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Abstract: Overall, this paper provides a comprehensive approach for designing structures subject
to rhythmic crowd loading. By considering the randomness of the load model and structural
response, the design method provides a more realistic evaluation of the structure’s performance. The
establishment of links between the deterministic individual loading and the random crowd loading
simplifies the calculation process and makes it more practical for real-world applications. The use of
reduction factors based on experimentally determined standard deviations ensures that the design
method provides a lower bound for the expected response of the structure. The consideration of
the involvement of an infinite number of people in the reduction factors adds an additional level
of conservatism to the design, further ensuring the safety of the structure. The examples provided
illustrate the effectiveness of the design method in evaluating the maximum displacements and
accelerations of a floor structure subjected to rhythmic crowd loading. Overall, the paper provides
a valuable contribution to the field of structural engineering by providing a practical and realistic
approach for designing structures subject to rhythmic crowd loading.

Keywords: rhythmic crowd loading; designing structures; expected response

1. Introduction

Rhythmic crowd loading refers to the repeated and organized movements of a group
of people, such as in a dance or exercise class. This type of loading can cause resonant
vibrations in lightweight structures, which can be dangerous if not properly accounted for
in the design phase. The study of dynamic behaviour induced by crowd loading has become
increasingly important in recent years due to the growing popularity of large public spaces,
such as stadiums and concert halls. These spaces are often designed to accommodate large
numbers of people, and therefore must be able to withstand the dynamic loads induced by
crowd movement. In addition to safety concerns, serviceability is also an important factor
in the design of these structures. Vibrations induced by crowd loading can be felt by other
users of the space, such as spectators or workers, and can cause discomfort or even nausea.
In summary, understanding the dynamic behaviour of lightweight structures induced by
crowd loading is crucial for ensuring both the safety and comfort of users in large public
spaces. The importance of this has been highlighted by SCOSS [1]. Further research in
this area will continue to be important as these spaces become more common and more
heavily used.

This type of loading can be observed in various settings, such as concerts, sports
events, festivals, and dance parties. The rhythmic crowd loading can cause significant
dynamic forces on the structure. Organizers should ensure that the structure and equipment
are designed to withstand the expected loads. The crowd load is very uncertain; Luca
Bruno proposed that the influence of a large number of uncertain parameters should be
considered in the probabilistic response research and reliability analysis of pedestrian
excitation structures [2]. In addition, engineers can use advanced analytical tools, such
as finite element analysis, to simulate crowd behaviour and predict the induced forces.
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Some individual rhythmic loads on a structure have been intensively studied, such as
individual jumping loads [3–6] and individual bouncing loads [6–9]. Crowd jumping
loads have also been studied [10,11]. The rhythmic crowd load can be quite a serious
load case, especially as it may generate a resonant reaction in some structures. Angitha
Vijayan suggested that if there is a mode with low natural frequency, even a very low
forced frequency will lead to strong vibration, which may lead to panic [12]. Bruno
and Venuti proposed a model to describe the behavior of unrelated and synchronous
pedestrians by linking the percentage of synchronous pedestrians with the crowd density
value [13]. Structural responses induced by rhythmic loading have also been investigated.
Ji and Ellis [14] provided an analytical method for determining the response of floors to
these loads. The analytical method was verified by the experiment in [15]. Willford [16]
carried out an investigation into crowd-induced vertical dynamic loads using available
measurements. Gaspar and Silva [17] studied the structural problems related with excessive
vibrations of steel–concrete composite floors due to human rhythmic activities. However,
as rhythmic loads are applied on the structures, taking into consideration the proposed
recommendations by Annex A in BS 6399 Part 1 [18], it always results in a much higher
structural response than that found in practice [19] to data. One reason for overestimation
is the significant difference between the situation where everyone is doing the coordinated
actions and the situation where only some of the crowd are doing the coordinated actions,
which is often encountered in a practical situation. For example, in pop concerts, some
people are jumping and other people are just bouncing or bobbing. These two cases result in
large differences in the structural vibration. In this paper, the extreme case when everyone
in a crowd is doing the coordinated actions is considered. Another reason is that perfect
synchronism is unlikely even when there is a music beat to follow when a crowd of people
attempt the same repetitive movement. The imperfection in coordination is mainly due
to that in responding to music beats, individuals may move slightly faster or slower, or
move higher or lower. Imperfect synchronism is intensively considered in the analysis of
the random response of structures subject to rhythmic crowd loading in this paper.

The paper investigates the design method for evaluating random responses of struc-
tures subject to rhythmic crowd loading. The proposed design method can be applied to
a range of structures, such as grandstands, bridges, and floors subject to crowd loading,
when the response of a structure is dominated by its single (normally fundamental) mode.
The method provides valuable insights into the effects of imperfect synchronism and the
potential reduction in resonant response due to the damping effect of crowd loading. The
analysis highlights the importance of accounting for the randomness of crowd behavior
and its impact on structural response, which is critical for the safety and reliability of
the structures. Overall, the proposed design method can aid in the development of safer
structures in crowded settings, making them more resilient to the effects of crowd loading.

2. Random Load Model

An individual dance-type load where jumping is included can be described as follows

F(t) = G

[
1.0 +

∞

∑
n=1

rn(α) sin(2π fpt + φn)

]
(1)

where fp = 1/Tp is the load frequency and G is the individual body weight. rn and φn are
the Fourier coefficient and the phase lag, respectively, defined by Ji and Ellis [14]. Both rn
and φn are functions of the contact ratio α corresponding to different activities. rn is defined
below

rn(α) =

{
π/2 f or 2nα = 1∣∣∣ cos(nπα)

1−4n2α2

∣∣∣ f or 2nα 6= 1
(2)



Buildings 2023, 13, 1085 3 of 15

φn(α) =


0 f or nα = 1/2

tan−1
(

1+cos(2nπα)
sin(2nπα)

)
+ π f or sin(2nπα)

1−(2nα)2 < 0

tan−1
(

1+cos(2nπα)
sin(2nπα)

)
f or sin(2nπα)

1−(2nα)2 > 0
(3)

The load model for an individual jumping has been experimentally verified [15].
When M people in a group move, perfect coordination between individuals in the group is
unlikely to be achieved. As a result, the load model for an individual jumping may not be
directly applicable to a group of people moving together. The imperfection in coordination
is mainly due to that in responding to music beats, individuals may move slightly faster or
slower by ∆ts or jump higher or lower by ∆a. ∆ fp describes the random difference between
the music beat frequency and the frequency that a person jumps; ∆ts indicates that even
if people move at the music frequency, they may move randomly a little ahead or behind
the music beat; and ∆a shows that people may jump higher or lower than the average
contact ratio in the group. Therefore, it is assumed that ∆ fp, ∆ts, and ∆a are the three
independent random variables. ∆a, ∆ts, ∆ fp attenuate the structural response. Following
this assumption, the load induced by the typical sth individual in the group becomes

Fs(t) = Gs

[
1.0 +

∞

∑
n=1

rn(α + ∆α) sin(2nπ( fp + ∆ fp)t + φn + nψ)

]
(4)

where ψ = 2π∆ts/Tp is a phase lag variation, which characterizes the phase difference
between an individual in a group and the music beat played.

When M people in a group move, the load becomes

F(t) =
M

∑
s=1

Gs

[
1.0 +

∞

∑
n=1

rn(α + ∆α) sin(2nπ fpt + φn + nψ)

]
δ(x− xs)δ(y− xs) (5)

where δ(•) is a Dirac function.
As people in the group tend to follow the music as accurately as possible, the time

delay variation ψ is expected to follow the normal distribution

f (ψ) =
1

σψ

√
2π

e−(ψ−µψ)
2/2σ2

ψ (6)

where µψ is the mean of time delay variation ψ and is zero (µψ = 0); the parameter σψ is its
standard deviation, and

ψ ∈ [−π, π] (7)

3. Random Responses of a Structure

When the response of a structure, such as floors and grandstands, is dominated by its
single (normally fundamental) mode subject to dance-type loads (Equation (1)), a method
for calculating the responses of the generalised single degree of freedom system has been
provided [14]. The displacement of the generalised SDOF system induced by an individual
(Equation (1)) is

As(t) =
GsW(xs, ys)

K∗

1.0 +
∞

∑
n=1

rn(α) sin(2nπ fpt + φn − θn)√(
1− (nβ)2

)2
+ (2nξβ)2

 (8)

where W(x, y) is the mode shape of the structure, GsW(xs, ys) is the modal load, and K∗ is
the modal stiffness of the generalised SDOF system. β is the ratio of the load frequency to
the frequency of the generalised SDOF system, i.e., β = fp/ fs. fs is the frequency of the
generalised SDOF system. θn is the phase angle, θn = tan−1(2 ξnβ/(1− (nβ)2)).
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The ratio after the summation sign is the conventional response of the SDOF system
subject to a harmonic load, and the summation considers the effect of several harmonic
load components in Equation (1).

When a group of people jumps in perfect coordination, the displacement and accel-
eration response induced by the group just simply sums up the response induced by an
individual (Equation (8)) as follows:

AI(t) =

M
∑

s=1
GsW(xs, ys)

K∗

1.0 +
∞

∑
n=1

rn(α) sin(2nπ fpt + φn − θn)√(
1− (nβ)2

)2
+ (2nξβ)2

 (9)

..
AI(t) =

M
∑

s=1
GsW(xs, ys)

K∗
∞

∑
n=1

(2nπ fp)
2rn(α) sin(2nπ fpt + φn − θn)√(
1− (nβ)2

)2
+ (2nξβ)2

(10)

When the same generalised SDOF system is considered subject to the random individ-
ual load (Equation (5)) with ∆α, ∆t, and ∆ fp, the random displacement of the generalised
SDOF system becomes similar to Equations (8) and (9),

AR(t) =

M
∑

s=1
GsW(xs, ys)

K∗

1.0 +
∞

∑
n=1

rn(α + ∆α) sin(2nπ fpt + φn + nψ− θn)√(
1− (nβ(1 + λ))2

)2
+ (2ξnβ(1 + λ))2

 (11)

where λ is the ratio of the frequency variation ∆ fp to the load (or music) frequency fp, i.e.,
λ = ∆ fp/ fp.

At the resonant situation, n fp = fs, then

nβ = 1 (12)

As people in the group tend to jump to the music beat as accurately as possible, the
frequency variation λ is expected to follow a normal distribution

f (λ) =
1

σλ

√
2π

e−(λ−µλ)
2/2σ2

λ (13)

where λ is defined in Equation (11). µλ is the mean of frequency variation and is zero
(µλ = 0); the parameter σλ is its standard deviation, and

λ ∈ [−0.5, 0.5] (14)

As with the time delay variation and the frequency variation, the contact ratio variation
δ is also expected to follow a normal distribution

f (δ) =
1

σδ

√
2π

e−(λ−µδ)
2/2σ2

δ (15)

where δ = ∆α, µδ is the mean of frequency variation ∆α and is zero (µδ = 0); the parameter
σδ is its standard deviation, and

δ ∈ [−0.5, 0.5] (16)

4. Evaluation of Random Responses

It is difficult to calculate the random responses AR(t) in design. Therefore, the provi-
sion of the mean responses E[AR(t)] of the structure is expected. It is assumed that ∆ fp,
∆ts, and ∆a are the three independent random variables at the beginning of this paper.



Buildings 2023, 13, 1085 5 of 15

Meanwhile, the randomness for the phase lag φn and phase angle θn is not considered
in the evaluation of the structural random response. Therefore, the mean of the random
displacement AR(t) of the structure shown in Equation (11) is

E[AR(t)] =

M
∑

s=1
GsW(xs, ys)

K∗

1.0 +
∞

∑
n=1

Cδ(n)Cψ(n)Cλ(n, ξ)
rn(α) sin(2nπ fpt + xφn − θn)√(

1− (nβ(1 + λ))2
)2

+ (2ξnβ(1 + λ))2
sin(2nπ fpt + φn − θn)

 (17)

where Cδ(n) reflects the significance of the contact ratio effect, it is named as the synchro-
nization reduction factor; Cψ(n) describes the significance of the dynamic crowd effect,
named as the crowd reduction factor; Cλ(n, ξ) can be seen as the frequency reduction factor
and is a function of the critical damping ratio of the generalised SDOF system. Three
reduction factors are defined by

Cψ(n) =
1

σψ

√
2π

π∫
−π

cos(nψ)e
−ψ2

2σ2
ψ dψ (18)

Cδ(n) =
1

σδ

√
2π

0.5∫
−0.5

∣∣∣∣∣ cos(nπ(α + δ))

1− (2n(α + δ))2

∣∣∣∣∣)e−λ2

2σ2
δ dδ (19)

Cλ(n, ξ) =
1

σλ

√
2π

0.5∫
−0.5

√(
1− (n fp/ f )2

)2
+
(
2ξ(n fp/ f )

)2√(
1− (n fp/ f )2(1 + λ)2

)2
+
(
2ξ(n fp/ f )(1 + λ)

)2
e
−λ2

2σ2
λ dλ (20)

When deriving Equation (18), the following equation about the time delay variation ψ
is used

π∫
−π

sin(nψ)e
−ψ2

2σ2
ψ dψ = 0 (21)

Equation (17) indicates that the calculation of the mean value of the response is
equivalent to that of the mean values of the magnification factor independently.

The mean acceleration can be obtained by differentiating twice E[AR(t)] in respect to
time and is given as follows:

E[
..
AR(t)] =

M
∑

s=1
GsW(xs, ys)

K∗
∞

∑
n=1

(2nπ fp)
2Cδ(n)Cψ(n)Cλ(n, ξ) sin(2nπ fpt + φn − θn) (22)

5. Evaluation of Reduction Factor

In some practical experiences, it is found that the first two or three loading components
are significant when a crowd is considered. This indicates that only the first three Fourier
terms need to be considered in the analysis and design. Therefore, the first four Fourier
terms are to be considered in the flowing analysis. Meanwhile, it is found that some
experimental results are used in the evaluation of the reduction factor, and these points
include some of the background about the experimental results:

• The frequency around 2 Hz is the easiest frequency for people jumping with rhythm.
Therefore, all experimental results in this paper are based on the person’s jumping at
near 2 Hz.

• Actually, a person jumping by himself should be different for a person jumping in a
group. It is considered the same in this paper. This means all experimental results are
based on the individual person jumping.
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5.1. Crowd Reduction Factor

The crowd reduction factor is defined by Equation (18), which considers an infinite
number of people involved. In actual situations, the number of jumpers may range from a
few tens at aerobics to several thousands in pop concerts. Therefore, the crowd reduction
factor evaluated from Equation (18) provides a lower bound, i.e., the actual value of the
crowd reduction factor will not be less than the one obtained from Equation (18). The
crowd reduction factor depends on the value of the standard deviation σψ and the order of
the Fourier terms. For appreciation of the variation of Cψ(n) on σψ, several values of the
standard deviation are considered. σψ = 0.22π for the standard deviation was suggested
by Ellis [20] based on the measurements of group jumping tests [21]. The group size ranged
from 2 to 64. Another value is given by Jun Chen, etc. in [22]; according to the experiments
presented, σψ equals 0.32π at 2 Hz. Therefore, some values of standard deviation are
selected based on the reference values for evaluating the crowd reduction factor. Cψ(n)
with respect to σψ is presented in Figure 1. Table 1 lists the first four crowd reduction factors
(n = 1, 2, 3, and 4) corresponding to five selected values of the standard deviation.

1 
 

 
Figure 1. Crowd reduction factors Cψ(n).

Table 1. Crowd reduction factors Cψ(n).

n
σψ

0.20π 0.22π 0.25π 0.28π 0.30π 0.32π 0.35π

1 0.821 0.788 0.735 0.680 0.642 0.605 0.550
2 0.454 0.385 0.291 0.212 0.169 0.131 0.086
3 0.169 0.117 0.062 0.031 0.019 0.012 0.007
4 0.042 0.022 0.007 0.002 0.000 0.000 0.000

It can be noted from Figure 1 and Table 1 that:

• The smaller the standard deviation, the larger the crowd reduction factor, which
corresponds to better coordination between individuals in a group and a smaller
dynamic crowd effect.
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• The higher order the load term, the smaller the crowd reduction factor, and the larger
the dynamic crowd effect.

• For the range of standard deviation between 0.22π and 0.32π, Cψ(3) is small and Cψ(4)
is very small and negligible. This indicates that only the first three Fourier terms need
to be considered in the analysis and design. This coincides with practical experience
in which only the first two or three loading components are significant when a crowd
is considered.

5.2. Synchronization Reduction Factor

Similar to the determination of the crowd reduction factor, the evaluation of the
synchronization reduction factor considers an infinite number of people. Therefore, the
synchronization reduction factor evaluated by Equation (19) provides a lower bound,
i.e., the actual reduction factor will not be less than the one evaluated. However, the
synchronization reduction factor depends on the standard deviation of the random variable,
the average contact ratio α, and the order of the Fourier terms. A value of the standard
deviation of σδ = 0.082 Hz was provided when people jumped at [1.9 Hz–2.15 Hz] by
Ellis [20]. Another value of the standard deviation of the contact ratio variation δ is 0.084
at 2 Hz given by Jun Chen, etc. [22], according to the experiments presented. A value
of the average contact ratio α = 0.47 Hz was provided when people jumped at 1.9 by
Ellis and Ji [4]. Another value of the contact ratio variation δ is 0.67 at 2 Hz given by Jun
Chen, etc. [23], according to the experiments. Figure 2 shows the synchronization reduction
factor Cδ(n) with respect to the standard deviation of the frequency variation σδ and the
average contact ratio α for different orders of the Fourier terms. For a clearer understanding
of the effect of σδ, Table 2 lists the first four crowd reduction factors (n = 1, 2, 3, and 4)
corresponding to five selected values of the standard deviation at α = 0.47.
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Table 2. Synchronization reduction factors Cδ(n).

n
σδ

0.06 0.07 0.08 0.09 0.10

1 1.613 1.612 1.610 1.608 1.606
2 0.781 0.783 0.785 0.787 0.790
3 0.157 0.179 0.200 0.222 0.243
4 0.111 0.109 0.110 0.114 0.122

It can be noted from Figure 2 and Table 2 that:

• Normally, the larger the average contact ratio α, the smaller the synchronization
reduction factor, and the bigger the dynamic crowd effect. However, for Cδ(3) and
Cδ(4) in the area of a lower α and larger σδ, Cδ(n) is a little bit large.

• The effect of σδ on Cδ(n) is not significant, especially for Cδ(1) and Cδ(2).
• The larger the order of the Fourier terms, the smaller the synchronization reduction

factor, and the bigger the dynamic crowd effect.
• Comparing Cδ(1) and Cδ(2), Cδ(3) and Cδ(4) is small. This coincides with practical

experience in which only the first two or three loading components are significant
when a crowd is considered.

Table 3 lists the first four crowd reduction factors (n = 1, 2, 3, and 4) corresponding to
five selected values of the contact ratio α.

Table 3. Synchronization reduction factors Cδ(n) with different contact ratios α.

n
α

0.3 0.4 0.5 0.6 0.7

1 1.827 1.708 1.564 1.400 1.222
2 1.387 1.036 0.680 0.367 0.151
3 0.863 0.406 0.152 0.111 0.096
4 0.455 0.161 0.099 0.060 0.043

5.3. Frequency Reduction Factor

In Equation (20), the frequency reduction factor depends on the value of the standard
deviation σλ, damping ratio ξ, the order of Fourier term n, and the frequency ratio fp/ fs.
The most critical situation is that resonance occurs, i.e., n fp/ fs = 1, when structures
are loaded by rhythmic crowd loading. In this paper, the first four Fourier terms are
considered, and the structure is dominated by its single (normally fundamental) mode.
Hence, the resonance can occur at the first Fourier term ( fp/ fs = 1), the second Fourier
term ( fp/ fs = 1/2), the third Fourier term ( fp/ fs = 1/3), or the fourth Fourier term
( fp/ fs = 1/4). It is found that the other three terms fp/ fs are ascertained when the
resonance term is determined. Table 4 presents the result.

Table 4. Based on the resonance term.

The Resonance Term
n

1 2 3 4

1st Fourier term 1 2 3 4
2nd Fourier term 1/2 1 3/2 2
3rd Fourier term 1/3 2/3 1 4/3
4th Fourier term 1/4 1/2 3/4 1
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Now, the resonance term is analysed as follows. Equation (20) becomes

Cλ(ξ) =
1

σλ

√
2π

0.5∫
−0.5

1√(
1− (1 + λ)2

)2
+ (2ξ(1 + λ))2

e
−λ2

2σ2
λ dλ (23)

Cλ(ξ) is named as the resonance reduction factor. Similar to the crowd reduction
factor and the synchronization reduction factor, the resonance reduction factor evaluated
by Equation (23) provides a lower bound, i.e., the actual reduction factor will not be less
than the one evaluated. However, the resonance reduction factor depends on the standard
deviation of the random variable and damping ratio. A value of the standard deviation of
∆ fp = 0.074 Hz was provided when people jumped at 1.9 Hz by Ellis [22]. This value is
equivalent to σλ = 0.039. Another value of the standard deviation of the frequency variation
σλ is 0.057 at 2 Hz given by Jun Chen, etc. [23], according to the experiments presented.
Figure 3 shows the resonance reduction factor Cλ(ξ) with respect to the standard deviation
of the frequency variation σλ and the damping ratio ξ. For a clearer understanding of the
effect of σλ and ξ, several values are presented in Table 5.
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Table 5. Several values for the resonance reduction factors Cλ(ξ) (n fp/ fs = 1).

σλ ξ=0.02 ξ=0.03 ξ=0.04 ξ=0.05

0.03 17.268 13.165 10.618 8.877
0.04 15.358 12.017 9.876 8.373
0.05 13.860 11.054 9.217 7.903
0.06 12.655 10.243 8.639 7.477

It can be noted from Figure 3 and Table 5 that:

• The larger the standard deviation, the smaller the resonance reduction factor, and the
bigger the dynamic crowd effect.

• The larger the critical damping ratio, the bigger the resonance reduction factor, and
the smaller the dynamic crowd effect.

According to Equation (20) and numerical analysis, it is found that the influence
of the standard deviation of the frequency variation σλ and the damping ratio ξ on the
off-resonance reduction factors Cλ(n, ξ) (n fp/ fs 6= 1) is negligible. Several values are
presented in Table 6.
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Table 6. The off-resonance reduction factors Cλ(n, ξ) (n fp/ fs 6= 1).

nfp/fs

1/4 1/3 1/2 2/3 3/4 4/3 3/2 2 3 4

1.067 1.125 1.334 1.806 2.310 1.339 0.828 0.337 0.126 0.068

6. Example for Evaluation of Random Response of Structure

In this section, the evaluation of the random response of the structure is presented in
Tables 1–6. Consider a simply supported floor subject to rhythmic crowd loading, which
has the following data:

Dimensions: 8.0 m × 8.0 m × 0.14 m
Mass density: 2400 kg/m3

Elastic modules: 30× 109 N/m2

Poisson ratio: 0.2
Critical damping ratio: 0.02
Loading: 750 N/m2 over the floor

The displacement and acceleration at the centre of the floor are to be calculated consid-
ering perfect and imperfect coordination between individuals in the group, converting the
floor into a generalised SDOF system

The floor response is dominated by its fundamental mode, sin(πx/Lx) sin(πy/Ly).
The properties of the generalised SDOF system of the floor can be determined as follows:

Modal stiffness: M∗ = 5376 kg
Modal stiffness: K∗ = 1.098× 107 N/m
Fundamental natural frequency: fs = 7.16 Hz
The generalised load: F = 19, 454 N

The displacements and accelerations of the generalised SDOF system are calculated
using Equations (9) and (10). The load frequency is set at one-third of the floor frequency,
which creates a resonant situation at the third Fourier term. Other parameters are selected
as in Table 7.

Table 7. Other parameters.

σψ a σλ

0.28π 0.6 0.05

According to σψ = 0.28π, crowd reduction factors Cψ(n) for different Fourier terms
can be found in Table 1 and are presented in Table 8.

Table 8. Crowd reduction factors Cψ(n).

n

1 2 3 4

0.680 0.212 0.031 0.002

Based on a = 0.6 and the conclusions about σδ, the synchronization reduction factors
Cδ(n) for different Fourier terms can be found in Table 3 and are presented in Table 9.

Table 9. Crowd reduction factors Cδ(n).

n

1 2 3 4

1.400 0.367 0.111 0.060
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According to σλ = 0.05, ξ = 0.02, and the resonant situation at the third Fourier
term, the frequency reduction factor Cλ(n, ξ) for different Fourier terms can be found from
Tables 5 and 6 and are presented in Table 10.

Table 10. Crowd reduction factors Cλ(n, ξ).

n

1
(1·fp/fs=1/3)

2
(2·fp/fs=2/3)

3
(3·fp/fs=1)

4
(4·fp/fs=4/3)

1.125 1.806 13.860 1.339

Substituting the structure date, loading date, and reduction factors into Equations (17)
and (22), the mean of the random displacement AR(t) of the structure is

E[AR(t)] = 1.772× 10−3
[

1.0 + 1.071 sin(2π fpt− 0.015) + 0.141 sin(4π fpt− 1.619)
+0.048 sin(6π fpt− 4.712) + 0.00015 sin(8π fpt− 1.5023)

]
(24)

The acceleration is

E[
..
AR(t)] = −1.772× 10−3

[
241 sin(2π fpt− 0.015) + 127 sin(4π fpt− 1.619)
+97 sin(6π fpt− 4.712) + 0.538 sin(8π fpt− 1.5023)

]
(25)

Substituting the structure date and loading data into Equations (9) and (10), the
deterministic displacement and acceleration response of the structure can also be obtained.
Comparing the results presented in Equations (24) and (25), Figures 4 and 5 present
the displacement and acceleration results. The maximum deterministic displacement is
0.0067 m and the max mean of the random displacement is 0.0044 m. The maximum
deterministic acceleration is 3.018 m/s2 and the max mean of the random acceleration
is 0.998 m.
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If the values of σψ, σδ, and σψ are negligible, such as σψ = 0.02, σδ = 0.002, and
σψ = 0.002, Figure 6 shows the displacement response of the structure. When the deviation
of the random variables ∆a, ∆ts, and ∆ fp are small, the deterministic displacement is
equal to the mean of the random displacement as presented in Figure 6, which meets the
expectation. To some degree, this also verifies the correction of Equations (17) and (22), and
the coefficients in Tables 1–6.
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Figure 6. Displacement of the structure with σψ = 0.02, σδ = 0.002, and σψ = 0.002.

In order to appreciate the effect of the two reduction factors, the values of the following
term is evaluated,

sn = Cδ(n)Cψ(n)Cλ(n, ξ) (26)

..
sn = (2nπ fp)

2Cδ(n)Cψ(n)Cλ(n, ξ) (27)

The coefficient sn is the harmonic term coefficients to the mean of the random dis-
placement AR(t), and

..
sn to the mean of the random acceleration

..
AR(t). The contribution

of each of the harmonic terms to the displacement and acceleration, respectively, are shown
in Tables 11 and 12.

Table 11. Displacement response contributions from each of the harmonic terms.

Situation The Harmonic Terms n

1 2 3 4

Without considering ∆a, ∆ts, ∆ fp 1.580 0.611 3.382 0.036

Considering ∆a 1.575 0.659 2.759 0.077

Considering ∆ts 1.074 0.130 0.104 0.000

Considering ∆ fp 1.580 0.616 1.871 0.038

Considering ∆a, ∆ts, ∆ fp 1.071 0.141 0.048 0.00015

It can be observed from the results in Table 11 that:

• For perfect coordination when ∆a, ∆ts, and ∆ fp are not considered, the response
induced by the third load term dominates the total response.

• When contact ratio difference ∆a is considered, the resonant response due to the third
term becomes smaller. However, the response induced by the third load term also
dominates the total response.
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• When time delay ∆ts is considered, the resonant response due to the third term be-
comes much smaller and is even smaller than that induced by the first load component.
Therefore, the total response contains more from the response due to the load term.

• When frequency difference ∆ fp is considered, the response due to the third term
becomes smaller and is a little bit bigger than that induced by the first load component.
Hence, the total response contains more from the response due to the load term.

• When ∆a, ∆ts, and ∆ fp are taken into account, the response induced by the third load
term is further reduced. Thus, the response from the first component is clearer in the
total response.

It can be observed from the results in Table 12 that:

• For perfect coordination, the response induced by the third load term dominates the
total response. Figure 5 shows the maximum acceleration is up to 1.5 g, which is
unrealistic.

• When contact ratio difference ∆a is considered, the resonant acceleration due to the
third term becomes smaller. However, the acceleration induced by the third load term
also dominates the total response.

• When time delay ∆ts is considered, it significantly attenuates the acceleration. The
total response contains more from the response due to the load term.

• When frequency difference ∆ fp is considered, the acceleration induced by the third
load term dominates the total response.

• When ∆a, ∆ts, and ∆ fp are considered, the maximum acceleration is further reduced
to 0.1 g. Again, the response is controlled by the first term.

Table 12. Acceleration response contributions from each of the harmonic terms.

Situation n

1 2 3 4

Without considering ∆a, ∆ts, ∆ fp 355 550 6842 129

Considering ∆a 354 592 5581 275

Considering ∆ts 241 117 211 0.239

Considering ∆ fp 355 554 3786 136

Considering ∆a, ∆ts, ∆ fp 241 127 97 0.538

7. Conclusions

This article studies the design method for evaluating the random response of structures
under the load of rhythmic crowds. The load model considers three random variables
that reflect incomplete synchronization: time delay, contact ratio, and load frequency.
The stochasticity of the structural response is considered by introducing the crowding
reduction coefficient, the synchronization reduction coefficient, and the resonance reduction
coefficient. The conclusions drawn from this study are that:

• The smaller the standard deviation, the larger the group reduction coefficient, and the
smaller the dynamic group effect, which corresponds to better coordination among
individuals in the group. The higher the order of the load term, the smaller the crowd
reduction coefficient, and the larger the dynamic crowd effect.

• The larger the average overlap, the smaller the synchronization reduction coefficient,
and the larger the dynamic crowd effect. The effect of overlap difference on synchro-
nization is not significant. The larger the order of the Fourier term, the smaller the
synchronization reduction factor, and the larger the dynamic crowd effect.

• For the resonance reduction coefficient, the larger the standard deviation, the smaller
the resonance reduction coefficient, and the larger the dynamic crowd effect. The
larger the critical damping ratio, the larger the resonant reduction coefficient, and the
smaller the dynamic crowd effect.
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• The effect of the standard deviation of the frequency changes and the damping ratio
on non-resonant reduction coefficients can be ignored.

Author Contributions: Methodology, M.Y.; Software, J.-K.D.; Validation, J.-K.D.; Investigation, M.Y.;
Data curation, J.-K.D.; Writing – original draft, J.-K.D.; Supervision, J.-K.D. and M.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Guangzhou Basic Research Program, grant number SL2022A03
J00954, and the APC was funded by Guangzhou Basic Research Program grant number SL2022A03J00954.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: I would like to express my deepest gratitude to all those who have supported
me throughout this research journey.

Conflicts of Interest: The author of this paper with title of Design for Random Response of Structures
Subject to Rhythmic Crowd Loading receives research funding by Guangzhou Basic Research Program
(SL2022A03J00954). Any opinions, findings, and conclusions expressed in this paper are those solely
of the authors and do not necessarily reflect the view of Guangzhou University. The authorship
arrangement has been reviewed and approved by Guangzhou University in accordance with its
policy on objectivity in research.

References
1. ‘Structural Safety 2000-01’; The 13th Report of the Standing Committee on Structural Safety (SCOSS); Institution of Structural

Engineers: London, UK, 2001.
2. Bruno, L.; Corbetta, A. Uncertainties in crowd dynamic loading of footbridges: A novel multi-scale model of pedestrian traffic.

Eng. Struct. 2017, 147, 545–566. [CrossRef]
3. Allen, D.E.; Rainer, J.H.; Pernica, G. Vibration criteria for assembly occupancies. Can. J. Civ. Eng. 1985, 12, 617–623. [CrossRef]
4. Ellis, B.R.; Ji, T. Loads generated by jumping crowds: Numerical modelling. Struct. Eng. 2004, 82, 35–40.
5. Georgiou, L.; Racic, V.; Brownjohn, J.M.; Elliot, M.T. Coordination of Groups Jumping to Popular Music Beats. Conf. Proc. Soc.

Exp. Mech. Ser. 2015, 2, 283–288.
6. Racic, V.; Brownjohn, J.M.W.; Pavic, A. Measurement and Application of Bouncing and Jumping Loads Using Motion, Tracking

Technology. Conf. Proc. Soc. Exp. Mech. Ser. 2011, 63, 201–210.
7. Yao, S.P.; Wright, J.; Pavic, A.; Reynolds, P. Forces generated when bouncing or jumping on a flexible structure. In Proceedings of

the International Conference on Noise and Vibration Engineering, Leuven, Belgium, 16–18 September 2002; VOLS, 1–5; Katholieke
Universiteit Leuven: Leuven, Belgium, 2002.

8. Sim, J.; Blakeborough, A.; Williams, M.S. Dynamic loads due to rhythmic human jumping and bobbing. In Proceedings of the 6th
International Conference on Structural Dynamics, Paris, France, 4–7 September 2005; VOLS 1–3; Millpress Science Publishers:
Rotterdam, The Netherlands, 2005; Volume 1, pp. 467–472.

9. Duarte, E.; Ji, T. Action of Individual Bouncing on Structures. J. Struct. Eng. 2009, 135, 818–827. [CrossRef]
10. Ellis, B.R.; Ji, T. The Response of Structures to Dynamic Crowd Loads; The Building Research Establishment Ltd.: Watford, UK, 2004.
11. Sim, J.; Blakeborough, A.; Williams, M.; Parkhouse, G. Statistical Model of Crowd Jumping Loads. J. Struct. Eng. 2008, 134,

1852–1861. [CrossRef]
12. Vijayan, A.; Abraham, N.M.; Da Anitha Kumari, S. Analysis of structures subjected to crowd loads. Procedia Struct. Integr. 2019,

14, 696–704. [CrossRef]
13. Bruno, L.; Venuti, F. A Simplified Serviceability Assessment of Footbridge Dynamic Behaviour Under Lateral Crowd Loading.

Struct. Eng. Int. 2010, 20, 442–446. [CrossRef]
14. Ji, T.; Ellis, B.R. Floor vibration induced by dance type loads: Theory. Struct. Eng. 1994, 72, 37–44.
15. Ellis, B.R.; Ji, T. Floor vibrations induced by dance type loads—Verification. Struct. Eng. 1994, 72, 45–50.
16. Willford, M. An investigation into crowd-induced vertical dynamic loads using available measurements. Struct. Eng. 2001, 79,

21–25.
17. Gaspar, C.; da Silva, J.G.S. Influence of the Human Rhythmic Activities Modelling on the Composite Floors Dynamic Response. J.

Civil Eng. Architect. Res. 2015, 2, 429–437.
18. BS6399; Loading for Buildings. Part 1: Code of Practice for Dead and Imposed Loads. British Standards Institution (BSI): London,

UK, 1996.
19. Institution of Structural Engineers (Istructe). Dynamic Performance Requirements for Permanent Grandstands Subjected to Crowd

Action: Interim Guidance for Assessment and Design; Institution of Structural Engineers: London, UK, 2001.
20. Ellis, B.R. Loads Generated by Jumping Crowds: Numerical Assessment; The Structural Engineer: Hong Kong, China, 2003.

https://doi.org/10.1016/j.engstruct.2017.05.066
https://doi.org/10.1139/l85-069
https://doi.org/10.1061/(ASCE)0733-9445(2009)135:7(818)
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:12(1852)
https://doi.org/10.1016/j.prostr.2019.05.087
https://doi.org/10.2749/101686610793557807


Buildings 2023, 13, 1085 15 of 15

21. Ellis, B.R.; Ji, T. Loads Generated by Jumping Crowds: Experimental Assessment; BRE IP 4/02; The Structural Engineer: Hong Kong,
China, 2002; 12p.

22. Tan, H.; Zhao, Y.; Chen, J. Experiment investigation of coherency factor of rhythmic jumping and its application for simulation of
crowd jumping load. In Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering, Crete Island, Greece, 25–27 May 2015.

23. Chen, J.; Wang, L.; Chen, B.; Yan, S. Dynamic properties of human jumping load and its modelling: Experimental study. J. Vib.
Eng. 2014, 27, 16–24. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Random Load Model 
	Random Responses of a Structure 
	Evaluation of Random Responses 
	Evaluation of Reduction Factor 
	Crowd Reduction Factor 
	Synchronization Reduction Factor 
	Frequency Reduction Factor 

	Example for Evaluation of Random Response of Structure 
	Conclusions 
	References

