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Abstract: High-strength concrete can effectively reduce the cross-sectional size, increase space usage,
and cut material costs. To analyze the mechanical properties of high-strength concrete vertical
members, various confinement models have been proposed to define the ties-confined concrete
stress–strain relationship. However, most existing models are divided into ascending and descending
segments. These are continuous but not derivable at the peak point, which does not facilitate
numerical calculations. Moreover, these models have a large number of parameters that are mostly
obtained based on the fitting of experimental data, which may also lead to the limited applicability
of the models. In this study, existing confinement models for high-strength concrete under axial
compression are reviewed, and the differences between the models are discussed. Based on the
results of normal triaxial experiments on high-strength concrete and the test data from other studies
on ties-confined concrete columns, the effective confinement coefficient and empirical formula of ties
strain at the peak stress of confined concrete are proposed. A confinement model is proposed based
on the continuous derivable function, and it is validated based on the available experimental data.
Results show that the proposed model can reflect the stress–strain relationship of the test specimens
more simply while keeping the basic accuracy with other models.

Keywords: high-strength concrete; ties-confined concrete; axial compression; stress–strain model

1. Introduction

Concrete is a widely used building material, and the application of high-strength
concrete is gradually on the rise. When high-strength concrete is used for vertical members
of high-rise structures, it can effectively reduce the cross-sectional size, increase space usage,
and cut material costs. Ties-confined concrete is the most widely used form in engineering
practice. To analyze the mechanical properties of high-strength concrete vertical members,
the ties-confined concrete stress–strain relationship is considered.

In 1903, Considere [1] first proposed that the use of spiral bars could effectively con-
fine the axially compressed column; since then, the research on confined concrete has
spanned a century. In the 1920s, Richart et al. [2] quantitatively studied the mechani-
cal properties of confined normal-strength concrete and established the classical Richart
formula. Subsequently, the different influencing parameters (e.g., strength, number and
form of ties, cross-sectional form, number of longitudinal bars, loading rate) for confined
normal-strength concrete have been considered, and different stress–strain models for
confined normal-strength concrete have been established empirically. With the increased
application of high-strength concrete, the models based on normal-strength concrete are
no longer applicable, owing to the fact that these models overestimate the descending
section curve. Ahmad and Shah [3] first developed a stress–strain model for confined high-
strength concrete based on experimental results, where the cylindrical concrete strength
was up to 69 MPa. Martinez [4] and Fafitis [5] also proposed corresponding models with
maximum strengths of 69 MPa and 62 MPa, respectively, for cylindrical concrete. With
the sustainable development of concrete technology, higher-strength concrete has been
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gradually used in practical projects; for example, the maximum compressive strengths
of Two Union Square (1989) in Seattle and 311 South Wacker (1990) column in Chicago
were 131 MPa and 83 MPa, respectively. To promote the application of higher concrete
strengths, Yong et al. [6], Muguruma et al. [7], Nagashima et al. [8], Cusson et al. [9], EI-
Dash et al. [10], Han et al. [11], and Shi et al. [12] developed models based on experimental
results applicable to square columns; Bjerkli et al. [13], Mander et al. [14], Li et al. [15],
and Umesh et al. [16] proposed models based on experimental results applicable to both
circular and square columns. Suzuki et al. [17] found that ties generally may not yield
using high-strength concrete or ties and proposed a method to compute the ties stress at
maximum concrete strength. Chung et al. [18] and Van et al. [19] proposed an empirical
formula for ties stress based on the regression of experimental results. To develop a more
general stress–strain model for confined concrete, Razvi et al. [20] and Légeron et al. [21]
developed a confinement model applicable to both normal-strength and high-strength
concrete based on their experimental results and those of other scholars. To provide more
accurate stress–strain relationships for confined concrete, Montoya et al. [22] investigated
the three-dimensional behavior of confined concrete and proposed a new set of constitutive
material models for concrete in confined compression. Koksal et al. [23] introduced the
concept of least confined volume in the damage localization zone at the middle of the
concrete core to determine the confinement stress distribution of lateral ties and developed
a stress–strain model of high-strength concrete for tied square columns.

However, most existing models [6–9,11–15,17–21] are continuous at the peak but not
derivable, and they have a large number of correction parameters, which may not be
convenient for numerical calculations and engineering applications. The purpose of this
paper is to establish a stress–strain model for convenient numerical calculation. To this
end, this study first reviews existing models for axial compressive stress–strain in ties-
confined high-strength concrete and discusses the differences between existing models.
Then, based on the test data of the normal triaxial compression of high-strength concrete
and axial compression of ties-confined concrete columns obtained from other studies, a
new stress–strain model for ties-confined high-strength concrete is proposed that would
serve as a reference for the application and development of high-strength concrete in which
the applicable ranges for concrete and ties are 60–115 MPa and 400–1387 MPa, respectively.

2. Existing Models

There are currently many ties-confined high-strength concrete stress–strain models.
The range of application of concrete strength varies per study, for example, 84–94 MPa for
Yong et al. [6], 20–160 MPa for Muguruma et al. [7], 60–118 MPa for Nagashima et al. [8],
52–118 MPa for Cussion et al. [9], 45–90 MPa for Bjerkli et al. [13], 30–130 MPa for
Razvi et al. [20], and 20–140 MPa for Légeron et al. [21]. Currently, Cussion’s, Razvi’s,
Li’s, and Légeron’s models are mostly used, as shown in Table 1.

To present the differences between each model, this study takes a fc of 80 MPa and
100 MPa, section size of 250 mm × 250 mm, concrete cover thickness of 15 mm, longitu-
dinal symmetrical uniform reinforcement of 12ϕ12 ( fyv: 400 MPa), and ties reinforcement
ϕ8@100 (4 legs, fyv: 400 MPa) short column as examples. The formulae for the elastic
modulus and concrete in Cussion’s and Légeron’s models are the same as those of Razvi’s
and Li’s models. Moreover, the formula for the peak strain of concrete in Cussion’s model
is the same as that of Légeron’s model. The comparison results of each model are shown in
Figures 1 and 2.

Figures 1 and 2 show that the ascending portion of each model is basically similar,
which is mainly because the same ascending portion function is adopted for Cussion’s,
Razvi’s, and Légeron’s models. However, the nonlinearity before peak stress in Li’s model
is more obvious than that in the other models. For the descending section, the differences
among the models are significant; the residual platform value of Li’s model is higher than
that of the other models. The descending portion of Razvi’s model is the slowest, and that
of Li’s model is the steepest.
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Table 1. Ties-confined high-strength axial compressive stress–strain models.

Proposed by Complete Curve Equation Model Parameters

Cussion
et al. [9]
(1995)

(1) 0 ≤ ε ≤ εcc

σ = f cc
k(ε/εcc)

k−1+(ε/εcc)
k

(2) εcc ≤ ε

σ = f ccexp[k1(ε/εcc)]
k2

fl= f yv(
o
∑

i=1
Asbi +

p
∑

i=1
Asbi)/[s(bc+hc)]; k = Ec/(Ec − fcc/εcc)

ke,mander = [1−
n
∑

i=1
ω2

i /(6bchc)][1− (s′/2bc)][1− (s′/2hc)]/(1−ρcc)

fle= ke,mander fl ; fcc/ f c = 1 + 2.1( fle/ f c)
0.7;

εcc/εc = 1 + 0.21( fle/ f c)
1.7

If no test data is available, εc50takes 0.004;
εcc50 = εc50 + 0.15( fle/ f c)

1.1

k1= ln(0.5)/(εcc50−εcc)
k2 ; k2 = 0.58 + 16( fle/ f c)

1.4

Razvi et al. [20]
(1999)

(1) 0 ≤ ε ≤ εcc
Same as the ascending portion of the
Cussion model.
(2) εcc ≤ ε ≤ εcc20
σ = f cc[1− 0.15(ε/εcc)/(εc85−εcc)]
(3) εcc20 ≤ ε σ =0.2 fcc

m1 = 6.7( fle)
0.17; m2 = 0.15

√
(bc/s)(hc/sl); m3 = 40/ f c ≤ 1.0

m4= f ys/500 ≥ 1.0; fcc= f c + 0.5m1ρsv fys; εc = 0.0028− 0.008m3

εc85= εc + 0.0018m2
3; εcc/εc = 1 + 5m1m3 fle/ f c

εcc85 = 260m3ρcεcc[1 + 0.5m2(m4 − 1)]+εc85
Ec = 3320

√
fc + 6900

fys, ρc Calculation formulae are shown in Table 2

Li et al. [15]
(2001)

(1) 0 ≤ ε ≤ εc

σ = Ecε+ ( fc−Ecεc)ε

ε2
c

(2) εc ≤ ε ≤ εcc

σ = f cc −
( fcc− f c)(ε−εcc)

2

(εcc−εc)
2

(3) εcc ≤ ε

σ = f cc−β
fcc(ε−εcc)

εcc
≥ 0.4 fcc

fle, ke,manderare the same as the Cussion model; Ec = 3320
√

fc + 6900
fcc= f c

(
−0.413 + 1.413

√
1 + 11.4 fle/ f c − 2 fle/ f c

)
(For high-strength

concrete)
εcc/εc = 1 + 11.3 fle/ f c)

0.7( fyv ≤ 550 MPa); εc = 0.0007 ( fc)
0.3

β =(0.048 fc − 2.14)− (0.098 fc − 4.57)( fle/ f c)
1/3(

fyv ≤ 550 MPa and fc > 75 MPa)

Légeron et al. [21]
(2003)

(1) 0 ≤ ε ≤ εc
Similar to the ascending portion of the
Cussion model.
(2) εcc ≤ ε
Same as the descending portion of the
Cussion model.

ρsey, κ Calculation formulae are shown in Table 2
ke,mander is similar to the Cussion model; εc = 0.0005 ( fc)

0.4

I′e= f le/ f c; Ie50= ρsey fys/ f c; fcc/ f c = 1 + 2.4( I′e)
0.7

εcc/εc = 1 + 35(I′e)1.2; εcc50/εc50 = 1 + 60Ie50

k1 is the same as the Cussion model; k2 = 1 + 25(Ie50)
2

Table 2. Empirical formulae for ties strain when confined concrete is at peak stress.

Proposed by Empirical Formulae Parameters

Razvi et al. [20] (1999) fy= Es(0.0025 + 0.04 3
√

keρc/ f c) ≤ fy ρc =

n
∑

i=1
(Asb)i+

n
∑

i=1
(Ash)i

s(bc+hc)

Légeron et al. [21] (2003) fys = 0.25 fc/[ρsey(κ−10)] ≥ 0.43εcEs fys, f ys ≤ fyv ρsey= ke Ash/(shc), κ = f c/(ρseyEsεc)
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Figure 1. Comparison of the main models (𝑓௖ = 80 MPa) [9,15,20,21]. 
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3. Details of the Proposed Model
3.1. Normal Triaxial Compression Model

To establish a ties-confined high-strength concrete stress–strain model, the law of
strength and deformation of high-strength concrete under uniform lateral confinement
needs to be determined first. In this study, we used the results of normal triaxial experiments
on high-strength concrete from related studies [24–33] to establish the relationship between
the peak stress, peak strain, and lateral confinement ratio ( fle/ fc) under uniform lateral
confinement. The cylindrical compressive strength ranges from 60 MPa to 120 MPa, and the
lateral confinement ratio is in the range 0–0.5. The test data are shown in Figures 3 and 4.
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By doing regression analysis on the test data, the relationship between the peak stress,
peak-strain enhancement coefficient, and lateral confinement ratio is obtained as

fcc/ f c = 1 + 3.32( fle/ f c)
0.76, R2 = 0.92 (1)

εcc/εc = 1 + 11.92 fle/ f c, R2 = 0.96 (2)

From Figures 3 and 4, Equations (1) and (2) can better reflect the law of the test data.
The dispersion of the peak-stress improvement coefficient is relatively small over the whole
lateral confinement ratio. Conversely, the dispersion of the peak-strain improvement
coefficient is small when the lateral confinement ratio is 0–0.2 and becomes relatively large
as the lateral confinement ratio increases.

3.2. Effective Confinement Coefficient

For ties-confined concrete, the passive lateral stress generated by laterally expanding
concrete and the passive confined stress provided by the ties are nonuniformly distributed.
The form of the confined stress distribution varies with the ties arrangements and cross-
sectional shapes. The passive confined stress that develops in the sections with different
ties arrangements is shown in Figure 5. The square and rectangular sections, confined by
rectilinear ties, develop nonuniform lateral stress that peaks near the longitudinal bars. For
circular sections, the lateral confined stress can be approximated as uniform.
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Because rectangular and square columns are common forms in engineering and the
lateral confining stress of circular columns can be approximately considered uniform
(especially when spiral reinforcements are used), this study mainly focuses on rectangular
columns. Rectangular ties sections can be divided into three main regions according to the
degree of ties confinement, as shown in Figure 6:
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Figure 6. Schematic diagram of the confined area of the rectangular ties section.

(1) unconfined zone: the concrete is outside the ties without any confined effect in this
region;

(2) weakly confined zone: the concrete is near the inner side of the ties reinforcement
with a weak triaxial compressive stress state in this region;

(3) heavily confined zone: the remaining part of the concrete is in the core region with a
strong triaxial compressive stress state in this region.

The longitudinal lateral confined stress along the column is also unevenly distributed
with the strongest lateral confined effect at the ties plane and the weakest at the center of
the adjacent ties plane. The approximate distribution of the lateral confined stress is shown
in Figure 7.
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There are many factors affecting the lateral confined-stress distribution; however, the
main factors are the ties spacing, ties form, average lateral confined stress, and compressive
concrete strength. To simplify the calculation, the effective confinement coefficients of the
ties reinforcement in the existing models are mainly obtained based on experimental or
empirical formulae, which can mainly be divided into the effective confined zone and
experimental fitting methods.

Sheikh and Uzumeri [34] first proposed the concept of the “effective confinement
core” in 1982, assuming that the shape of the weakly confined area is a quadratic parabola.
Ignoring the difference in the effective confined area between the ties planes and adjacent
ties planes, they finally determined the effective confined area of the ties. Mander et al. [14]
introduced the concept of the effective confinement core for rectangular ties by assuming
that the end inclination of the weakly confined zone is π/4. Saatcioglu and Razvi [35]
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proposed that the effective confinement coefficient is inversely proportional to the ties
spacing, longitudinal reinforcement spacing, and average confined stress based on the
experimental results. They regressed the test data to obtain the empirical formula for
the effective stress coefficient. The empirical formula was later modified based on the
experimental results for high-strength concrete.

Taking the cross-sectional size of 400 mm × 400 mm, longitudinal reinforcement
uniformly arranged 12ϕ16 ( fyv: 400 MPa), ties reinforcement ϕ8@100 (4 legs, fyv: 400 MPa),
and concrete cover thickness of 25 mm for a column as an example, the effective confinement
coefficients calculated using Razvi’s and Mander’s empirical formulae are 0.49 and 0.64,
respectively. The absolute error is 0.15, and the relative error is 30 %, which is large. Because
the high-strength concrete material is brittle, the number of confined ties should increase
such that the average confined stress increases to ensure that the ductility requirements of
high-strength concrete columns are met. Furthermore, the equivalent uniform confined
stress varies significantly when different effective confined factors are used. Therefore, this
study proposes an empirical formula for the effective confinement coefficient based on the
test data of the normal triaxial compression of high-strength concrete from this study and
other studies with reference to the influence parameters of existing models.

The effective confinement coefficient is obtained using the inverse of Equation (1):

ke =
fc

fl

[(
fcc

fc
− 1
)

/3.32
]1.32

(3)

From Equation (3), the effective confinement coefficient is related to the concrete
strength, average confined stress, and peak-stress improvement coefficient. The peak-stress
improvement coefficient is related to numerous parameters, such as concrete strength, ties
yield strength, and volumetric ties ratio. The influencing factors of the effective confinement
coefficient are coupled with each other. However, the effective confinement coefficient
has been shown to decrease when the average confined stress increases. The elastic range
increases with the concrete strength increase (similar to an elastic foundation beam), such
that the area of the weakly confined zone decreases, and the effective confinement coefficient
increases. In addition, the effective confinement coefficient is influenced by the specific
arrangement of the ties reinforcement (e.g., the spacing between longitudinal bars), which
is approximated by the dimensionless parameter

√
(bc/s)(hc/sl), characterized in this

paper with reference to Mander’s and Razvi’s models. The final expression of the effective
confinement coefficient is taken as

ke= a
(

fc

fl

)b
(√

bc

s
hc

sl

)c

(4)

where a, b, and c are the model parameters.
Not all the influencing factors are considered in the construction of Equation (4),

i.e., the randomness is ignored, which will inevitably result in a difference between the
theoretical and experimental values. To identify the model parameters, the ratio of the
calculated value of the effective confinement coefficient to the test value is considered as
a random variable X; when the probability distribution of the random variable is known,
the model parameters are obtained. Because the concrete strength, spacing between the
ties, longitudinal bars, and average confining stress are not independent of each other, the
random variable X can be assumed to obey a lognormal distribution. By adjusting the
model parameters, the effective confinement coefficient is finally obtained as

ke = 0.06
(

fc

fl

)0.21
(√

bc

s
hc

sl

)1.32

(5)
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To verify the rationality of Equation (5), let fl = 0.5ρsv fys and substitute it into
Equation (3) to obtain

fcc

fc
= 1 + 1.96(keλv)

0.76 (6)

where λv= ρsv fys/ f c.
In this study, the relevant experimental data from other studies [20,36–38] were used to

calculate the effective confinement coefficient using Equation (5). The relationship between
fcc/ f c and keλv was obtained based on the test results of the peak-stress improvement
factor and ties characteristic value. The results were compared with the theoretical results
of Equation (6), as shown in Figure 8.
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Figure 8 shows that the relationship between fcc/ f c and keλv, calculated using Equation (5),
is consistent with that of Equation (6). However, Equation (6) has a certain dispersion; on
the whole, Equation (5) can better reflect the degree of ties confined inhomogeneity.

3.3. Ties Strain at the Peak Stress in Confined Concrete

When the yield strength of the ties is high, it may not yield when the concrete reaches
the peak stress. To determine the main influencing factors of ties strain at this time, the
confined concrete is assumed to be an elastic homogeneous material. Poisson’s ratio is
approximated to be 0.5 when the confined concrete reaches the peak stress. Using the
generalized Hooke’s law, we can obtain

εs = 0.5εcc(1−ke fl/ f cc) (7)

Based on the relationship between the peak-stress enhancement factor and lateral
confinement ratio in Section 3.1, Equation (7) can be further simplified. To facilitate the
derivation, the relationship between the peak-stress improvement coefficient and lateral
confinement ratio is approximately linear:

fcc

fc
= 1 + 4.11

ke fl
fc

, R2 = 0.91 (8)
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Substituting Equation (8) into Equation (7), we get

εs = 0.5εc

(
1 + 11.92

ke fl
fc

)(
1− ke fl/ f c

1 + 4.11ke fl/ f c

)
(9)

From Equation (9), the ties strain, when confined concrete is at peak stress, is related
to the effective confinement coefficient, average confined stress, and strength of unconfined
concrete. When the lateral confinement ratio is 0–0.5, the ties strain increases with an
increase in the lateral confinement ratio. However, the lateral confinement ratio is still
related to the ties strain; therefore, Equation (9) is an implicit function with the ties strain
as the independent variable, and at this time, we can let

g(x) = 1− x
1 + 4.11x

(10)

where x = ke fl/ f c.
The lateral confinement ratio of ties reinforcement in engineering is generally not

greater than 0.2. Hence, when the lateral confinement ratio is 0–0.2, the value domain of
g(x) is [1, 0.89], and it is a monotonically decreasing function; g(x) can be conservatively
taken as 0.89, and Equation (9) can be further simplified as

εs = 0.45εc

(
1 +

11.92ke fl
fc

)
(11)

When the rectangular ties arrangement, fl = 0.5ρsv fyv, we can substitute this value
into Equation (11):

εs =
0.45εc

1− 2.68keEsεcρsv/ f c
(12)

From Equation (12), the ties strain of confined concrete at peak stress is related to εc
and keρsv/ f c; it increases with an increase in εc and keρsv/ f c. To this end, this study collects
experimental data from relevant studies [8,20,36,38], as shown in Figure 9.
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Using εc and keρsv/ f c as the basic parameters, the empirical formulae for the ties
strain were obtained using regression analysis in which the concrete and ties yield strength
ranges were 50–115 MPa and 392–1387 MPa, respectively.

By using regression analysis on the test data, the relationship between the relative
strain εc and keρsv/ f c of the ties reinforcement is obtained as

εs

εc
= 0.5 + 13.44

ρsv

fc
, R2 = 0.83 (13)

where the unit of ρsv is %.
Razvi et al. [20] and Légeron et al. [21] also proposed empirical formulae for ties strains

when confined concrete is at peak stresses based on the experimental results, as shown in
Table 2.

For rectangular-ties square columns, ρc = ρsv/2 and ρsey = keρsv/2; let εc = 2500 µε,
Es = 2× 105 MPa, fyv = 600 MPa, and ke = 1.0 and 0.5. The relationship between ties
strain and ρsv/ f c is shown in Figure 10.
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From Figure 10, the ties strain in Razvi’s model increases with an increase in the
effective confinement coefficient; however, the rate of increase gradually slows down. The
ties strain tends to infinity when ρsv/ f c increases to a certain value in Légeron’s model. The
ties strain predicted by the proposed model is between that of Razvi’s and Légeron’s models,
which can better reflect the relationship between ties strain and ρsv/ f c. When ρsv/ f c = 0
and εs/εc = 0.5, it is in general agreement with the results of Candappa et al. [26] for
Poisson’s ratio tests on high-strength concrete.

3.4. Stress–Strain Model

The geometry of the complete curve of the axially compressed stress–strain relationship
in confined high-strength concrete is closely related to the degree of lateral confinement. The
ascending portion is weakly influenced by the degree of lateral confinement; however, the
impact on the descending portion is significant. With an increase in the lateral confinement
degree, the concavity of the descending section of the complete curve gradually decreases,
and the radius of curvature at the corresponding concave point gradually increases. The
complete curve geometry with different lateral confinement ratios is shown in Figure 11.
The complete geometric characteristics of the curve of confined high-strength concrete are
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essentially similar to those of unconfined concrete. However, there is a clearer residual
stress plateau in the later part of the full stress–strain curve due to the confined effect.
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There are different functional forms of the complete curve equation for the stress–
strain relationship of the confined concrete. It can be mainly divided into segmental non-
derivative and continuous derivative functions based on the derivability of the function; in
this study, based on the reference of existing models, the continuous derivative function
form is suggested, and the expression is

y =
Ax+

(
B−1)x2

1−
(

A−2)x + Bx2
(14)

where x = ε/εc and y = σ/ f cc; A and B are model parameters.
When the model parameters are all greater than 1.0, Equation (14) can satisfy the full

curve equation geometry condition:

(1) y(0) = 0, y(1) = 1;
(2) y′(0)= A, y′(1) = 0;
(3) When x → +∞ , y→ (B−1)/B ;
(4) The ascending portion is a convex function, and the descending portion has an

inflection point.

The model parameters control the initial slope and residual stress of the complete curve
equation. The effects of A and B on the ascending and descending sections of Equation (14)
are shown in Figures 12 and 13, respectively.



Buildings 2023, 13, 870 12 of 20Buildings 2023, 13, x FOR PEER REVIEW 13 of 22 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

σ/
f cc

ε/εcc

A=1.1, 1.2, 1.3, 1.4, 1.5, 1.6

B=1.1

 
Figure 12. Effect of model parameter A on the ascending portion of the complete curve. 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

σ/
f cc

ε/εcc

B=1.1, 1.2, 1.3, 1.4, 1.5, 1.6

A=1.1

 
Figure 13. Effect of model parameter B on the descending portion of the complete curve. 

Based on the geometric conditions of the complete curve equation, c cc ccA=E ε /f ; the 
model parameter B depends on the value of the residual stress in the descending portion, 
which is mainly related to the concrete strength and lateral confining stresses. In this 
study, the experimental results of related studies [24–33] were collected to establish the 
empirical formula of residual stress. Here, the unconfined concrete strength ranges from 
60 MPa to 120 MPa, and the lateral confinement ratio is 0–0.5. The relationship between 
residual stress, concrete strength, and peak strength of confined concrete is shown in Fig-
ures 14 and 15. 

Figure 12. Effect of model parameter A on the ascending portion of the complete curve.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 22 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

σ/
f cc

ε/εcc

A=1.1, 1.2, 1.3, 1.4, 1.5, 1.6

B=1.1

 
Figure 12. Effect of model parameter A on the ascending portion of the complete curve. 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

σ/
f cc

ε/εcc

B=1.1, 1.2, 1.3, 1.4, 1.5, 1.6

A=1.1

 
Figure 13. Effect of model parameter B on the descending portion of the complete curve. 

Based on the geometric conditions of the complete curve equation, c cc ccA=E ε /f ; the 
model parameter B depends on the value of the residual stress in the descending portion, 
which is mainly related to the concrete strength and lateral confining stresses. In this 
study, the experimental results of related studies [24–33] were collected to establish the 
empirical formula of residual stress. Here, the unconfined concrete strength ranges from 
60 MPa to 120 MPa, and the lateral confinement ratio is 0–0.5. The relationship between 
residual stress, concrete strength, and peak strength of confined concrete is shown in Fig-
ures 14 and 15. 

Figure 13. Effect of model parameter B on the descending portion of the complete curve.

Based on the geometric conditions of the complete curve equation, A = Ecεcc/ f cc; the
model parameter B depends on the value of the residual stress in the descending portion,
which is mainly related to the concrete strength and lateral confining stresses. In this study,
the experimental results of related studies [24–33] were collected to establish the empirical
formula of residual stress. Here, the unconfined concrete strength ranges from 60 MPa to
120 MPa, and the lateral confinement ratio is 0–0.5. The relationship between residual stress,
concrete strength, and peak strength of confined concrete is shown in Figures 14 and 15.
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From Figures 14 and 15, the dispersion of σres/ f c and lateral confinement ratio is
relatively small and has a more evident law compared to that of σres/ f cc; therefore, the
latter is used to calculate the residual stress in this study. From the regression analysis
results of the test data, we obtain

σres

fc
= 3.96

(
fle
fc

)0.52
(15)
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Substituting Equation (15) into Equation (1), we obtain

σres

fcc
=

3.96( fle/ f c)
0.52

1 + 3.22( fle/ f c)
0.76 (16)

The ties-confined concrete is different from that in normal triaxial experiments because
there is no lateral confinement in the adjacent ties plane. Hence, the concrete will keep
spalling in the late loading stage, and the residual stress is lower than that in the normal
triaxial experiments. For this purpose, this research refers to the effective confinement core
concept proposed by Sheikh et al. [34] and defines the residual stress reduction factor β as

β =1− Ace

Ace0
(17)

For calculation purposes, using the same assumptions as Mander [14] for the effective
confinement coefficients, Equation (17) is expressed as

β =1−
[

1−
n

∑
i=1

ω2
i /(6bchc)

](
1− s′

2bc

)(
1− s′

2hc

)
(18)

Considering the nonuniformity of lateral confined stresses, this study approximates
the equivalent lateral uniform stresses using Equation (5). Using keβ to correct the residual
stress of the normal uniaxial experiment, the model parameter B is obtained by combining
the complete curve geometry condition:

B =
1

1−keβσres/ f cc
(19)

The calculation steps of the complete stress–strain curve of ties-confined concrete
under axial compression are as follows:

(1) The peak stress and peak strain of unconfined concrete under compression are ob-
tained with experiments or empirical formulae;

(2) Equation (13) is used to calculate the ties strain when confined concrete experiences
the peak stress;

(3) Equation (5) is used to calculate the effective confinement coefficient based on the
arrangement form of the ties reinforcement;

(4) The equivalent uniform lateral confined stress is calculated; and Equations (1), (2), (14),
(16), (18), and (19) are used to obtain the complete curve equation model parameters
A and B.

4. Model Evaluation

To verify the model integrity, the experimental data from relevant studies [8,20,37]
were collected, as shown in Table 3. Owing to the lack of unconfined concrete modulus of
elasticity and peak strain in the test results, this study referred to the empirical formula
proposed by Wee et al. [39] for the calculations:

Ec = 10, 200( f ′c)
1/3 (20)

εc = 780( f ′c)
1/4 (21)

According to the basic parameters in Table 3, the stress–strain relationships of different
specimens were calculated using the stress–strain model established in Section 3.4. The
comparisons between different experimental curves and analytical models are shown in
Figures 16–18.
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Table 3. Database for model verification.

Source ID
Cross-Section Longitudinal Bars Ties Concrete

f’
cc

(MPa)B
(mm)

H
(mm) n d

(mm)
ds

(mm)
s

(mm)
fyv

(MPa) f’
c(MPa) εc(µε) Ec

(MPa)

Nagashima
et al. [7] (1992)

HH08LA 225 225 12 10 5.1 55 1387 98.8 2459.1 47154.1 122.8
HH10LA 225 225 12 10 5.1 45 1387 98.8 2459.1 47154.1 122.5
HH13LA 225 225 12 10 5.1 35 1387 98.8 2459.1 47154.1 131.5
HH15LA 225 225 12 10 6.4 45 1368 98.8 2459.1 47154.1 127.0
HH20LA 225 225 12 10 6.4 35 1368 100.4 2469.0 47407.2 148.2
HL06LA 225 225 12 10 5 45 807 100.4 2469.0 47407.2 118.2
HL08LA 225 225 12 10 5 35 807 100.4 2469.0 47407.2 133.2

3 250 250 12 16 6 31 813 92.4 2418.3 46113.1 145.0
4 250 250 12 16 6 45 813 92.4 2418.3 46113.1 122.0

Nishiyama
et al. [27] (1993)

7 250 250 12 16 6 60 813 92.4 2418.3 46113.1 120.0
8 250 250 12 16 4 31 840 92.4 2418.3 46113.1 120.0
10 250 250 12 16 6 31 462 96.2 2442.8 46736.8 133.0
11 250 250 12 16 6 45 462 96.2 2442.8 46736.8 117.0
12 250 250 12 16 6 60 462 96.2 2442.8 46736.8 115.0
13 250 250 12 16 6 60 462 96.2 2442.8 46736.8 115.0

Razvi et al. [11]
(1999)

14 250 250 12 16 4 31 481 96.2 2442.8 46736.8 115.0
CS-3 250 250 12 16 6.5 55 570 105.4 2499.2 48181.5 129.1
CS-4 250 250 8 16 7.5 55 1000 105.4 2499.2 48181.5 123.4
CS-5 250 250 12 16 7.5 120 1000 105.4 2499.2 48181.5 122.5
CS-7 250 250 12 16 6.5 120 400 105.4 2499.2 48181.5 115.0
CS-8 250 250 8 16 11.3 85 400 105.4 2499.2 48181.5 117.8

CS-15 250 250 8 16 7.5 55 1000 68.9 2247.2 41815.8 95.5
CS-16 250 250 12 16 7.5 85 1000 68.9 2247.2 41815.8 95.2
CS-20 250 250 12 16 11.3 85 400 78.2 2319.5 43618.3 106.3
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Figure 16. Comparison of experimental curves and analytical models (Nagashima,1992): (a) HH08LA
and HH10LA; (b) HH13LA and HH15LA; (c) HH20LA and HL06LA; (d) HL08LA.
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Although there are some differences in the descending portion of the curve, the
normal triaxial experimental study of high-strength concrete indicated that the descending
portion of the curve has considerable dispersion, and different test conditions may produce
different results. Therefore, a model that fits every test specimen completely is still difficult
to obtain. Overall, the proposed model can reflect the whole stress–strain process in the test
specimens, and its accuracy is basically comparable with other models. However, fewer
model parameters and continuously derivable functional form are more convenient for the
nonlinear calculation of the members, which is more beneficial in engineering applications.

The dispersion of the calculated peak strain was large, which is mainly because the test
in Table 3 lacks the test value of the peak concrete strain. Furthermore, the estimation of the
peak concrete strain using Equation (21) will result in certain errors. The calculated peak
stress was compared with the test results, as shown in Figure 19. The frequency statistics of
the relative error between the calculated fcc and tested fcc are shown in Figure 20.
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From Figures 19 and 20, the calculated peak stress is slightly lower than the test value,
and the relative error is within 10%, which accounts for 92% of the test data. Considering
the existence of randomness in the test process of the specimen, the proposed model can
predict the peak stress of ties-confined concrete better than existing models.

5. Conclusions

This paper aims to establish a stress–strain model for high-strength concrete confined
by lateral ties for facilitating engineering applications. The effective confinement coefficient
and the empirical formula of ties strain at the peak stress of confined concrete were pro-
posed. The stress-strain model used continuously derivable functions, which is convenient
for numerical calculations. Based on the results and discussions in this paper, the following
conclusions can be drawn:

(1) The existing models of ties-confined concrete stress–strain were compared; the dif-
ferences between different empirical models were evident, particularly because the
dispersion of the descending portion was large.

(2) The effective confinement coefficient and empirical formula for the ties strain when
confined concrete experienced the peak stress were established. The stress–strain
model was proposed using a continuous derivable function, which has fewer model
parameters and facilitates numerical calculations.

(3) The proposed model is in good agreement with the test curve, and the predicted peak
stress is slightly lower than the test results. The relative error is within 10%, which
accounts for 92% of the test data; overall, the prediction accuracy of the proposed
model for the stress–strain relationship for the specimens with fewer parameters and
simpler functional form is generally comparable to other models.
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Notations

bc, hc core dimension measured center-to-center of perimeter ties
s ties spacing
s′ clear spacing between ties
Asbi, Ashi area of one leg of transverse reinforcement in b- and h-directions, respectively
Ec modulus of elasticity of plain concrete
fc compressive strength of unconfined concrete
εc strain at maximum stress fc of unconfined concrete
εc85 strain corresponding to 85% of peak stress of unconfined concrete on descending branch
εc50 strain corresponding to 50% of peak stress of unconfined concrete on descending branch
fcc compressive strength of confined concrete
εcc strain at maximum stress fcc of confined concrete
εcc85 strain corresponding to 85% of peak stress of confined concrete on descending branch
εcc50 strain corresponding to 50% of peak stress of confined concrete on descending branch
εcc20 strain corresponding to 20% of peak stress of confined concrete on descending branch
ωi ith clear ties spacing between adjacent longitudinal bars
o, p number of ties legs in b- and h-directions, respectively
n total number of longitudinal bars
ρcc ratio of area of longitudinal steel to area of core of section
sl spacing of longitudinal reinforcement, laterally supported by corner of ties or ties of crosstie
fyv yield strength of ties reinforcement
fys tensile stress in transverse reinforcement at peak concrete stress
fl average confinement pressure
fle equivalent uniform lateral pressure that produces the same effect as nonuniform pressure
ke,mander effective confinement coefficient proposed by Mander et al. [14]
Es modulus of elasticity of ties
Ace area of the weakest confining plane in the adjacent ties plane
Ace0 ties plane confining area
f ′c cylindrical compressive strength
B, H cross-section width and height, respectively
d diameter of the longitudinal bar
ds diameter of the ties
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