Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic
Abstract
:1. Introduction
2. Methods and Model Development
2.1. Molecular Structures
2.2. Bulk Asphalt Models
2.3. Mutual Diffusion Model
2.4. Force Field and Simulation Details
3. Results and Discussion
3.1. Model Validation
3.1.1. Density
3.1.2. Cohesive Energy Density
3.2. Nanostructure Characteristics of Diffusion Behavior
3.2.1. Relative Concentration
3.2.2. Radial Distribution Function
3.2.3. Mean Square Displacement
3.3. Quantitative Evaluation of Diffusion Efficiency
3.3.1. Binding Energy
3.3.2. Mutual Diffusion Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Yao, Y.; Yang, J.; Song, L.; Xu, J.; He, L.; Tao, W. Migration behavior of reclaimed asphalt pavement mastic during hot mixing. J. Clean. Prod. 2022, 376, 134123. [Google Scholar] [CrossRef]
- Jiang, Y.; Gu, X.; Zhou, Z.; Ni, F.; Dong, Q. Laboratory Observation and Evaluation of Asphalt Blends of Reclaimed Asphalt Pavement Binder with Virgin Binder using SEM/EDS. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 69–78. [Google Scholar] [CrossRef]
- Li, N.; Tang, W.; Yu, X.; Zhan, H.; Wang, X.; Wang, Z. Laboratory investigation on blending process of reclaimed asphalt mixture. Constr. Build. Mater. 2022, 325, 126793. [Google Scholar] [CrossRef]
- Nahar, S.N.; Mohajeri, M.; Schmets, A.J.M.; Scarpas, A.; van de Ven, M.F.C.; Schitter, G. First Observation of Blending-Zone Morphology at Interface of Reclaimed Asphalt Binder and Virgin Bitumen. Transp. Res. Rec. J. Transp. Res. Board 2013, 2370, 1–9. [Google Scholar] [CrossRef][Green Version]
- Zhao, S.; Nahar, S.N.; Schmets, A.J.; Huang, B.; Shu, X.; Scarpas, T. Investigation on the microstructure of recycled asphalt shingle binder and its blending with virgin bitumen. Road Mater. Pavement Des. 2015, 16 (Suppl. 1), 21–38. [Google Scholar] [CrossRef]
- Li, L.B. Study on non-fickian diffusion in glassy polymer. Chin. J. Biomed. Eng. 1999, 18, 441–450. [Google Scholar]
- Zhang, Y.X.; Ling, T.Q. Micro mechanism between recycling agent and aged asphalt. J. Civ. Archit. Environ. Eng. 2010, 32, 55–59. [Google Scholar]
- Ding, L.L.; Huang, X.M. Diffusion mechanism of asphalt rejuvenation agent and research on diffusion simulation test. Transp. Sci. Technol. 2009, 5, 75–78. [Google Scholar]
- Ma, T.; Huang, X.; Zhang, J. Recycling law of aged asphalt based on composite theory of material. J. Southeast Univ. Nat. Sci. Ed. 2008, 38, 520–524. [Google Scholar]
- Tao, X.H. Research on mechanism of asphalt film transfer based on convective mass transfer theory. J. Highw. Transp. Dev. 2010, 27, 21–24. [Google Scholar]
- Tang, B.M.; Ding, Y.J.; Zhu, H.Z.; Cao, X.J. Study on Agglomeration Variation Pattern of Asphalt Molecules. China J. Highw. Transp. 2013, 26, 50. [Google Scholar]
- Rathore, M.; Haritonovs, V.; Meri, R.M.; Zaumanis, M. Rheological and chemical evaluation of aging in 100% reclaimed asphalt mixtures containing rejuvenators. Constr. Build. Mater. 2022, 318, 126026. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.Y.; Chen, H.B.; Wang, X.D.; Xiang, H. Rheological Characteristics and MDs Simulation of Interface Regeneration Between Virgin and Aged Asphalts. China J. Highw. Transp. 2019, 32, 25–33. [Google Scholar]
- Ding, Y.; Deng, M.; Cao, X.; Yu, M.; Tang, B. Investigation of mixing effect and molecular aggregation between virgin and aged asphalt. Constr. Build. Mater. 2019, 221, 301–307. [Google Scholar] [CrossRef]
- Vassaux, S.; Gaudefroy, V.; Boulangé, L.; Soro, L.J.; Pévère, A.; Michelet, A.; Mouillet, V. Study of remobilization phenomena at reclaimed asphalt binder/virgin binder interphases for recycled asphalt mixtures using novel microscopic methodologies. Constr. Build. Mater. 2018, 165, 846–858. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Hou, X.; Xiang, Q.; Yong, D.; Xiao, F. A blending efficiency model for virgin and aged binders in recycled asphalt mixtures based on blending temperature and duration. Resour. Conserv. Recycl. 2020, 161, 104957. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Yang, F.; Cheng, M.; Wang, Y.; Amirkhanian, S.; Wu, S.; Wei, M.; Xie, J. Multi-scale performance evaluation and correlation analysis of blended asphalt and recycled asphalt mixtures incorporating high RAP content. J. Clean. Prod. 2021, 317, 128278. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Yang, S.; Oeser, M.; Ago, C. Study of migration and diffusion during the mixing process of asphalt mixtures with RAP. Road Mater. Pavement Des. 2020, 22, 1578–1593. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, B.; Shu, X. Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy. Constr. Build. Mater. 2018, 161, 461–467. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.B.; Li, P. Quantitative Evaluation on Interfacial Diffusion Behavior of Asphalt with High Percentage of RAP. J. Build. Mater. 2021, 4, 811–819. [Google Scholar]
- Pape, S.E.; Castorena, C.A. Assessment of the impacts of sample preparation on the use of EDS for analyzing recycled asphalt blending. J. Microsc. 2021, 283, 232–242. [Google Scholar] [CrossRef]
- Ding, L.; Wang, X.; Zhang, M.; Chen, Z.; Meng, J.; Shao, X. Morphology and properties changes of virgin and aged asphalt after fusion. Constr. Build. Mater. 2021, 291, 123284. [Google Scholar] [CrossRef]
- Roja, K.L.; Masad, E.; Vajipeyajula, B.; Yiming, W.; Khalid, E.; Shunmugasamy, V.C. Chemical and multi-scale material properties of recycled and blended asphalt binders. Constr. Build. Mater. 2020, 261, 119689. [Google Scholar] [CrossRef]
- Zhan, Y.; Wu, H.; Song, W.; Zhu, L. MDs Study of the Diffusion between Virgin and Aged Asphalt Binder. Coatings 2022, 12, 403. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, H.; Gao, Y.; Wang, L. Study of diffusion characteristics of asphalt–aggregate interface with MDs simulation. Int. J. Pavement Eng. 2019, 22, 319–330. [Google Scholar] [CrossRef]
- Xu, M.; Yi, J.; Feng, D.; Huang, Y. Diffusion characteristics of asphalt rejuvenators based on MDs simulation. Int. J. Pavement Eng. 2017, 20, 615–627. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H.; Sun, W. MDs study of rejuvenator effect on RAP binder: Diffusion behavior and molecular structure. Constr. Build. Mater. 2018, 158, 1046–1054. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H. MDs simulation of diffusion coefficients between different types of rejuvenator and aged asphalt binder. Int. J. Pavement Eng. 2020, 21, 966–976. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Guo, M.; Wang, D.; Oeser, M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Constr. Build. Mater. 2018, 187, 718–729. [Google Scholar] [CrossRef]
- Cui, B.; Gu, X.; Wang, H. Numerical and experimental evaluation of adhesion properties of asphalt-aggregate interfaces using MDs simulation and atomic force microscopy. Road Mater. Pavement Des. 2022, 23, 1564–1584. [Google Scholar] [CrossRef]
- Cui, B.Y. The Blending Mechanism of Virgin and Aged Asphalt Binders in Hot Recycled Asphalt Based on MDs Simulations; Southeast University: Nanjing, China, 2020. [Google Scholar]
- Zhu, X.; Du, Z.; Ling, H.; Chen, L.; Wang, Y. Effect of filler on thermodynamic and mechanical behaviour of asphalt mastic: A MD simulation study. Int. J. Pavement Eng. 2018, 21, 1248–1262. [Google Scholar] [CrossRef]
- Zhang, J.P.; Pei, J.Z.; Li, Y.W. Research on Interaction between Asphalt and Filler Based on DSR Test. Adv. Mater. Res. 2013, 723, 480–487. [Google Scholar] [CrossRef]
- Long, Z.; You, L.; Tang, X.; Ma, W.; Ding, Y.; Xu, F. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using MDs simulation. Constr. Build. Mater. 2020, 255, 119354. [Google Scholar] [CrossRef]
- Khabaz, F.; Khare, R. Glass Transition and Molecular Mobility in Styrene-Butadiene Rubber Modified Asphalt. J. Phys. Chem. B 2015, 119, 14261–14269. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Yang, Y.; Zhang, J.H.; Gu, F. MDs investigation of interfacial adhesion between oxidised bitumen and mineral surfaces. Appl. Surf. Sci. 2019, 479, 449–462. [Google Scholar] [CrossRef][Green Version]
- Xu, G.; Wang, H. MDs study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.-J.; Tan, Y.-Q.; Liu, Z.-Y. Investigating the Interactions of the Saturate, Aromatic, Resin, and Asphaltene Four Fractions in Asphalt Binders by Molecular Simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, B.; Shu, X.; Zhang, Y.Z.; Woods, M.E. Use of MDs to investigate diffusion between virgin and aged asphalt binders. Fuel 2016, 174, 267–273. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Wang, S.; Zhang, X.Y.; Xiao, C.Y.; Yu, B. MDs evaluation of activation mechanism of rejuvenator in reclaimed asphalt pavement (RAP) binder. Constr. Build. Mater. 2021, 298, 123898. [Google Scholar] [CrossRef]
SARA Components | Molecular Name | Virgin Asphalt | Aged Asphalt | ||||
---|---|---|---|---|---|---|---|
Molecular Number | Molecular Formula | Molecular Number | Molecular Formula | C = O | S = O | ||
Saturates | Squalane | 8 | C30H62 | 6 | C30H62 | 0 | 0 |
Hopane | 7 | C35H62 | 8 | C35H62 | 0 | 0 | |
Aromatics | PHPN | 14 | C35H44 | 12 | C35H40O2 | 2 | 0 |
DOCHN | 15 | C30H46 | 12 | C30H44O | 1 | 0 | |
Resins | Pyridinohopane | 2 | C36H57N | 4 | C36H55NO | 1 | 0 |
Thio-isorenieratane | 2 | C40H60S | 3 | C40H58O2S | 1 | 1 | |
Trimethylbenzene-oxane | 2 | C29H50O | 2 | C29H48O2 | 1 | 0 | |
Quinolinohopane | 1 | C40H59N | 3 | C40H57NO | 1 | 0 | |
Benzobisbenzothiophene | 13 | C18H10S2 | 16 | C18H10OS2 | 0 | 1 | |
Asphaltenes | Phenol | 2 | C42H54O | 3 | C42H50O3 | 2 | 0 |
Pyrrole | 1 | C66H81N | 1 | C66H73NO4 | 4 | 0 | |
Thiophene | 2 | C51H62S | 3 | C51H58O3S | 2 | 1 |
Properties | Calculated Results | Results in the Literature |
---|---|---|
Density (298.15 K) | 0.98 | 0.92 (Long et al. [35]); 0.997 (Khabaz and Khare [36]); 0.981 (Gao et al. [37]) |
Cohesive energy density (108 J/m3) | 3.20 | 3.32 (Xu and Wang [38]); 3.21 (Wang et al. [39]) |
z (Å) | 413.15 K | 433.15 K | 453.15 K |
---|---|---|---|
Virgin–aged asphalt | 51.36 | 54.28 | 57.04 |
Virgin asphalt–RAM | 51.07 | 53.92 | 56.99 |
D0 (m2/s) | 413.15 K | 433.15 K | 453.15 K |
---|---|---|---|
Virgin–aged asphalt | 1.012 × 10−9 | 1.167 × 10−9 | 1.254 × 10−9 |
Virgin asphalt–RAM | 1.006 × 10−9 | 1.126 × 10−9 | 1.202 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, Q.; Qiu, X.; Liu, K.; Xiao, S.; Xu, W. Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic. Buildings 2023, 13, 862. https://doi.org/10.3390/buildings13040862
Chen S, Yang Q, Qiu X, Liu K, Xiao S, Xu W. Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic. Buildings. 2023; 13(4):862. https://doi.org/10.3390/buildings13040862
Chicago/Turabian StyleChen, Shuqi, Qing Yang, Xin Qiu, Ke Liu, Shanglin Xiao, and Wenyi Xu. 2023. "Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic" Buildings 13, no. 4: 862. https://doi.org/10.3390/buildings13040862