deflection relationships of specimens that belong to
three different categories. These categories differ in the arrangement of the transverse steel.
S0 indicates non-transverse steel along the shear span specimen, S1 implies a specimen with
steel stirrups at 175 mm intervals, whereas S3 means that the specimen owns steel stirrups
spaced at every 260 mm. As can be depicted, the initial stiffness is accurately predicted
by the finite element models for both specimens CON-S0 and CON-S1, while there is a
slight overestimation for the CON-S3 specimen. This can be attributed to the fact that the
numerical analysis usually considers the ideal status of the concrete material, which is
perfect with no signs of damage or cracks. In reality, the concrete material is imperfect due
to the presence of hairy cracks.

Table 5 summarizes the specimens’ experimental and numerical ultimate and failure
load-carrying capacities as well as their corresponding ultimate and failure deflection, re-
spectively. Moreover, the mean numerical-to-experimental ultimate load carrying capacity
is 3.15% with a standard deviation of 3.10, whereas the mean numerical-to-experimental
ultimate load carrying capacity is 5.28% with a standard deviation of 5.10 for the failure load.

Table 5. Comparison between Numerical and Experimental Results of Control Specimens.

Number Specimen
Experimental Results Numerical Results Difference (%) 1

Pult
(kN)

δult
(mm)

Pf
(kN)

δf
(mm)

Pult
(kN)

δult
(mm)

Pf
(kN)

δf
(mm)

Pult
(%) δult(%) Pf(%) δf(%)

1 CBA [48] 77.95 14.23 71.04 26.34 78.17 6.86 75.38 13.29 0.28 0.53 6.11 49.54

2 C [49] 105.32 17.09 88.01 32.66 98.39 15.40 81.15 31.86 6.58 9.90 7.79 2.45

3 N-1 [50,51] 75.14 15.02 75.14 15.02 77.19 17.86 77.19 17.86 2.73 18.91 2.73 18.91

4 FB30-1 [7] 106.48 16.80 109.49 11.50 99.08 15.20 109.67 8.87 6.95 9.52 0.16 22.87

7 CON-S0 [52,53] 123.48 2.64 107.72 3.38 123.61 2.91 123.61 2.91 0.11 10.23 14.75 13.91

8 CON-S1 [52,53] 349.68 11.82 349.68 11.82 331.18 9.65 331.18 9.65 5.29 18.36 5.29 18.36
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Table 5. Cont.

Number Specimen
Experimental Results Numerical Results Difference (%) 1

Pult
(kN)

δult
(mm)

Pf
(kN)

δf
(mm)

Pult
(kN)

δult
(mm)

Pf
(kN)

δf
(mm)

Pult
(%) δult(%) Pf(%) δf(%)

9 CON-S3 [52,53] 283.38 11.31 283.38 11.31 283.04 10.63 283.04 10.63 0.12 6.01 0.12 6.01

Mean 3.15 10.49 5.28 18.86

Standard Deviation 3.10 6.50 5.10 15.37

1 Calculated as [(Numerical-Experimental)/(Experimental)] × 100.
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Figure 18. Load–Deflection Response: (a) Specimen (CBA); (b) Specimen (C); (c) Specimen (N-1);
(d) Specimen (FB30-1); (e) Specimen (CON-S0); (f) Specimen (CON-S1); (g) Specimen (CON-S3).
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4.1.2. Failure Mode and Crack Pattern

All three specimens tested by Chaallal et al. (CON-S0, SON-S1, CON-S3) failed due to
the shear mode of failure [53,56] in the form of diagonal shear crack, which is confirmed
by the numerical model. Figure 19 represents a typical failure mode obtained from the
numerical model.
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Figure 20a represents the experimental failure mode along with the crack width and
the crack spacing of specimen CBA. This specimen experienced flexure failure mode, which
was successfully detected by the numerical model. Figure 20b–e clarify the software’s
capability to capture the stages of failure for a such specimen that begins with the crack
initiation followed by propagation at different stages of failure.

Figure 21 illustrates the crack spacing (mm) of the same specimen at complete failure.

4.2. Validation of FRP Shear-Strengthened Specimens

The current numerical study involves the modification of some of the specimens pre-
viously modeled to accommodate the addition of FRP composites for shear-strengthening.
The predictions of the finite element model are compared to the test results to validate
the model’s accuracy. The FRP composites are simulated using two modeling approaches:
smeared layer element and discrete truss element. Figure 22a–f illustrate the experimental
and numerical load–deflection curves of the FRP shear-strengthened specimens.

4.2.1. Load–Deflection Response

Comparison between the numerical prediction and experimental results of specimens
S1-0.33R and S3-EB reveals that both modeling approaches for FRP composites confirmed a
good agreement with the experimental curves. However, the numerical results overestimate
the load-carrying capacity of the FRP shear-strengthened specimens. In addition, the initial
stiffness is slightly overestimated, as observed in Figure 22a,c. The degree of convergence
between the experimentally recorded results and those obtained numerically is larger when
adopting the discrete truss elements for FRP composites. This type of element provides
approximately identical initial stiffness to the experimental behavior, as illustrated in
Figure 22b,d. Using the smeared layer approach, the ultimate load-carrying capacity and
the failure deflection are accurately predicted for the FB30-2 and FB30-3 specimens, as
shown in Figure 22e–f.

Table 6 compares the smeared layer and discrete truss approaches in terms of ultimate
strength and maximum deflection. The table indicates that the numerical models are
affected by the simulation method of the FRP composites. Implementing the discrete truss
element method to simulate the FRP composites showed accurate numerical predictions
of FRP shear-strengthened beams under monotonic loading compared to the smeared
layer method. The table indicates that the mean numerical-to-experimental ultimate load
carrying capacity is 2.32% with a standard deviation of 3.10 when using smeared layer
element, whereas the mean numerical-to-experimental ultimate load carrying capacity is
1.89% with a standard deviation of 1.24 for the discrete layer element. The importance of
ductility in the structures has been investigated by many researchers. It is well documented
in numerous publications that FRP shear-strengthened specimens fail at low ductility,
which is called brittle failure [57,58].
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Figure 20. Crack Width (mm) and Failure Mode of Specimen (CBA): (a) Experimental failure
mode [48]; (b) Cracking at 26% of the Ultimate Load; (c) Cracking at 65% of the Ultimate Load;
(d) Cracking at 90% of the Ultimate Load; (e) Cracking at 100% of the Ultimate Load.
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Figure 21. Crack Information of Specimen (CBA): (a) Crack Width and (b) Crack Spacing.
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Figure 22. Load–Deflection Response: (a) S1-0.33R (FRP as Smeared Layer Element); (b) S1-0.33R
(FRP as Discrete Truss Element); (c) S3-EB (FRP as Smeared Layer Element); (d) S3-EB (FRP as
Discrete Truss Element); (e) FB30-2 (FRP as Smeared Layer Element); (f) FB30-2 (FRP as Discrete Truss
Element); (g) FB30-3 (FRP as Smeared Layer Element); (h) FB30-3 (FRP as Discrete Truss Element).

Table 6. Comparison between Smeared Layer and Discrete Truss Elements to Model FRP Composites.

No. Specimen

Experimental
Results

Numerical Results Difference (%)

SL 1 DT 2 SL DT

Pult
(kN)

δult
(mm)

Pult
(kN)

δult
(mm)

Pult
(kN)

δult
(mm)

Pult
(kN)

δult
(mm)

Pult
(kN)

δult
(mm)

5 FB30-2 [7] 114.37 7.68 114.88 8.17 114.88 8.17 0.45 6.38 0.45 6.38

6 FB30-3 [7] 107.37 3.17 108.52 3.57 108.52 3.57 1.07 12.62 1.07 12.62

10 S1-0.33R [2,54–56] 376.63 16.53 403.62 11.29 367.74 12.16 7.17 31.70 2.36 26.44

11 S3-EB [2,54–56] 382.54 16.78 380.32 11.96 368.48 13.74 0.58 28.72 3.68 18.12

Mean 2.32 19.86 1.89 15.89

Standard Deviation 2.81 10.64 1.24 7.37
1 Smeared layer element; 2 discrete truss element.

4.2.2. Failure Mode and Crack Pattern

To fully account for the damage mechanism when FRP composites are considered, the
failure modes have to be announced, discussed, and investigated. In this regard, the S3-EB
specimen [53] failed due to the crushing of the concrete mode of failure, which is identical
to the numerical failure mode. Figure 23 shows the crack pattern as obtained numerically.
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The failure mode of the FB30-2 specimen that was tested by Dong et al. [7] is a flexural
failure mode, which is comparable to the numerical one. Figure 24 illustrates the numerical
crack pattern at failure, which confirms the efficiency of the non-linear finite element
models.
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5. Conclusions

Finite element models were developed using the VecTor2 software to address the
behavior of FRP shear-strengthened beams. Appropriate non-linear constitutive models, as
well as structural elements, were adopted to represent the behavior of concrete, reinforcing
steel, loading plates, and FRP composites. The latter was simulated using two different
modeling approaches: discrete truss and smeared layer elements. The best modeling
approach for the FRP composites was selected on the basis of the accuracy of the numerical
predictions compared to the experimental results. In this study, a total of seven control
RC beams and four FRP shear-strengthened RC beams were analyzed to investigate the
validity of the numerical model. The numerical predictions were compared with published
experimental data in terms of ultimate loading capacities, load–deflection relations, crack
patterns, and failure modes. Based on the results obtained, the following conclusions can
be obtained:

• The numerical model results showed very good correlations when compared to ex-
perimental ones in terms of the ultimate carrying capacities and load–deflection
relationships. This indicates that the VecTor2 finite element model software, which
is developed based on the MCFT, is a successful candidate for simulating RC beams
when loaded monotonically;

• The numerical models can notably provide an accurate simulation of the structural
performance at the pre-peak behavior, post-peak behavior, failure mode, crack patterns,
and maximum deflections;

• The two options for modeling the FRP composites indicate that both modeling options
are effective for representing the behavior of FRP composites since, somehow, similar
results were obtained;

• The concluded results reveal that the numerical models can successfully detect the
crack propagation until failure;
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• For FRP shear-strengthened beams, the predicted results showed that both methods
adopted to simulate the FRP composites (discrete truss elements and Smeared layer
element) compare very well to the experimental results.

This investigation studied the modeling of FRP shear-strengthened RC beams when
implementing the MCFT. The developed numerical model in this study represents an
initial step towards a reliable, valid, and robust model to simulate the performance of FRP
shear-strengthened beams. Additional finite element models for another experimental test
should be carried out with consideration of the FRP/concrete interfacial behavior.
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