Physical, Mechanical and Transfer Properties at the Steel-Concrete Interface: A Review
Abstract
:1. Introduction
2. Methodology
3. Physical Characteristics at the Steel-Concrete Interface
3.1. Concrete Porosity at the SCI
3.2. Cracks at the SCI
3.3. Binder Effect at the SCI
4. The Effect of Mechanical Stresses on the SCI
4.1. Mechanical Loading Test Setup
4.2. Mechanism Analysis of Interface Bond in a Pull-Out Setup
4.2.1. Geometry and Diameter of Reinforcing Steel Bar
4.2.2. Strength Grade of Concrete
4.2.3. Anchorage Length
4.2.4. Binder Type
4.3. Mechanical Stresses of Push-In Test for Ribbed Steel
4.4. Mechanical Behavior and Displacement for Tie Beam Test
5. The Permeability at the SCI
5.1. Permeability Test Setup Systems
5.2. The Influence of Localized Crack on Concrete Permeability without Reinforcement
5.3. The Influence of Reinforcement on Reinforced Concrete Permeability
5.4. The Influence of Degree of Saturation on Reinforced Concrete Permeability
5.5. The Influence of the Concrete Mixture Design on Its Permeability
- Cement paste
- Nominal aggregate size
- Air content (non-air-entrained/air-entrained)
- Water–cement (W/C) ratio
- Degree of saturation
- Concrete matrix strength
5.6. The Influence of Mechanical Loading on Permeability of Reinforced Concrete
5.6.1. Mechanical and Transfer Behavior Due to Shear Stresses at SCI
5.6.2. The Hydro-Mechanical Behavior of Tie Beam Test
- For the individual specimen in each case, the number of macro-cracks developed varies.
- Localized cracking was first initiated by forces between 22 and 28 kN related to the specimen. Upon the development of the first localized crack, a rapid increase in water permeability is detected.
- (1)
- Phase 1: From 0 to 15 kN, the mechanical behavior of the tie specimen is linear elastic. At this stage, the water permeability is nearly constant at 2 × 10–10 m/s with slight decrease due to closure of pre-initiated micro-cracks or diminution of pore size.
- (2)
- Phase 2: From 15 to around 27 kN, micro-cracks develop and appear, so there is a slight increase in water permeability by a factor of about 2 (4 × 10–10 m/s).
- (3)
- Phase 3: From around 27 ( to 45 kN, there is a first crack localization at around 27 kN (. At this stage, there is a sudden and considerable rise in water permeability reaching around 4 × 10−17 m/s. For higher rebar displacement, additional localized cracks (one or two) are also formed. In this case, the localized cracks are considered as privileged pathways for water transfer.
- (4)
- Phase 4: For higher than 45 kN, with the development of macro-cracks, the permeability increases in a regular manner. The rate of increase is low because Poiseuille’s regime [79,86,87,88,89] has been denoted in the localization of the first crack, and the other openings of the cracks are balanced by the partially closed former cracks [59]. Finally, the water permeability reaches 10−5 m/s.
6. Use of Models in Understanding the Bond Behavior at the SCI
7. Knowledge Gaps and Future Research
8. Conclusions
- The microstructure of concrete at the SCI is affected by several factors, including the size of the aggregate, the distance of aggregate particles from the steel bar, the water-cement ratio, the compaction method, the properties of reinforcing steel, and the placement of steel horizontally within the structure. These factors will affect the segregation, flow, hydration, and drying shrinkage of concrete, thus affecting the presence of voids and cracks within this interface.
- The mechanical behavior can be established from the different phases: chemical adhesion, mechanical interlocking, and friction resistance. It is also influenced by the diameter and geometry of the steel rebar (e.g., ribbed or smooth rebar) and the concrete grade. In pull-out testing, the presence of ribs in the reinforcing bar yields higher bond strength compared to plain or smooth steel, which is mainly due to the mechanical interlocking.
- The binder type may have a critical influence in affecting the concrete component of the SCI due to variations in the cement grains’ packing, reactivity, and hydration products created. Aluminosilicate minerals such as metakaolin, fly ash, slag, red mud, and steel slag with adequate cement replacement ratios, the microfibers network structure, and excellent hydration ability geopolymer concrete offered various advantages including improved bond behavior over conventional concrete.
- The gas permeability under push-in loading is affected based on three phases. In the first phase, shear stresses are developed at the steel-concrete interface, leading to a slight increase in permeability. However, in the second phase which occurs at around 0.3 of the peak stress, the permeability is reduced due to compression where the void sizes are decreased. Then, in the third stage, the permeability showed a significant increase with the increase in displacement.
- The presence of fibers in reinforced concrete leads to a higher resistance to cracking. For steel-reinforced specimens, the increase in permeability was influenced by the increase in the reinforcement stress at the interface where cracks developed.
- Machine learning (ML), a data-driven technique, offers a cost-effective and efficient solution to properly estimate and predict the ultimate bond strength at the steel-concrete interface. Ultimately, it is obligatory for the engineer to comprehend the capabilities, efficiency, and limitations of any method of analysis for accurately analyzing and characterizing the physical, mechanical, and transfer behavior at the steel-concrete interface.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Z.; Shah, Y.I.; Yao, P. Experimental and Numerical Study on Interface Bond Strength and Anchorage Performance of Steel Bars within Prefabricated Concrete. Materials 2021, 14, 3713. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.P.; Morsch, I.B.; Brisotto, D.d.S.; Bittencourt, E.; Carvalho, E.P. Steel-Concrete Bond Behaviour: An Experimental and Numerical Study. Constr. Build. Mater. 2021, 271, 121918. [Google Scholar] [CrossRef]
- Jing, L.; Yin, S.; Duan, K. Analysis of the Interface Bond Property between the Concrete and Steel Bar under Textile Reinforced Concrete Confinement. Constr. Build. Mater. 2019, 224, 447–454. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, S.; Sun, S. Determination of the Corrosion Rate of Steel Bars in Concrete Based on the Porosity of Interfacial Zone. Front. Mater. 2020, 7, 573193. [Google Scholar] [CrossRef]
- Rossat, D.; Bouhjiti, D.E.-M.; Baroth, J.; Briffaut, M.; Dufour, F.; Monteil, A.; Masson, B.; Michel-Ponnelle, S. A Bayesian Strategy for Forecasting the Leakage Rate of Concrete Containment Buildings—Application to Nuclear Containment Buildings. Nucl. Eng. Des. 2021, 378, 111184. [Google Scholar] [CrossRef]
- Jiménez, S.; Cornejo, A.; Barbu, L.G.; Oller, S.; Barbat, A.H. Analysis of the Mock-up of a Reactor Containment Building: Comparison with Experimental Results. Nucl. Eng. Des. 2020, 359, 110454. [Google Scholar] [CrossRef]
- Makhloof, D.A.; Ibrahim, A.R. Identification and Assessment of Seismic Damage for RC Containment Structures Considering Prestressing Effect. Eng. Fail. Anal. 2022, 141, 106645. [Google Scholar] [CrossRef]
- Mazars, J.; Labbé, P.; Masson, B. Behaviour and assessment of massive structures: An overview of the french research programs CEOS. fr and VeRCoRs. Proceeding of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures 2016, Berkeley, CA, USA, 28 May–1 June 2016. [Google Scholar]
- Mathieu, J.-P.; Charpin, L.; Sémété, P.; Toulemonde, C.; Boulant, G.; Haelewyn, J.; Hamon, F.; Michel-Ponnelle, S.; Hénault, J.-M.; Taillade, F. Temperature and humidity-driven ageing of the VeRCoRs mock-up. In Computational Modelling of Concrete Structures; Euro-C, Austria; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Niepceron, J.; Corbin, M.; Masson, B. Appraisal of the VERCORS 2018 benchmark. In Proceedings of the Transactions 2019, SMiRT-25, Charlotte, NC, USA, 4–9 August 2019. [Google Scholar]
- Cai, Y.; Zhang, W.; Yang, C.; François, R.; Yu, L.; Chen, M.; Chen, H.; Yang, H. Evaluating the Chloride Permeability of Steel–Concrete Interface Based on Concretes of Different Stability. Struct. Concr. 2020, 22, 2636–2649. [Google Scholar] [CrossRef]
- Kurihara, R.; Ito, Y.; Cai, Q.; Chijiwa, N. The Influence of Interlock Loss between Rebar and Concrete on Bond Performance of RC Member. Appl. Sci. 2022, 12, 1079. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Sener, S.; Kim, J.K. Effect of cracking on drying permeability and diffusivity of concrete. ACI Mater. J. 1987, 84, 351–357. [Google Scholar]
- Sicard, V.; Francois, R.; Ringot, E.; Pons, G. Influence of Creep and Shrinkage on Cracking in High Strength Concrete. Cem. Concr. Res. 1992, 22, 159–168. [Google Scholar] [CrossRef]
- Benboudjema, F. Modélisation des Déformations Différées du Béton Sous Sollicitations Biaxiales. Application aux Enceintes de Confinement de Bâtiments Réacteurs des Centrales Nucléaires. Ph.D. Thesis, Université de Marne la Vallée, Paris, France, 2002. [Google Scholar]
- Bisschop, J.; van Mier, J.G.M. Effect of Aggregates on Drying Shrinkage Microcracking in Cement-Based Composites. Mater. Struct. 2002, 35, 453–461. [Google Scholar] [CrossRef]
- Burlion, N.; Bourgeois, F.; Shao, J.-F. Effects of Desiccation on Mechanical Behaviour of Concrete. Cem. Concr. Compos. 2005, 27, 367–379. [Google Scholar] [CrossRef]
- Wu, Z.; Wong, H.S.; Buenfeld, N.R. Influence of Drying-Induced Microcracking and Related Size Effects on Mass Transport Properties of Concrete. Cem. Concr. Res. 2015, 68, 35–48. [Google Scholar] [CrossRef][Green Version]
- Pons, G.; Torrenti, J.M.; Ollivier, J.P.; Vichot, A. (Eds.) Retrait et Fluage La Durabilité des Bétons; Presses de l’Ecole nationale des Ponts et chaussées: Paris, France, 2008. [Google Scholar]
- Charpin, L.; Niepceron, J.; Corbin, M.; Masson, B.; Mathieu, J.-P.; Haelewyn, J.; Hamon, F.; Åhs, M.; Aparicio, S.; Asali, M.; et al. Ageing and Air Leakage Assessment of a Nuclear Reactor Containment Mock-Up: VERCORS 2nd Benchmark. Nucl. Eng. Des. 2021, 377, 111136. [Google Scholar] [CrossRef]
- Sogbossi, H.; Verdier, J.; Multon, S. Impact of Reinforcement-Concrete Interfaces and Cracking on Gas Transfer in Concrete. Constr. Build. Mater. 2017, 157, 521–533. [Google Scholar] [CrossRef][Green Version]
- Hoseini, M.; Bindiganavile, V.; Banthia, N. The Effect of Mechanical Stress on Permeability of Concrete: A Review. Cem. Concr. Compos. 2009, 31, 213–220. [Google Scholar] [CrossRef]
- Angst, U.M.; Geiker, M.R.; Michel, A.; Gehlen, C.; Wong, H.; Isgor, O.B.; Elsener, B.; Hansson, C.M.; François, R.; Hornbostel, K.; et al. The Steel–Concrete Interface. Mater. Struct. 2017, 50, 143. [Google Scholar] [CrossRef][Green Version]
- De Schutter, G.; Audenaert, K. (Eds.) Report 38: Durability of Self-Compacting Concrete-State-of-the-Art Report of RILEM Technical Committee 205-DSC; RILEM Publications: Chicago, IL, USA, 2007; Volume 38. [Google Scholar]
- Scrivener, K.L.; Crumbie, A.K.; Laugesen, P. The Interfacial Transition Zone (ITZ) between Cement Paste and Aggregate in Concrete. Interface Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
- Hilsdorf, H.; Kropp, J. Performance Criteria for Concrete Durability; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Powers, T.C. Structure and Physical Properties of Hardened Portland Cement Paste. J. Am. Ceram. Soc. 1958, 41, 1–6. [Google Scholar] [CrossRef]
- Ismail, M. Étude des Transferts et de Leurs Interactions avec la Cicatrisation dans les Fissures pour Prolonger la Durée de Service des Infrastructures (Ponts, Centrales Nucléaires). Ph.D. Thesis, INSA, Toulouse, France, 2006. [Google Scholar]
- Kenny, A.; Katz, A. Steel-Concrete Interface Influence on Chloride Threshold for Corrosion—Empirical Reinforcement to Theory. Constr. Build. Mater. 2020, 244, 118376. [Google Scholar] [CrossRef]
- Horne, A.T.; Richardson, I.G.; Brydson, R.M.D. Quantitative Analysis of the Microstructure of Interfaces in Steel Reinforced Concrete. Cem. Concr. Res. 2007, 37, 1613–1623. [Google Scholar] [CrossRef]
- Richardson, M.G. Fundamentals of Durable Reinforced Concrete; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Dewar, J.D. Specifying Composite Cements, Pulverised Fuel Ash and Ground Granulated Blastfurnace Slag in Concrete; Concrete: London, UK, 1985; Volume 19. [Google Scholar]
- Khatib, J.; Mangat, P. Absorption Characteristics of Concrete as a Function of Location Relative to Casting Position. Cem. Concr. Res. 1995, 25, 999–1010. [Google Scholar] [CrossRef]
- Angst, U. Chloride Induced Reinforcement Corrosion in Concrete: Concept of Critical Chloride Content–Methods and Mechanisms. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Chen, L.; Su, R.K.L. Influence of Rebar Geometry on the Steel-Concrete Interface of Reinforced Concrete. Constr. Build. Mater. 2021, 304, 124668. [Google Scholar] [CrossRef]
- Zhang, R.; Castel, A.; François, R. Influence of Steel–Concrete Interface Defects Owing to the Top-Bar Effect on the Chloride-Induced Corrosion of Reinforcement. Mag. Concr. Res. 2011, 63, 773–781. [Google Scholar] [CrossRef]
- Söylev, T.A.; François, R. Corrosion of Reinforcement in Relation to Presence of Defects at the Interface between Steel and Concrete. J. Mater. Civ. Eng. 2005, 17, 447–455. [Google Scholar] [CrossRef]
- Goto, Y. Cracks Formed in Concrete around Deformed Tension Bars. ACI J. Proc. 1971, 68, 244–251. [Google Scholar] [CrossRef]
- Tammo, K.; Lundgren, K.; Thelandersson, S. Nonlinear Analysis of Crack Widths in Reinforced Concrete. Mag. Concr. Res. 2009, 61, 23–34. [Google Scholar] [CrossRef][Green Version]
- ACI Committee 224 Cracking of Concrete Members in Direct Tension; American Concrete Institute: Farmington Hills, MI, USA, 2001.
- Borosnyói, A.; Balázs, G.L. Models for Flexural Cracking in Concrete: The State of the Art. Struct. Concr. 2005, 6, 53–62. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z.; Hu, X. Reaction mechanism of sulfate attack on alkali-activated slag/fly ash cements. Constr. Build. Mater. 2022, 318, 126052. [Google Scholar] [CrossRef]
- Fu, C.; Ye, H.; Zhu, K.; Fang, D.; Zhou, J. Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem. Concr. Compos. 2020, 114, 103721. [Google Scholar] [CrossRef]
- Yang, T.; Xu, S.; Liu, Z.; Li, J.; Wu, P.; Yang, Y.; Wu, C. Experimental and numerical investigation of bond behaviour between geopolymer based ultra-high-performance concrete and steel bars. Constr. Build. Mater. 2022, 345, 128220. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash after Exposure to Elevated Temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Lin, H.; Li, H.; Lv, J.; Feng, S.; Ci, J. The data-driven research on bond strength between fly ash-based geopolymer concrete and reinforcing bars. Constr. Build. Mater. 2022, 357, 129384. [Google Scholar] [CrossRef]
- Qi, A.; Liu, X.; Xu, R.; Huang, Y. Bond behaviour of steel reinforcement in concrete containing ferronickel slag and blast furnace slag powder. Constr. Build. Mater. 2020, 262, 120884. [Google Scholar] [CrossRef]
- Rasoul Abdar Esfahani, S.M.; Zareei, S.A.; Madhkhan, M.; Ameri, F.; Rashidiani, J.; Taheri, R.A. Mechanical and Gamma-Ray Shielding Properties and Environmental Benefits of Concrete Incorporating GGBFS and Copper Slag. J. Build. Eng. 2021, 33, 101615. [Google Scholar] [CrossRef]
- Sharma, R.; Khan, R.A. Sustainable Use of Copper Slag in Self Compacting Concrete Containing Supplementary Cementitious Materials. J. Clean. Prod. 2017, 151, 179–192. [Google Scholar] [CrossRef]
- Gong, W.; Chen, Q.; Miao, J. Bond Behaviours between Copper Slag Concrete and Corroded Steel Bar after Exposure to High Temperature. J. Build. Eng. 2021, 44, 103312. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Ma, C.K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J. Bond Strength between Blended Slag and Class F Fly Ash Geopolymer Concrete with Steel Reinforcement. Cem. Concr. Res. 2015, 72, 48–53. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.M.; Palomo, A.; Lopez-Hombrados, C. Engineering properties of alkali-activated fly ash concrete. ACI Mater. J. 2006, 103, 106. [Google Scholar]
- Albidah, A.; Altheeb, A.; Alrshoudi, F.; Abadel, A.; Abbas, H.; Al-Salloum, Y. Bond Performance of GFRP and Steel Rebars Embedded in Metakaolin Based Geopolymer Concrete. Structures 2020, 27, 1582–1593. [Google Scholar] [CrossRef]
- Liu, W.; Xu, M.; Chen, Z.F. Parameters calibration and verification of concrete damage plasticity model of Abaqus. Ind. Constr. 2014, 44, 167–171. [Google Scholar]
- Ezzedine el Dandachy, M. Characterization and Modelling of Permeability of Damaged Concrete: Application to Reinforced Concrete Structures. Ph.D. Thesis, Université Grenoble Alpes (ComUE), Saint-Martin-d’Hères, France, 2016. [Google Scholar]
- Tixier, A. Analyse du Comportement de L’interface Acier-Béton pas Essai Push-in. Mesures par Fibres Optiques et Modélisation par Eléments Finis. Ph.D. Thesis, Université de Grenoble Alpes, Saint-Martin-d’Hères, France, 2013. [Google Scholar]
- Desmettre, C.; Charron, J.-P. Novel Water Permeability Device for Reinforced Concrete under Load. Mater. Struct. 2011, 44, 1713–1723. [Google Scholar] [CrossRef]
- Desmettre, C.; Charron, J.-P. Water Permeability of Reinforced Concrete with and without Fiber Subjected to Static and Constant Tensile Loading. Cem. Concr. Res. 2012, 42, 945–952. [Google Scholar] [CrossRef]
- Dang, C.N.; Hale, W.M.; Martí-Vargas, J.R. Quantification of bond performance of 18-mm prestressing steel. Constr. Build. Mater. 2018, 159, 451–462. [Google Scholar] [CrossRef]
- Chu, S.H.; Kwan, A.K.H. A New Method for Pull out Test of Reinforcing Bars in Plain and Fibre Reinforced Concrete. Eng. Struct. 2018, 164, 82–91. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, R.; Jin, L.; Du, X. Mesoscale modelling of bond failure behaviour of ribbed steel bar and concrete interface. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2021; Volume 272, p. 02003. [Google Scholar]
- ACI 318-11; Building Code Requirements for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2011.
- AS-3600; Concrete Structures. Standards Australia International: Sydney, Australia, 2001.
- JTG 3362-2018; Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Hunan Literature & Art Publishing House Co., Ltd.: Changsha, China, 2018.
- Tru Vu, N. Contribution à L’étude de la Corrosion par Carbonatation du Béton Armé: Approche Expérimentale et Probabiliste. Ph.D. Thesis, INSA, Toulouse, France, 2011. [Google Scholar]
- Basheer, L.; Kropp, J.; Cleland, D.J. Assessment of the Durability of Concrete from Its Permeation Properties: A Review. Constr. Build. Mater. 2001, 15, 93–103. [Google Scholar] [CrossRef]
- Abbas, A.; Carcasses, M.; Ollivier, J.P. Gas permeability of concrete in relation to its degree of saturation. Mater. Struct. 1999, 32, 3–8. [Google Scholar] [CrossRef]
- Verdier, J. Contribution à la Caractérisation de L’évolution du Taux de Fuite des Enceintes de Confinement du parc Nucléaire. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2001. [Google Scholar]
- Soylev, T.A.; François, R. Quality of Steel–Concrete Interface and Corrosion of Reinforcing Steel. Cem. Concr. Res. 2003, 33, 1407–1415. [Google Scholar] [CrossRef]
- Na, W.; Kundu, T.; Ehsani, M.R. Ultrasonic guided waves for steel bar concrete interface testing. Mater. Eval. 2002, 129, 31–248. [Google Scholar]
- Mohammed, T.U.; Otsuki, N.; Hamada, H.; Yamaji, T. Chloride-induced corrosion of steel bars in concrete with presence of gap at steel-concrete interface. Mater. J. 2002, 99, 149–156. [Google Scholar]
- Klinkenberg, L.J. The Permeability of Porous Media to Liquids and Gases. Am. Pet. Inst. 2012, 57–73. [Google Scholar] [CrossRef]
- Kundt, A.; Warburg, E. On friction and thermal conductivity in rarefied gases. Philos. Mag. 1875, 50, 53–62. [Google Scholar] [CrossRef]
- Picandet, V. Influence d’un Endommagement Mécanique sur la Perméabilité et sur la Diffusivité Hydrique des Bétons. Ph.D. Thesis, Université de Nantes, Nantes, France, 2001. [Google Scholar]
- Waller, V. Relations Entre Composition des Bétons, Exothermie en Cours de Prise et Chaussées, Matériaux. Ph.D. Thesis, Ecole des Ponts, Champs-sur-Marne, France, 1999. [Google Scholar]
- Verdier, J.; Carcassès, M.; Ollivier, J.P. Modelling of a Gas Flow Measurement. Cem. Concr. Res. 2002, 32, 1331–1340. [Google Scholar] [CrossRef]
- Ezzedine El Dandachy, M.; Briffaut, M.; Dufour, F.; Dal Pont, S. An Original Semi-Discrete Approach to Assess Gas Conductivity of Concrete Structures. Int. J. Numer. Anal. Methods Geomech. 2016, 41, 940–956. [Google Scholar] [CrossRef]
- Rastiello, G.; Boulay, C.; Dal Pont, S.; Tailhan, J.L.; Rossi, P. Real-Time Water Permeability Evolution of a Localized Crack in Concrete under Loading. Cem. Concr. Res. 2014, 56, 20–28. [Google Scholar] [CrossRef]
- Makhloufi, Z.; Kadri, E.H.; Bouhicha, M.; Benaissa, A.; Bennacer, R. The Strength of Limestone Mortars with Quaternary Binders: Leaching Effect by Demineralized Water. Constr. Build. Mater. 2012, 36, 171–181. [Google Scholar] [CrossRef]
- Tognazzi, C.; Torrenti, J.M.; Carcasses, M.; Ollivier, J.P. Coupling Between Diffusivity and Cracks in Cement-Based Systems. MRS Proc. 1999, 608, 325–330. [Google Scholar] [CrossRef]
- Monlouis-Bonnaire, J.P.; Verdier, J.; Perrin, B. Prediction of the Relative Permeability to Gas Flow of Cement-Based Materials. Cem. Concr. Res. 2004, 34, 737–744. [Google Scholar] [CrossRef]
- Kameche, Z.A.; Ghomari, F.; Choinska, M.; Khelidj, A. Assessment of Liquid Water and Gas Permeabilities of Partially Saturated Ordinary Concrete. Constr. Build. Mater. 2014, 65, 551–565. [Google Scholar] [CrossRef]
- Villain, G.; Baroghel-Bouny, V.; Kounkou, C.; Hua, C. Mesure de La Perméabilité Aux Gaz En Fonction Du Taux de Saturation Des Bétons. Rev. Française Génie Civ. 2001, 5, 251–268. [Google Scholar] [CrossRef]
- Rastiello, G.; Tailhan, J.-L.; Rossi, P.; Dal Pont, S. Macroscopic Probabilistic Cracking Approach for the Numerical Modelling of Fluid Leakage in Concrete. Ann. Solid Struct. Mech. 2015, 7, 1–16. [Google Scholar] [CrossRef][Green Version]
- Rahal, S. Influence de L’anisotropie Induite par la Fissuration sur le Comportement Poromécanique de Géomatériaux. Ph.D. Thesis, INSA de Toulouse, Toulouse, France, 2015. [Google Scholar]
- Snow, D.T. A Parallel Plate Model of Permeable Fractured Media. Ph.D. Thesis, University of California, Berkley, CA, USA, 1965. [Google Scholar]
- De Marsily, G. Quantitative Hydrogeology: Groundwater Hydrology for Engineers; Academic Press, Inc.: Orlando, FL, USA, 1986. [Google Scholar]
- Tsukamoto, M. Tightness of fiber concrete, darmstadt concrete. Annu. J. Concr. Concr. Struct. 1990, 5, 215–225. [Google Scholar]
- Samaha, H.R.; Hover, K.C. Influence of microcracking on the mass transport properties of concrete. Mater. J. 1992, 89, 416–424. [Google Scholar]
- Landis, E.N.; Shah, S.P. The influence of microcracking on the mechanical behaviour of cement based materials. Adv. Cem. Based Mater. 1995, 2, 105–118. [Google Scholar] [CrossRef]
- Choinska, M.; Khelidj, A.; Chatzigeorgiou, G.; Pijaudier-Cabot, G. Effects and Interactions of Temperature and Stress-Level Related Damage on Permeability of Concrete. Cem. Concr. Res. 2007, 37, 79–88. [Google Scholar] [CrossRef][Green Version]
- Zhang, J.; Jin, T.; He, Y.; Wang, Y.; Gao, Y.; Zhang, Y. The slippage effect of concrete gas permeability and the influence of its microstructure. Constr. Build. Mater. 2022, 333, 127384. [Google Scholar] [CrossRef]
- Aldea, C.M.; Shah, S.P.; Karr, A. Effect of cracking on water and chloride permeability of concrete. J. Mater. Civ. Eng. 1999, 11, 181–187. [Google Scholar] [CrossRef]
- Banthia, N.; Bhargava, A. Permeability of Stressed Concrete and Role of Fiber Reinforcement. ACI Mater. J. 2007, 104, 70–76. [Google Scholar] [CrossRef]
- Kermani, A. Permeability of stressed concrete: Steady-state method of measuring permeability of hardened concrete studies in relation to the change in structure of concrete under various short-term stress levels. Build. Res. Inf. 1991, 19, 360–366. [Google Scholar] [CrossRef]
- Banthia, N.; Biparva, A.; Mindess, S. Permeability of Concrete under Stress. Cem. Concr. Res. 2005, 35, 1651–1655. [Google Scholar] [CrossRef]
- Saito, M.; Ishimori, H. Chloride Permeability of Concrete under Static and Repeated Compressive Loading. Cem. Concr. Res. 1995, 25, 803–808. [Google Scholar] [CrossRef]
- Ravina, D.; Mehta, P.K. Properties of Fresh Concrete Containing Large Amounts of Fly Ash. Cem. Concr. Res. 1986, 16, 227–238. [Google Scholar] [CrossRef]
- Ludirdja, D.; Berger, R.L.; Young, J. Simple method for measuring water permeability of concrete. Mater. J. 1989, 86, 433–439. [Google Scholar]
- Hearn, N.; Lok, G. Measurement of Permeability under Uniaxial Compression: A Test Method. ACI Mater. J. 1998, 95, 691–694. [Google Scholar] [CrossRef]
- Desmettre, C.; Charron, J.P. Water Permeability of Reinforced Concrete Subjected to Cyclic Tensile Loading. ACI Mater. J. 2013, 110, 79–88. [Google Scholar]
- Ollivier, J.P.; Maso, J.C.; Bourdette, B. Interfacial Transition Zone in Concrete. Adv. Cem. Based Mater. 1995, 2, 30–38. [Google Scholar] [CrossRef]
- Picandet, V.; Khelidj, A.; Bastian, G. Effect of Axial Compressive Damage on Gas Permeability of Ordinary and High-Performance Concrete. Cem. Concr. Res. 2001, 31, 1525–1532. [Google Scholar] [CrossRef][Green Version]
- Sugiyama, T.; Bremner, T.W.; Holm, T.A. Effect of stress on gas permeability in concrete. Mater. J. 1996, 93, 443–450. [Google Scholar]
- Li, Z.; Ding, F.; Cheng, S.; Lyu, F. Mechanical Behaviour of Steel-Concrete Interface and Composite Column for Circular CFST in Fire. J. Constr. Steel Res. 2022, 196, 107424. [Google Scholar] [CrossRef]
- Jin, L.; Liu, M.; Zhang, R.; Du, X. 3D meso-scale modelling of the interface behaviour between ribbed steel bar and concrete. Eng. Fract. Mech. 2020, 239, 107291. [Google Scholar] [CrossRef]
- Jiradilok, P.; Wang, Y.; Nagai, K.; Matsumoto, K. Development of Discrete Meso-Scale Bond Model for Corrosion Damage at Steel-Concrete Interface Based on Tests with/without Concrete Damage. Constr. Build. Mater. 2020, 236, 117615. [Google Scholar] [CrossRef]
- Bouhjiti, D.E.-M.; Ezzedine El Dandachy, M.; Dufour, F.; Dal Pont, S.; Briffaut, M.; Baroth, J.; Masson, B. New Continuous Strain-Based Description of Concrete’s Damage-Permeability Coupling. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1671–1697. [Google Scholar] [CrossRef][Green Version]
- Mazars, J. Application de la Mécanique de L’endommagement au Comportement non Linéaire et à la Rupture du Béton de Structure. These de Docteur es Sciences Presentee a L’universite Pierre et Marie Curie-Paris 6. Ph.D. Thesis, Universite Pierre et Marie Curie, Paris, France, 1984. [Google Scholar]
- Mazars, J.; Grange, S. Modeling of Reinforced Concrete Structural Members for Engineering Purposes. Comput. Concr. 2015, 16, 683–701. [Google Scholar] [CrossRef]
- Meschke, G.; Lackner, R.; Mang, H.A. An Anisotropic Elastoplastic-Damage Model for Plain Concrete. Int. J. Numer. Methods Eng. 1998, 42, 703–727. [Google Scholar]
- Moës, N.; Dolbow, J.; Belytschko, T. A Finite Element Method for Crack Growth without Remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Nechnech, W.; Reynouard, J.M.; Meftah, F. On modelling of thermo-mechanical concrete for the finite element analysis of structures submitted to elevated temperatures. In Fracture Mechanics of Concrete Structures; Swets & Zeitlinger: Lisse, The Netherlands, 2001; pp. 271–278. [Google Scholar]
- Tailhan, J.-L.; Dal Pont, S.; Rossi, P. From Local to Global Probabilistic Modeling of Concrete Cracking. Ann. Solid Struct. Mech. 2010, 1, 103–115. [Google Scholar] [CrossRef]
Section Number | Section Title | References | Recent | Context |
---|---|---|---|---|
1 | Introduction | [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] | 2002, 2005, 2008, 2016, 2018, 2019, 2020, 2021, 2022 | Importance of studying the bond performance at the SCI |
2 | Methodology | - | - | Flow chart process for records and framing of the following sections |
3 | Physical Characteristics at the Steel-Concrete Interface | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] | 2004, 2005, 2006, 2007, 2011, 2017, 2020, 2021, 2022 |
|
4 | The Effect of Mechanical Stresses on the SCI | [1,2,3,12,23,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66] | 2017, 2019, 2021, 2022 | Bond strength at SCI testing methods pull-out, push-in, tie beam testing |
5 | The Permeability at the SCI | [23,26,40,57,60,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106] | 1999, 2016, 2018, 2020, 2021, 2022 | Permeability at SCI testing methods pull-out, push-in, tie beam testing |
6 | Use of Models in Understanding the Bond Behavior at the SCI | [4,20,46,63,70,107,108,109,110,111,112,113,114,115,116] | 1984, 1999, 2001, 2010, 2011, 2012, 2018, 2020, 2021, 2022 |
|
7 | Knowledge Gaps and Future Research | - | - | Present work’s gaps and limitations |
8 | Conclusion | - | - | Summary of the main points based on the evidence presented |
Specimen Number | Ultimate Load (kN) |
---|---|
C30-12-200 | 59.5 |
C30-12-300 | 64.75 |
C30-16-200 | 60 |
C30-16-300 | 106.82 |
C50-12-200 | 72.5 |
C50-12-300 | 68.9 |
C50-16-200 | 125.1 |
C50-16-300 | 128 |
C50-16-400 | 119.7 |
C50-20-300 | 153.77 |
Binder Type | Mechanical Resistance |
---|---|
Ferronickel slag and blast furnace slag powder (F-S powder) |
|
copper slag (replacement ratios of 20 and 40%) |
|
Slag as a partial substitute for fly ash | In comparison to ordinary Portland concrete
|
Fly ash | Geopolymer concrete
|
Steel fibers |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachem, Y.; Ezzedine El Dandachy, M.; Khatib, J.M. Physical, Mechanical and Transfer Properties at the Steel-Concrete Interface: A Review. Buildings 2023, 13, 886. https://doi.org/10.3390/buildings13040886
Hachem Y, Ezzedine El Dandachy M, Khatib JM. Physical, Mechanical and Transfer Properties at the Steel-Concrete Interface: A Review. Buildings. 2023; 13(4):886. https://doi.org/10.3390/buildings13040886
Chicago/Turabian StyleHachem, Yousra, Mohamad Ezzedine El Dandachy, and Jamal M. Khatib. 2023. "Physical, Mechanical and Transfer Properties at the Steel-Concrete Interface: A Review" Buildings 13, no. 4: 886. https://doi.org/10.3390/buildings13040886