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Abstract: A construction site features an open field and complexity and relies mainly on manual
labor for construction progress, quality, and field management to facilitate job site coordination
and productive results. It has a tremendous impact on the effectiveness and efficiency of job site
supervision. However, most job site workers take photos of the construction activities. These photos
serve as aids for project management, including construction history records, quality, and schedule
management. It often takes a great deal of time to process the many photos taken. Most of the time,
the image data are processed passively and used only for reference, which could be better. For this,
a construction activity image recognition system is proposed by incorporating image recognition
through deep learning, using the powerful image extraction ability of a convolution neural network
(CNN) for automatic extraction of contours, edge lines, and local features via filters, and feeding
feature data to the network for training in a fully connected way. The system is effective in image
recognition, which is in favor of telling minute differences. The parameters and structure of the
neural network are adjusted for using a CNN. Objects like construction workers, machines, and
materials are selected for a case study. A CNN is used to extract individual features for training,
which improves recognizability and helps project managers make decisions regarding construction
safety, job site configuration, progress control, and quality management, thus improving the efficiency
of construction management.

Keywords: construction image; artificial intelligence; deep learning; object detection; single shot
multibox detector (SSD)

1. Introduction

Construction work is tedious and subject to delays, and its quality may be compro-
mised by many factors, such as construction equipment, workers, and materials. Therefore,
it is necessary to improve construction quality and progress in today’s increasingly com-
petitive market by considering good job site management and meeting construction costs.
At a job site currently, a job site manager oversees everything construction-related, includ-
ing workers, machines, and materials [1-5]. The manager has to take care of virtually
everything at the job site [6]. The improvement of management methods using innovative
technology helps to not only accelerate the development of the construction industry but
also improve a company’s competitiveness in the market.

Most general contractors deploy imaging devices, such as photo and video cameras, to
document the progress of construction activities throughout the entire process. The image
data are collected, in general, by filming with a mobile camera operated by a worker or
a video camera set up at a fixed location. Most image data collected are used passively
for reference or even just shelved. The others are used to prepare quality documents
or demonstrate construction status and progress. Suppose artificial intelligence (Al) is
introduced to recognize objects in the images and help job site management identify and
tag things in the images. In that case, these image data may serve as an essential basis
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for decision-making within construction activities, including construction planning and
design, job site safety, automated equipment management [7-10], and quality monitoring
and maintenance. For example, suppose a specific machine is tagged in video footage of
construction activities [11]. In that case, the project team may exploit the captured data for
project decisions of route management, machine setup, and site safety [12-15].

When recognizing and classifying objects in many images, a deep learning model
may be introduced to accelerate the extraction of high-value digital information crucial for
construction management. The mainstream in developing the deep neural network is the
convolution neural network (CNN) which extracts critical feature information by including
one or more convolution layers and pooling layers through a combination of algorithms and
multi-layer computation of convolution neurons as the images are converted into data [16].
The feature information is fed to the neural network for training in a fully connected manner
until identical or similar features in the same class of images are identified and documented.
The relative locations and features digitally arranged during the recognition of new images
are systematically computed and processed to identify the similarities between images for
successful image judgment [17,18].

Al is having revolutionary impacts on construction engineering [19]. Thanks to
the powerful capability of Al in data processing, analysis, and searching for massive
digitization, a model to recognize construction objects at a job site can be built to rapidly
and accurately identify workers [20-22], machines [23,24], and materials [25] in job site
footage while tagging their relative locations in the images to provide more site-related
information for project management, which is a rising topic in the industry in the pursuit
of breakthroughs and innovation.

2. Literature Review

A construction project has unique complexity. The completion of a project involves
an engineering lifecycle consisting of many links, from design and construction to final
acceptance. In an era in which the development of technical information evolves at the
speed of light, the innovative technologies and management systems used in construction
management help not only maintain control over safety and health as the construction
work progresses but also facilitate the successful completion of construction projects by
reducing uncertainties while focusing on the goal of sustainable development [26].

Artificial intelligence, or Al is an engineering study focusing on researching and devel-
oping intelligent entities. Al includes the use of programs and big data to make computers
and machines mimic human thinking and simulate the “intelligent” behaviors of a human
being; when Al is the object of study, machine learning (ML) is a model to improve the
performance of specific algorithms while learning from experiences, i.e., learning from data
collected [27]. However, data learning is based on massive data processed using a multi-
layer neural network. A self-learning method is found after linear or nonlinear conversion
via multiple processing layers, which automatically extracts features representative of data
characteristics in place of the long time taken for traditional feature engineering. Deep
learning is a technology that evolved from machine learning [28].

The applications of deep learning in computer vision in recent years are in the fol-
lowing classes [29], as shown in Figure 1: (1) classification: putting an image in one of the
established classes by its nature and type; (2) semantic segmentation: identifying pixel
blocks by event type instead of classifying into “instances”; (3) classification + localization:
tagging a message to a single object with its location and size (w, h); (4) object detection:
tagging multiple objects with their locations and sizes; and (5) instance segmentation:
tagging “instances”; the objects of the same class are identified by individual locations and
sizes, particularly when they are overlapping.
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Figure 1. Applications in computer vision.

Most recent object detection studies are focused on the use of a CNN for typical model
applications in which a matching object is identified before determining in which area a
matching thing exists and tagging the location of highest probability with a box, as shown
in Figure 2. Two fully connected layers are connected behind the CNN, one for classification
and the other for tagging the matching area. There are three algorithms to organize an area:
sliding window, region proposal, and grid-based.

fully-connected
layers

H - “Classification head”

Convolution

And Pooling
Class scores
fully-connected
Final conv layers
Feature map

H - “Regression head”

Box coordinates
Figure 2. Locating algorithm model.

1.  Sliding window: a simple but time-consuming method based on the method of
exhaustion. It works by establishing windows of various sizes for image scanning
and extracting the feature information of every image window. Next, the data is fed
to a classifier for object recognition to determine if the probability of the window
matching the object to be detected is accurate. This method is the simplest but most
time-consuming [30], as presented in Figure 3.

Efficient sliding window by converting fully-

connected layers into convolutions
Class scores:

4096x 1x1 1024x1x1 1000x 1x 1
Convolution ‘ | - ‘ | ‘ i__l
+ pooling
5%x5 1x1 conv 1x1 conv
conv
-
conv 1x1 conv 1x1 conv
) Feature map: ‘ | ‘ ‘ | -
Image: 1024 x5x5
3x221x221 4096 x 1 x 1 4096 x 1 x 1 Box coordinates:

(4x1000)x1x1

Figure 3. Sliding window algorithm.
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2. Region proposal: information in the image, such as texture, edges, and color, are used
to predetermine the regions of interest (ROI) containing the object and determine the
probability of these regions for matching. The high recall is maintained by filtering
thousands of regions per second. Similar algorithms are R-CNN, Fast R-CNN, and
Faster R-CNN [31-34], as shown in Figure 4.

— :

Convert regions to boxes

Figure 4. Region proposals algorithms.

3. Grid-based regression: a picture is divided into grids, and regions of various sizes are
selected with the grids as centers. Regression determines the probability that every
bounding box contains the target. This approach is suitable for real-time detection.
Similar algorithms are you only look once (YOLO) and single shot multibox detector
(SSD) [35], as shown in Figure 5.

Go from input image to tensor with one big convolutional network

Within each grid cell:
- Regress from each of the B
base boxes to a final box with

5 numbers:
- (dx, dy, dh, dw, confidence)
- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3xHxW 7x7 7x7x(5xB+()

Image a set of base boxes
centered at each grid cell
Here B=3

Figure 5. Region Proposal algorithms.

You only look once (YOLO) predicts multiple bounding boxes and types of CNNs,
realizing end-to-end target detection and identification. This algorithm avoids the weak-
ness that object detection must be trained separately and accelerates the computation
dramatically [36], as indicated in Figure 6.
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Figure 6. Structure of a YOLO model.

The single shot multibox detector (SSD) is based on a feed-forward CNN that generates
bounding box sets and scores of different types on the boxes, followed by non-maximum
value suppression to complete the final detection process. This explains the incorporation
of both the regression concept in YOLO and the anchor mechanism in Faster-CNN in single
shot multibox detector (S5D), as regression is performed on the multi-dimensional region
features of every location in the entire picture, which retains YOLO's characteristics of
being fast while ensuring the window prediction is as accurate as Faster-RCNN [37], as
shown in Figure 7.

| I

e ftm
Fr1= T

e

loc:/\(cx,cy,wh)
Conf:i(cy,Cy,.....C

Image with GT boxes 8 x 8 feature map 4 x 4 feature map

Figure 7. Default boxes in the single shot multibox detector model.

Liu et al. (2016) tested the speed and accuracy of different object detection methods.
The test results are shown in Table 1:

Table 1. Object detection algorithm speed and accuracy comparison.

Method FPS Boxes mAP
Faster R-CNN 7 6000 73.2
Faster YOLO 155 98 52.7

SSD300 29 8732 74.3

A fast YOLO has faster processing speed but poor mAP. Although Faster R-CNN has
a higher accuracy rate (73.2% mAP), it is not significantly more accurate at determining the
number of images. In contrast, a single shot multibox detector (SSD) not only has a high
accuracy rate but also a fast image detection speed [36].

Single shot multibox detector (SSD) object recognition has been used in many engi-
neering applications. For example, Yudin and Slavioglo [38] used the single shot multi-box
detector (SSD) to test how well the model identifies a traffic light, producing good results.
Wang et al. [39] proposed an improved single shot multibox detector (SSD) capable of
detecting a ship in a noisy background. The results were compared with those from Faster
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R-CNN, and it was found that the enhanced single shot multibox detector (SSD) improved
detection accuracy.

Much research on image recognition using deep learning has accumulated in recent
years. Many people use deep learning technology in artificial intelligence to let computers
handle more complex image recognition problems. Table 2 shows the development of
deep learning in the construction industry in the past five years of applied research on
image recognition.

Table 2. Research on the application of deep learning in construction image recognition.

Author (Year) Abstract

Dorafshan, S., Thomas, R. J., and Maguire, M. (2018) [40]

Compares the performance of deep convolutional neural networks and

edge detection algorithms for image-based crack detection in concrete,

finding that the neural network approach outperforms traditional edge
detection methods.

Spencer Jr, B. F,, Hoskere, V. and Narazaki, Y. (2019) [41]

Recent advances in computer vision-based civil infrastructure
inspection and monitoring techniques, including object detection,
semantic segmentation, and deep learning methods, highlight their
benefits and challenges.

Proposes an autonomous system for concrete crack detection using a

Dung, C. V. (2019) [42] deep, fully convolutional neural network, achieving high accuracy and

efficiency compared to traditional manual inspection methods.

FANG, Weili, et al. (2020) [43]

A review and discussion of future directions of computer vision for
behavior-based safety in construction.

A deep learning approach based on the YOLOv3 detector is proposed

Li, Y., Ly, Y. and Chen, J. (2021) [25] for real-time rebar counting on construction sites, which can effectively

improve construction efficiency and safety.

Chou, J. S. and Liu, C. H. (2021) [24]

An automated system for recognizing trucks in real-time in river
dredging areas using computer vision and deep learning.

Li, X., Chi, H,, Lu, W,, Xue, F, Zeng, J., and Li, C. Z. An intelligent work packaging system that preserves construction

(2021) [44] workers’ personal image information using federated transfer learning.

Artificial intelligence (AI) and computer vision are used to identify

DEL SAVIO, Alexandre Almeida, et al. (2021) [45] objects and equipment on a construction site and how they can

improve safety and efficiency.

LIN, Chih-Lung, et al. (2022) [22]

Presents a gait-based pedestrian automatic detection and recognition
system using a deep learning neural network.

Greeshma, A. S. and Edayadiyil, J. B. (2022) [10]

An automated system that uses machine learning and image processing
to monitor construction project progress.

Del Savio, A., Luna, A., Cardenas-Salas, D., Vergara, M.,
and Urday, G. (2022) [11]

A manually classified dataset of construction site images containing
1046 images of eight object classes that can be used to develop
computer vision techniques in the engineering and construction fields.

The efficiency of using convolutional neural networks (CNN) for image

Yesilmen, S. and Tatar, B. (2022) [16] classification in monitoring construction-related activities, with a case

study on aggregate mining for concrete production.

Source: This study collated.

Past studies used deep learning algorithms to recognize three postures of construction
workers, including standing, bending over, and squatting [20-22]. They provide engineer-
ing professionals with comprehensive deep learning solutions for detecting construction
vehicles [23,24]. Only single objects, such as people, materials, or engineering vehicles,
were seen in the above studies; therefore, the shapes and boundary types recognized were
relatively pure. This study uses image automation to simultaneously identify workers,
machinery, and materials in the current construction situation, assist the construction site
manager in making safety judgments on the location of construction equipment, safety
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protection measures, and material stacking, and monitor the construction status and main-
tenance of the construction site to reduce environmental hazards and control progress.

With the continuous evolution of technology, combining big data and artificial in-
telligence machine learning/deep learning can maximize the value of data. Therefore,
this research collects the construction site image data set, imports the object detection
system, uses it as artificial intelligence and machine learning training data, and builds Al
to automatically identify the personnel, materials, and equipment on the construction site.
In the future, continuous learning, modification, and technical improvement can reduce or
avoid labor accidents on the construction site, thereby improving construction efficiency
and schedule management.

3. Methodology
3.1. Study Setup

The CNN in single shot multibox detector (SSD) method of deep learning required
massive training images for learning. Firstly, image files of a construction site were collected
and converted to matrices by regulating the size of images before data pre-processing,
such as optimization. Next, features were extracted using CNN and fed into the fully
connected neural network to predict and identify classes. Finally, the trained model was
verified by feeding it the test data. The model’s learning rate setting would affect the weight
adjustment, so this study set the learning rate = 0.00002, epoch = 100, step per epoch = 320,
and optimizer type = sgd. The model structure of this proposed method is presented in
Figure 8.

Image data

* Jobsite
images

Object detec-

tion

Figure 8. Structure of job site image object detection model.

3.2. Collection of Job Site Images for a Construction Project

The multi-class classification in the image classification was selected for the study.
Data sets were classified as rebar, worker, and machine. The deep learning model required
massive amounts of information for training to improve its recognition accuracy, and the
size of the data set was a critical factor for the experiment’s success. Data came from three
sources, as follows:

1. Legal and free job site pictures obtained from Google under “Creative Commons”;

2. Free databases provided by computer vision institutes, such as ImageNet and Labelme
of MIT; and

3. Photos of construction job sites taken for the study.

Four hundred sixty-one job site images were collected from the above sources (Figure 9).
Feasible data were extracted from the images in the preliminary classification. The job site
images collected were manually tagged for workers, machines, and rebar using the image
tool provided in “Labellmg.” In addition, movements were selected and tagged for classes.
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Figure 9. Collection of construction site image files.

Two types of files were generated after tagging with Labellmg; one was the image files
themselves, and the other was the XML files with image locations tagged. In Figure 10, for
example, workers, rebars, and machines are tagged and given specific names in the image.
Figure 11 provides an example of the contents of the XML file, including dimensions such
as image coordinates. The single shot multibox detector (S5D) deep learning model was
established and tested as all images were tagged.

@ labeing C/Uemsver/Deskton 1461 fmage 0229 jpg

Fle Ede Vaw Help

aéui 4 4
¥

Tom S e
?E%ﬁ_lﬂza,‘

R

Ralat :

m

Click & draq 10 move thaps worker

X 346v.230

Figure 10. Labellmg tagging of a job site photo.

3.3. Method of Object Detection (SSD)

Wei Liu [36] devised the single shot multibox detector (SSD), a one-stage method in
which a neural network (VGG-16) is used to extract feature maps for classification and
regression before the target objects are tested. It incorporates the regression concept in
YOLO and identifies the location of the target class in regression. Similar to the anchor
mechanism in Faster-RCNN, prior boxes are established and features are extracted from the
backbone network. Feature maps of various dimensions are used for prediction, with large
feature maps to detect small targets and small maps to detect large targets. Convolution

kernel is applied on the feature maps to predict the classes and coordinate offsets of a series
of default bounding boxes.
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VGG-16 serves as the backbone model for the single shot multibox detector (SSD)
structure. The fully connected layer of VGG, fc6, is modified and converted intoa 3 x 3
convolution layer, Conv6, and fc7 intoa 1 x 1 convolution layer, Conv7, while the pooling
layer, pool5, is changed from originally 2 x 2 with stride = 2 to 3 x 3 with stride = 1. 4;
convolution layers are added; the test module layer of the 1st feature map is Conv4_3,
followed by Conv8_2, Conv9_2, Conv10_2, and Conv11_2 [36,39]. Their sizes are shown in
Figure 12.

- =<object=
mm
TposeruUnspecinied—, pose =
=truncated=0=/truncated=
=difficult=0=/difficult=
- <bndbox=
<xmin=1835%</«min=
=ymin=43=</ymin=
=wmax=2586 </ xmax=
=ymax>=1055 </ ymax=
=/bndbox=
=</object=
+ <object=
+ <object=

- =
I Zname=worker=/name=__J
=pose=Unspeciii =/ pose=

=truncated=0-<=/truncated=
=difficult=0-=</difficult=
- <bndbox=
<xmin= 1019 =/ Homin =
<ymin=7F61=/ymin>
=xmax>=1115 =</ xmax=
=ymax>=898-</ymax>=
=/bndbox=
=</object=
+ <object=
+ <object=
- =<object=

Il 0 [ w nlulx

<truncated=1<=/truncated
=difficult=0-=/difficult=
+ =bndbox:=
=fobject=
=/annotation=

Figure 11. Contents of the XML file of a tagged job site image.
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Figure 12. Single shot multibox detector model structure.

The size and length—width ratio require consideration for testing the box on a feature
map. Every grid on the feature map is scanned to generate corresponding testing boxes
(Figure 13). During the training, the ground truth in the picture is checked to match the
testing box. The best-fit box is filtered based on intersection over union (IOU). The exact
positive and negative sample ratio is close to 1:3. The loss function depends on the weights
of location error and confidence error. Data enhancement is carried out via horizontal
flipping, random cutting, color twisting, and random sampling of block regions. Top-k
prediction boxes with high confidence levels are reserved during the prediction before the
object detection algorithm of non-maximum suppression (NMS) is used to filter prediction
terms with significant overlapping. The prediction term left at the end is the result [36].
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Figure 13. Single shot multibox detector target feature detection process.

4. Study Contents and Outcomes
4.1. Establishment and Testing of Single Shot MultiBox Detector Model

The main feature extraction program used to establish a single shot multibox detector
(SSD) model was vgg.py. Features were extracted using 9 module computati9on feature
layers in the sizes of 38 x 38,19 x 19,10 x 10,5 x 5,3 x 3,and 1 x 1 (Figure 13). At the
first convolution computation feature layer, the image fed was 300 x 300 in size. Randomly
generated 3 x 3 filters were used at the convolution layer to extract 64 features, and the
activation function of ReLu was adopted to eliminate negative values. Batch normalization
was introduced next to improve the stability of data distribution. After two rounds of
convolution feature extraction, the pooling layer shrank the image down to 150 x 150 in
size for the convolution computation of the second set. The filters extracted 128 features at
the second set convolution computation feature layer. The same applied to the rest of the
computation. Ultimately, the pooling layer reduced the images to 1 x 1 in size.

The detect_image feature in the ssd.py program was used for predicting and testing
the results. The height and width of the picture were determined after the photo was
fed. However, the picture was converted into RGB format to improve detection for the
pre-training weight of the image and convenience of color setup in the box. The letter-
box_image feature was used to identify the resized image without distortion. The image
was normalized based on the batch_size attribute before being fed into the model for
regression and type prediction.

Data sets needed to be imported into classes_path while the image training program
train.py parameters were established to identify the image classes of rebar, worker, and
machine. The pre-training weight, weight_path, was established, and the shape was
selected to be 300 x 300. The prior box size was defined as anchors_size = [30, 60, 111, 162,
213, 264, 315]. The image training consisted of 2 stages, “freeze” and “unfreeze.” The feature
extraction network experienced no change during the freezing stage but minor network
tuning. Thus, 50 generations were established. The number of data samples captured for
one training run was 16. The backbone and feature extraction network experienced changes
during the unfreezing stage. Ample memory was used, and, therefore, 100 generations
were established. The number of training samples was 8.

The single shot multibox detector (SSD) program selected the pattern to be detected
during the establishment test on the training outcome prediction program predict.py. The
parameter setting patterns during the detection were single pictures, pre-recorded footage,
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or images captured directly from the camera. For this study, images were used for the
prediction model.

4.2. Model Training Data Analysis

In machine learning and deep learning, a loss function is frequently used to evaluate
the error between predictions and valid values. The smaller the value, the closer the
prediction to the actual value and the more accurate the model. Loss functions commonly
used are mean square error (MSE) and cross-entropy; the former is usually used for
regression and the latter for classification.

Data outcomes were evaluated based on the performance of the two accuracy in-
dicators, F1 measure and overall accuracy, on the model. Both indicators above were
determined using the four factors of the confusion matrix, and they were true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). The F1 measure was the
harmonized average between accuracy and recall. It was used as an indicator of model
performance and expressed as:

(2 x Precision x Recall)
(Precision + Recall)

F1 Measure = @
The overall accuracy was defined as the ratio of correct prediction of positive and
negative samples in the models over all samples and expressed in Equation (2):

(TP 4 TN)

(TP + FP + FN + TN) @)

Overall Accuracy =

The single shot multibox detector (SSD) was deployed to identify the classes of rebar,
worker, and machine in all images collected in the data set. A total of 461 images were
collected, including 400 photos of job site activities as machine learning samples, with 80%
images for training. In addition, 40 images, accounting for 10% of the data set, served as the
test samples during the training; another 40 were used as verification samples, accounting
for 10%. In the end, 61 photos the model had not seen were brought in for recognition, and
al x 1 confusion matrix was generated, as shown in Table 3.

Table 3. Confusion matrix generated by single shot multibox detector model.

P 30 FN 18
FP 3 TN 10

A calculation was performed for the two accuracy evaluation indicators based on the
four factors generated in the confusion matrix. It was found that the F1 measure was 64%,
and the oval accuracy was 66%. The details are provided in Table 4.

Table 4. The two accuracy evaluation indicators of the single shot multibox detector model.

Indicators Value
F1 Measure 64%
Overall Accuracy 66%

The process mentioned above reveals that an SSD-based job site activity image recog-
nition system is built by combining the job site image data collected and deep learning in
AL This system can identify and tag essential objects in a job site image, such as workers,
machines, and construction materials. With more job site activity information gained
from image recognition, the proposed system may help project managers develop project
decisions regarding construction safety, job site configuration, progress control, and quality
management, thus improving industrial competitiveness.
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4.3. Single Shot MultiBox Detector Deep Learning Model Training Outcomes

Three hundred twenty job site activity images, accounting for 80% of the data set,
were selected as the training sample for the SS-based job site activity image recognition
system proposed herein. In addition, 40 images, or 10% of the data set, were chosen as the
test samples during the training. In the end, 61 images the model had not seen were used
for recognition; thus, 461 images were collected and used. The visualization outcomes after

recognition are presented in Table 5.

Table 5. Outcomes of single shot multibox detector image recognition model test.

Originals1

Outcomesl

Image Data Form 1

Object Name confidence level . PIX?I Coordinates Image Number Time Eecord

e | ¥Ymin _ ¥min Ymax  Xmax |~ - -
worker 0.99 33 1872 1036 2223 | imgAmage 0229.0pg | 2023/3/20 09:15
worker 091 750 1043 992 1274 | imgfimage_0229.ipg | 2023/3/20 09:15
worker 068 781 566 924 65 |imgAmage 0229.ipg | 2023/320 0915
machine 1.00 129 1730 778 2508 | imgAmage 0229.5pg | 2023/3/2009:15
machine 0.85 379 07 552 1118 | imgfimage_0229.ipg | 2023/320 0915
machine 0.90 303 1233 799 1705 | imgfimage_0229.ipg | 2023/320 09:15

Originals 2 Outcomes 2

Image Data Form 2

Ohbject Name confidence level . P1x§l Coordinates Image Number Time Record
o | Ymin ¥min Y Inax ¥max | * T s
rebar 0.89 992 257 1772 1320 [imgimage 0158.jpg | 20234320 09:15
worker 0.94 959 431 1163 626 imgAmage_0158.jpg | 2023/3/20 09:15
machine 0.97 0 1749 1336 2505 |imgdimage 0158.pg | 20234320 09:15
machine 0.77 1049 1443 1280 1709 [imgimage 0158.pg | 2023/3/20 09:15
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Automated generation of EXCEL forms for the recognized results included object
names, confidence level, pixel coordinates, and time record. The timestamp was based
on the computer time when the form was generated, which could be used as the basis for
specific management items (Table 5):

1.  Monitoring the operation status of construction site personnel and equipment: real-
time monitoring of the operation status of construction site personnel and equipment,
including entry and exit times, the number of construction personnel, and the number
of equipment appearing at that time, thereby effectively improving construction safety
and efficiency.

2. Ensuring the supply of construction site materials: effectively monitoring the entry
and exit of construction site materials and inventory status, ensuring the timely use of
materials, and ensuring the adequate and timely supply of materials on site.

3.  Improving the efficiency of construction site management: automatically recording
the entry and exit time, location, and other information of construction site personnel
and equipment, reducing the cost and risk of manual management, and improving
the efficiency and accuracy of site management.

4. Optimizing construction site scheduling: using image recognition technology to record
construction logs and monitor the progress of various works at the construction site,
adjusting the schedule promptly, improving construction efficiency, and reducing
construction delays.

Construction activities at a job site vary widely. The machines subject to image
recognition are excavators, loaders, dump trucks, cranes, and concrete mixer trucks, and
the recognition accuracy is 69%, on average. The workers are wearing work clothing and
reflective vests without a uniform standard, and they are at various locations within the job
site performing various tasks, resulting in difficulties in recognition due to the bright side,
dark side, and body position, and the recognition accuracy is 53%. The accuracy is 28%
for the rebar. The reason for the low recognition accuracy could be that they are similar
materials divided into two different classes; also, there are more than civil work activities
at the job site; for example, there are plumbing and electrical tasks at a job site, and their
materials, such as pipes and cables, may affect the recognition results, as shown in Table 6.

Table 6. Model performance indices.

mAP Recall Precision F1-Score
(Threshold = 0.5) (Threshold = 0.5) (Threshold = 0.5)
Rebar 0.29 0.09 1.00 0.17
Worker 0.53 0.37 0.86 0.52
Machine 0.69 0.62 0.95 0.75

This study uses automatic identification of construction site workers, material lo-
cations, and construction environment conditions of equipment. The resulting photos
can identify more than two items simultaneously, providing site supervisors with active
warnings of potential occupational safety hazards and increasing construction efficiency
through image automation.

5. Conclusions and Suggestions

A construction job site covers the building footprint, work area, or material storage.
With the simultaneous recognition of objects, such as workers, machines, and materials
using a single shot multibox detector (SSD) in this case, it was found that the recognition
performed better for large machines, including excavators, cranes, dump trucks, and
concrete mixer trucks, with recognition accuracy close to 70%. Recognition accuracy was
53% for workers, and rebar was the least accurately identified of the three.

This study used the single shot multibox detector model with the VGG-16 neural
network as its backbone network and VGG-16 is a 16-layer convolutional neural network,
including 13 convolutional layers and 3 fully connected layers. A total of 320 construction
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site construction images (80%) were trained, and the results could mark personnel, machin-
ery, and materials simultaneously. The complexity of each on-site construction image was
different; therefore, the time required for each image recognition was also different, but the
average single image recognition time was 6 s. The object detection process encountered
the following problems:

1.

Regarding detection personnel: For construction personnel, posture changes, con-
struction site brightness changes, and object occlusion these problems would lead to
false detections.

Regarding detection materials: densely packed rebar would produce different degrees
of joint and section difficulties; in addition, in the single target detection algorithm,
the stacking between the background and the foreground was different, which may
have led to a decrease in the sensitivity of the model to the sample. It resulted in
false detections.

Detection of equipment: Construction equipment detection items included excavators,
shovel loaders, dump trucks, cranes, concrete mixer trucks, etc. There were more
data sets than construction personnel and materials, and their identification perfor-
mance was better. But to enhance the training of another project may have led to
further overfitting.

Based on the above, this study proposes future research directions regarding technol-

ogy application, database construction, and algorithm optimization to enhance the accuracy
and applicability of detection items:

1.

The evolutionary many-objective optimization algorithm with new techniques, such as
domain decomposition and multi-objective optimization decomposition can improve
the efficiency and accuracy of construction site management and enhance image
recognition in construction engineering [46].

Optimizing truck scheduling through algorithms can improve the efficiency and
accuracy of material transportation and scheduling at construction sites, leading to
intelligent and automated material transportation and ultimately enhancing construc-
tion efficiency and quality [47].

Multi-objective optimization algorithms can significantly enhance the efficiency and
accuracy of construction sites management tasks, such as material transportation,
equipment scheduling, and personnel management. Integrating image recognition
applications with these algorithms enables the intelligent and automated monitoring
and control of construction sites, improving construction efficiency and quality [48].
Image recognition technology can monitor the construction site in real time, detect
potential risk factors, and determine the direction of improvement. At the same
time, efficient dock scheduling algorithms can optimize construction materials and
equipment logistics, reduce waiting time, and improving overall productivity [49].
The direction is to combine image recognition technology to monitor the safety of
construction sites in real time, detecting potential safety hazards early, and using
NSGA-II and MOPSO algorithms for ambulance routing to improve rescue efficiency
and emergency response capabilities [50].

Applying the augmented self-adaptive parameter control method to a broader range
of construction scenarios can improve construction efficiency and safety. Further
research will explore combining the technique with other optimization algorithms to
enhance its effectiveness and reduce construction costs [51].

To enhance the simultaneous detection of personnel, equipment, and materials, up-
coming methods will include feature pyramid, complete intersection over union
(Ciou) loss, focal loss, and bag of freebies target detection optimization [52].

Construction engineering is characterized by complexity; therefore, image recognition

technology at construction sites enhances the safety and efficiency of construction site
management. This technology enables more detailed identification and improvement of
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production efficiency and quality in the construction industry, thereby providing more
significant development opportunities for the future of construction engineering.
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