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Abstract: For measuring the structural health of buildings, high-performance vibration detection
devices are used in a structural health monitoring (SHM) system, which consists of a sensor and
a data logger. Those devices are seismographs or devices with high-performance sensors which
are expensive. Recently, smartphones are being used as seismographs to accumulate big data of
earthquake wave detection because they have accelerometers of microelectromechanical systems.
Since a smartphone has the functions of a detection sensor and a data logger, a low-cost SHM system
can be developed by using a low-cost smartphone. In this paper, smartphones were used to confirm
the possibility of the development of a low-cost SHM system. To evaluate the vibration detection
performance from small displacement and large displacement, smartphones were installed in a
specimen of a large shaking table test. The specimen is a scale model of a two-story non-reinforced
masonry-filled reinforce concrete (RC) frame building. The natural period and interstory drift ratio
were used as the evaluation criteria. The natural period estimated by the smartphone data agreed
with that found by the piezoelectric accelerometer data. For estimating the building deformation,
which is related to building stability, the measurement performance for large deformation using
smartphones was evaluated. The smartphones have 90% or higher accuracies for the estimation of
the maximum acceleration and displacement.

Keywords: iOS smartphones; i-Jishin; acceleration detection; structural health monitoring; MEMS sensor

1. Introduction

In Japan, with the aim of detecting strong vibrations due to earthquakes, strong-motion
accelerographs, termed Strong Motion Acceleration Committee (SMAC) accelerographs,
were developed after the 1948 Fukui earthquake. SMAC accelerographs found application
in the detection of building vibrations in Japan in the 1950s. The Japan Building Research
Institute (BRI) installed SMAC accelerographs in approximately ten buildings [1,2]. In
Niigata City, SMAC accelerographs recorded the collapse of a building caused by soil
liquefaction during the 1964 Niigata earthquake [2,3]. In 1973, the National Strong Motion
Project (NSMP) in the U.S. was absorbed by the U.S. Geological Survey as part of the
National Earthquake Hazards Reduction Program for acquiring strong motion records [4].
At this time, the idea was to monitor building vibrations for recordings of damaging
earthquakes, which are critical for designing earthquake-resistant structures. The data
recorded in the U.S. and Japan were used for evaluations of structural response and
correlated performance [5]. In Europe, the earthquake detection network systems have
operated to record and analyze earthquake waveforms and to provide high-quality data, for
example, ref. [6,7]. Richardson [8] developed technology for damage detection in structures
caused by changes in their dynamic (modal) properties. This study focused on structural
integrity monitoring for large structures. With the development of devices and technologies,
in 1996, Doebling et al. [9] provided a comprehensive review of the technical literature on
the detection, location, and characterization of structural damage. The damage caused by
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fatigue and external loads (e.g., earthquakes and winds), may progress very slowly [10].
The damage becomes observable only when the structural damage is considerable. Using
changes in the measured structural vibration response, the techniques examined in this
report [9] estimated the structural damage. This is similar to structural health monitoring
(SHM), which aims to estimate the behavior and performance of structures during their
life cycle and predict their remaining service life. In SHM, the knowledge and experience
in civil, mechanical, electrical, computer, and control engineering are used in assessing
the health of structures [11]. In the past three decades, many researchers have worked
on SHM [12–16]. Based on the acting load, there are two kinds of SHM methods, static
and vibration based [11,17,18]. By measuring the static responses of structures such as
strain [19,20] and deflection [21], static-based damage detection methods estimate the
health of structures. Vibration-based damage detection methods primarily assess the
modal parameters of a structure using system identification methods [22]. In applications
using vibration-based damage detection methods, the estimation accuracy depends on
the performance of the vibration measurement sensors, the improvement of which re-
quires knowledge and experience in mechanical, electrical, and computer engineering.
For detection of earthquake events, some countries have operated seismic stations, for
example, [23–26]. Seismographs, which are used as one of the devices at seismic stations,
can conduct high-performance vibration measurements. Therefore, seismographs or de-
vices with improved technology [27,28], such as P-wave alert devices (P-Alert) and IT
strong-motion accelerographs, are used to detect structural vibrations. P-Alert was devel-
oped by a research group at the National Taiwan University for use in earthquake early
warning (EEW) systems. P-Alert uses accelerometers of microelectromechanical systems
(MEMS). MEMS accelerometers have been tested and applied in detecting vibrations of
infrastructure, buildings, and the ground [29–35]. They are also installed in smartphones.
Therefore, smartphones have been investigated as a substitute for seismometers [36,37].
The “MyShake” app was developed as an EEW system and uses a classifier algorithm
to identify earthquake vibrations on a single phone [36]. Further, the “i-Jishin” app was
developed for measuring earthquakes by the National Research Institute for Earth Science
and Disaster Resilience of Japan; it makes use of MEMS acceleration sensors incorporated
in the mobile information terminals. The measurement settings of the “i-Jishin” app can be
modified in terms of the sampling rate, leading allowance time, following allowance time,
and trigger to record, and can calculate the velocity and displacement from acceleration [37].
Since a smartphone has the functions of a detection sensor and a data logger, a low-cost
SHM system can be developed when using a low-cost smartphone. For developing the
low-cost SHM system, the measurement settings of another app, the “accmeasure” app,
can also be modified in terms of the sampling rate, leading allowance time, following
allowance time, and trigger to record [38]. The two aforementioned apps may be used in
SHM because they feature functionalities such as trigger to record and a sampling rate of
100 Hz, setting record time, and time synchronization; their use has been investigated for
SHM [38,39]. To estimate the structural health, some researchers used smartphones [40–45].
These can almost estimate the detection performance of the small accretion of small dis-
placement. In architectural engineering, large deformation, such as interstory drift, should
be detected. However, the “i-Jishin” app was not evaluated for the estimation of interstory
drift. Therefore, the measurement performance of the smartphone for large deformation of
a structure close to the full scale should be evaluated.

Given the above, the objective of this study is to evaluate the vibration detection
performance of a smartphone with the “i-Jishin” app installed in estimating the large defor-
mation of a building. In addition, the prediction performance of dynamic characteristics,
such as the natural period, was also estimated. Those are achieved by comparing the data
measured by a reference accelerometer, which is a piezoelectric accelerometer from the PCB
Piezotronics Company, wire displacement sensors and a smartphone-installed specimen in
shaking table experiments. The specimen is a two-story masonry-infilled RC frame build-
ing, which is the standard design of low-story school buildings or residential buildings in
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Korea. For estimating large deformation of a building, the displacement calculated from
the acceleration measured by the smartphone was compared with displacement of the
building measured by the experiment. Additionally, the natural periods estimated by the
transfer function of acceleration measured by the reference accelerometer and smartphone
were compared.

2. Materials and Methods
2.1. Specimen Design

The purpose of the shaking table test is to evaluate the seismic performance of existing
buildings. To this end, a masonry-filled RC frame building, which is the standard design of
school buildings and other commercial or residential buildings, was selected as a target.
In this study, a specimen was designed based on a standard drawing of low-story school
buildings or residential buildings in Korea. The specimen, which was an approximately
60% scale model of a school building, was a two-story non-reinforced masonry-filled RC
frame building (Figure 1 and Table 1). Figure 1a shows the setup of the shake table test.
As shown in Figure 1b, openings were installed at the front and rear of the specimen
considering the actual building geometry. The specimen had a 3000 mm × 3000 mm square
plane with a floor height of 1830 mm and a total height of 3780 mm (Figure 1c,d). The
masonry infill wall on each floor had a length (L) of 2600 mm, height (H) of 1530 mm,
an aspect ratio (H/L) of 0.59, and masonry wall thickness of 60 mm. Considering that the
specimen was a scale model, the bricks were stacked in an upward direction; nevertheless,
the thickness of the masonry infill wall was 57 mm. The concrete used for the frame of the
specimen had a nominal compressive strength of 18 MPa, and SD400 (steel deformed bar
with yield strength of 400 MPa) was used as a steel reinforcement. The size of the column
was 200 × 200 mm. Four D13 (diameter of 13 mm) reinforcing bars were used as the main
reinforcement, and the hoop used was a closed hoop with D6 (diameter of 6 mm) at 120 mm
spacings. The size of the beam was 200 × 300 mm. Four D13 reinforcing bars were used as
the main reinforcement, with two placed in the upper part and two in the lower part. The
stirrup was a closed stirrup that used D6 at 120 mm spacings. The thickness of the slab was
120 mm, and D10 (diameter of 10 mm) was placed at 120 mm spacings as horizontal and
vertical reinforcements. The first floor formed the shape of a T-beam, whereas the second
floor used bolts to connect the slab and beams and facilitate the connection of load blocks
on the second floor and roof. In addition, a weight of 96 kN was installed at the upper parts
of the first and second floors, respectively, considering the axial load of the column and the
upper load.

Table 1. Design of specimen.

Item Target Building Specimen Scaling Factor

Dimension
(Depth ×Width × Height), (unit: mm) 7000 × 9000 × 3600 2800 × 3600 × 1800 0.6 (Height 0.5)

Story 3 2 -
Column (unit: mm) 350 × 400 or 350 × 500 200 × 200 0.5~0.57

Beam (unit: mm) 300 × 600 or 300 × 450 200 × 300 0.33
Shear force in longer direction 240 kN 37 kN 0.15
Shear force in shorter direction 161 kN 37 kN 0.23

Column axial force ratio 0.13 0.17
Masonry wall thickness 0.19 (1.0B) 0.06 0.32
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Figure 1. Configuration of specimen (unit: mm): (a) photo; (b) aerial view from the front (left) and
the rear (right); (c) plan; (d) elevation; (e) beam and slab; (f) column.

2.2. Shaking Table Test

The shaking table used in this study had three degrees of freedom and was installed
in the Yangsan campus of Pusan National University. The size and specifications of the
shaking table are shown in Table 2.

Table 2. Performance of shaking tables.

Item Performance

Max. loading (kg) 60,000
Table size (mm) 5000 × 5000

Control axes 3 DOF (2 translational axes, 1 rotational axis)
Max. displacement (mm) X-Axis = ±300, Y-Axis = ±200

Max. velocity (m/s) Hor. (X, Y) = 1.0
Max. acceleration (g) Hor. (X, Y) = ±3.0 (at bare table)
Frequency range (Hz) (0.1–60.0)
Excitation mechanism Electro-hydraulic Servo, 3-variable control

Control software MTS 469D
Feedback data acquisition 51 channels (Sampling rate = 512 Hz)
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In the resonance frequency search test to evaluate the natural period, which is the
dynamic characteristic of a specimen, excitation was performed using white noise vibration
waveforms in the forward/backward (Y) and left/right (X) directions. The zero-period
acceleration (ZPA) of the excitation wave was set to an RMS average of 0.05 g, and the
input frequency was set to range from 0.5 to 50.0 Hz, considering the characteristics of the
shaking table and input waveform. The excitation duration was 30 s.

For the earthquake waveform in the shaking table test, an artificial earthquake wave
that meets the designed seismic load of South Korea was generated and applied. The
design acceleration spectrum used in the test was one that corresponds to seismic zone 1,
S3 soil, and a short-period design spectral acceleration (SDS) of 0.54 g, which are suggested
in the KDS 41 17 00 building seismic design standards (Figure 2a). For the input seismic
wave, an artificial earthquake wave corresponding to a magnitude 7 earthquake, which
meets the design acceleration spectrum, was created (Figure 2b). The acceleration and
time interval were adjusted according to the similarity law (Table 1) considering that the
specimen was a scaled model. The artificial seismic wave was applied after adjusting its
scale to 30, 60, 100, and 150%. The detailed procedure of excitation is shown in Table 3.
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Figure 2. Artificial accelerograms: (a) design spectrum; (b) waveform.

Table 3. Test procedure and smartphone measurement.

Test No. Excitation Direction Scale
(%)

Peak acc.
(g)

Smartphone Error

First Floor Second Floor Roof Floor

1 Random, 30 s X 100 RMS 0.05 - - -
2 Random, 30 s Y 100 RMS 0.05 - - -
3 Artificial accelerograms XY 30 0.14 - - -
4 Artificial accelerograms XY 60 0.29 - Error Error
5 Artificial accelerograms XY 100 0.48 - Error Error
6 Artificial accelerograms XY 150 0.72 - Error Error

2.3. Measurement System

To measure the seismic responses of the main parts of the specimen, accelerometers,
displacement sensors, and strain gauges were installed at the main positions. A total of
six accelerometers were installed at the main positions, including the floor of the shaking
table, the base of the second floor, and the base of the roof floor, to measure the accelera-
tion in the forward/backward and left/right directions on each floor. In addition, wire
displacement sensors were installed at eight positions on the left and right sides of the first
and second floor beams, on the right side and rear of the specimen, to measure the story
drift in each direction. Eight displacement sensors were additionally installed in the upper
right corner of the masonry infill walls, with no opening on the left and right sides of the
specimen, to measure the gap between the frame and masonry infill wall in the horizontal
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and vertical directions on each floor. Strain gauges were attached to the lower and upper
parts of the first-floor column, the lower part of the second-floor column, and the left/right
main reinforcement and stirrups of the first-floor beam before pouring concrete. Figure 3a
shows the positions of the accelerometers and displacement sensors used in this study.
Data were recorded at 512 Hz. The measured acceleration and displacement data, however,
were resampled to 100 Hz for comparison with the smartphone data.
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2.4. Smartphone Measurement

In an additional test, smartphones were installed at the center of the floor on each
floor to evaluate their vibration measurement accuracy, and portable batteries were con-
nected to them to prevent them from being turned off during the test (Figure 3b). Three
iOS smartphones and three Android smartphones were used in the test. For vibration
measurements, the “i-Jishin” app developed by the National Research Institute for Earth
Science and Disaster Resilience in Japan [37] was installed in the iOS smartphones. On
the other hand, in the Android smartphones, the vibration measurement test application
developed by the research team of this study was installed. For the purpose of this study,
only the results obtained using the iOS smartphones (iPhone 7, 8, and X) were used. A
trigger was set such that vibrations over 10 cm/s2 could be recorded when measured. In
addition, the vibration measurement application was running at all times. The sampling
rate of the application was set to 100 Hz. Since each smartphone performed measurements
independently, all were connected to Wi-Fi for time synchronization with the NTP server.
Although the i-Jishin application was equipped with the FFT transmission function, this
function could not be used in this study due to the network environment.

3. Results and Discussion
3.1. Application Measurement Characteristics

After the vibration test, the data measured by the i-Jishin application used in this
study were analyzed. Table 3 shows that there is no measurement error in the data from the
smartphone installed on the first floor. However, in the smartphone installed on the roof,
the acceleration was not recorded in tests 4 to 6. This is because the smartphone used in
these experiments had low battery capacity and the connected portable battery could not
fully charge the phone due to its low capacity. This issue needs to be addressed in future
tests. In the smartphone installed on the second floor, the acceleration was recorded in tests
4 to 6, but the data could not be used due to errors. It was found that the errors occurred as
the brick separated from the wall, which impacted the smartphone during test 4. In future
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tests, measures to prevent damage to smartphones are required. Although the smartphones
were connected to Wi-Fi installed in the experimental building for time synchronization
with the NTP server, synchronization could not be performed well due to the influence of
the experimental building environment. Time synchronization was performed using the
MATLAB algorithm (finddelay function) to analyze the measurement characteristics. This
MATLAB algorithm estimates the normalized cross-correlation between two signals and
estimates the lag based on the lag value for which the normalized cross-correlation has the
highest absolute value [46]. In evaluating the vibration detection performance using data
obtained from the white noise excitation tests, a 0.2–25 Hz band filter was applied to the
acceleration measured with the reference accelerometers and smartphones.

3.2. Natural Period Evaluation

The natural period was estimated by calculating the transfer function of the accel-
eration measured at the center of each floor in the specimen and using the curve fitting
technique. In this study, five Lorentzian curves (red dotted lines in Figure 4) having a high
agreement with the transfer function (black solid lines in Figure 4) between 0 and 10 Hz
were extracted. After then, the natural period (blue dotted lines in Figure 4) was estimated
from the curve with the maximum value. Analysis of the data obtained from the reference
accelerometer revealed that the natural period was 0.25 s in the X direction and 0.14 s in the
Y direction (Figure 4). The natural period estimated with the smartphone measurements
was identical to that estimated with the reference accelerometers (Figure 4). This implies
that the natural period of a building can be evaluated using smartphones if vibration occurs
with the same magnitude as in the white noise excitation test.
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Figure 4. Estimated natural period.

3.3. Acceleration Measurement Accuracy

To quantitatively evaluate the error of the acceleration waveform measured by the
smartphones, the root-mean-square percentage error (RMSPE) values between the mea-
surements obtained with the reference accelerometers and smartphone in the time domain
were evaluated using the magnitude-squared coherence function (MSCF) values of the
same measurements in the frequency domain. The RMSPE was calculated as follows:

RMSPE =

√√√√ 1
n ∑n

k=1

(
xsmartphone − xicp

xicp

)2

, (1)

where xicp is the measured acceleration using the reference accelerometers and xsmartphone
is that using smartphones. For a and b signals, the MSCF [47,48] is defined as follows:

Cab = γab
2( f ) =

|Gab( f )|2

Gab( f )Gab( f )
, (2)
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where Gaa( f ) and Gbb( f ) denote the power spectral density of a and b signals and Gab( f )
denotes the cross spectral density of a and b signals. The MSCF is a function of the frequency,
with values between 0 and 1. These values indicate how well the two signals correspond
to each other at different frequencies. The greater the values, the stronger the correlation.
Figures 5 and 6 compare the time series and MSCF between the acceleration measured
from the reference accelerometers and smartphones.
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Figure 5. Comparison of time series between acceleration obtained from reference accelerometers
and smartphones, and coherence for the X and Y directions in test 3.
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In Figure 5, the acceleration on each floor measured in test 3 was compared. The
maximum accelerations measured with the reference accelerometers were 1.61 m/s2

(Y direction) on the first floor, 1.97 cm/s2 (X direction) on the second floor, and 3.22 cm/s2

(X direction) on the third floor. On the other hand, the maximum accelerations measured



Buildings 2023, 13, 1069 10 of 15

with the smartphones were 1.21 cm/s2 (Y direction) on the first floor, 1.95 cm/s2 (X direc-
tion) on the second floor, and 3.22 cm/s2 (X direction) on the third floor. The ratio between
the maximum acceleration values measured with the smartphones and reference accelerom-
eters ranged from 95.8 to 99.9% in the X direction and from 95.8 to 99.9% in the Y direction.
In other words, the maximum acceleration measured with iOS smartphones has an accuracy
of 95% or higher. The RMSPE values ranged from 0.16 (X direction) to 0.19 (Y direction)
on the first floor, from 0.22 (X direction) to 0.25 (Y direction) on the second floor, and from
0.57 (X direction) to 0.51 (Y direction) on the third floor. In other words, the RMSPE in-
creased as the amplitude increased, but the accuracy can be considered to be high because
the RMSPE is small. The MSCF in the X direction showed a tendency to decrease at 6 Hz or
higher, but it can be considered that the two waveforms are in good agreement with each
other because they are close to 1 and between 1 and 6 Hz. In particular, high agreement
was observed in the Y direction on the third floor, where the amplitude was large.

In Figure 6, the acceleration on the first floor measured in tests 4 to 6 was compared.
As in test 3 (Figure 5), high agreement was observed in the time series. The MSCF was
also high in the Y direction. In test 6, in particular, it can be said that the accuracy is high,
because the MSCF is close to 1 under 10 Hz. In tests 4 to 6, the ratio between the maximum
acceleration values measured with the smartphones and reference accelerometers ranged
from 92.6 to 100.1% in the X direction and from 91.0 to 98.9% in the Y direction, which are
lower compared to test 3. The minimum and maximum RMSPE values were 0.23 (test 4)
and 0.89 (test 6) in the X direction and 0.41 (test 4) and 1.18 (test 6) in the Y direction. In
other words, as the amplitude increased, the RMSPE in the Y direction also increased. It is
judged, however, that the smartphones used in this study can be employed for acceleration
measurements because the RMSPE is small.

3.4. Displacement Estimation Accuracy

When a structure experiences harmonic motion, the relation d(t) = a(t)
−ω2 is widely

used to determine the displacement, d(t), from the acceleration, a(t). Here, ω is the
angular frequency. The same relation was also used in this study, and the displacement
was estimated after converting the acceleration data measured with the smartphones
into the frequency domain through FFT. These estimated values were compared with the
displacement of each floor obtained from the experiment. The experimental displacements
on the second and roof floors were the average values obtained by two wire displacement
sensors installed on slabs on these floors. The displacement on the first floor was recorded
using the shaking table control system. Figures 7 and 8 compare the total displacement in
test 3 and in tests 4 and 5, respectively. In the figures, the displacements are compared only
in the time period between 4 and 10 s, when the displacement amplitudes were relatively
large. In test 3 (Figure 7), the ratio between the maximum displacements measured with the
wire displacement sensors and smartphones ranged from 95.8 to 99.9% in the X direction
and from 94.8 to 99.1% in the Y direction. The RMSPE values ranged from 0.16 (X direction)
to 0.19 (Y direction) on the first floor, from 0.14 (X direction) to 0.16 (Y direction) on the
second floor, and from 0.16 (X direction) to 0.17 (Y direction) on the third floor. In tests 4 to
6 where the amplitude was large (Figure 8), the ratio between the maximum displacement
values measured with the wire displacement sensors and smartphones ranged from 92.6%
(test 4) to 100.1% (test 6) in the X direction and from 91.0% (test 6) to 98.9% (test 4) in the Y
direction. The accuracy showed a tendency to increase as the amplitude increased in the X
direction; however, the same tendency was not observed in the Y direction. The minimum
and maximum RMSPE values were 0.23 (test 4) and 0.89 (test 6) in the X direction, and
0.41 (test 4) and 1.18 (test 6) in the Y direction, which were the same as the acceleration
RMSPE values. In other words, when the displacement is estimated using smartphones, an
accuracy of 90% or higher can be obtained, even though the accuracy differs depending on
the axial direction of the smartphone.
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Figure 8. Comparison of displacements calculated using acceleration measured by reference ac-
celerometers and smartphones along the X and Y directions in tests 4 to 6.
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3.5. Estimation Accuracy of Interstory Drift Ratio (IDR)

When the safety of a building is evaluated after an earthquake, the interstory drift
ratio (IDR) is one of the main evaluation indicators. Since the final purpose of this study
is to examine the applicability of smartphones in building safety evaluation, this study
also compared the IDR estimated from smartphone data with that calculated from the
displacement sensors. Figure 9 compares the IDR values for test 3. The ratios between
the maximum IDR obtained from the wire displacement sensors and that calculated from
the smartphone data ranged from 114% (1 story) to 100% (2 story) in the X direction and
from 104% (1 story) to 99% (2 story) in the Y direction. On the first floor in the X direction
and the second floor in the Y direction with low IDRs, there is a difference between the
IDR obtained from the displacement sensors and that obtained from the smartphone data.
On the second floor in the X direction and the first floor in the Y direction, where the IDR
was 0.1% or higher, however, that obtained from the smartphone data was similar to that
obtained from the displacement sensors. In other words, it is concluded that the accuracy
of the IDR estimated from the smartphone data is low when IDR is less than 0.1%, which is
considered as the elastic range in building design; nevertheless, the IDR can be sufficiently
estimated using smartphones when the IDR is 0.1% or higher.
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Figure 9. Comparison of interstory drift ratios (IDRs) estimated using accelerations measured by
reference accelerometers and smartphones along the X and Y directions in test 3.

4. Conclusions

In this study, the applicability of smartphones to SHM, the prevalence of which is
increasing worldwide, was verified by comparing the data measured using reference
accelerometers and wire displacement sensors installed on the specimen through shaking
table tests. For estimating the building deformation, which is related to building stability,
the measurement performance for large deformation using smartphones was verified. A
scale model of a masonry-filled RC frame building was used as the specimen, designed
based on standard schematics for school buildings. The results of the shaking table test
with smartphones can be summarized as follows.

1. During the shaking table test, some experimental data were lost due to issues with the
power supply and the smartphone damage caused by impact; this indicates the need
for mitigating measures in SHM use. In addition, there were time synchronization
issues for each device when the Wi-Fi communication was incomplete, highlighting
the need for continuous time synchronization or time synchronization post data
collection. For using smartphones on the SHM in the future, an application, which
enables time synchronization between smartphones installed in the same building,
recording ambient vibration, and using low power, is necessary.
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2. The natural period of the building evaluated using the smartphone coincided with
that obtained from the reference accelerometer. This implies that smartphones can be
used to measure the natural period of a building if the vibration occurs with the same
magnitude as in the white noise excitation test.

3. The ratio between the maximum acceleration values measured with the smartphones
and reference accelerometers ranged from 91.0 to 100.1%, and the MSCF ranged from
0.16 to 1.18. Hence, when the maximum acceleration is evaluated with a smartphone,
an accuracy of 90% or higher can be expected.

4. The ratio between the displacement estimated from the acceleration data using smart-
phones and that obtained from the wire displacement sensors ranged from 91.0 to
100.1%, and the MSCF ranged from 0.14 to 0.86, confirming that the smartphone
offered a displacement measurement accuracy of 90% or higher.

5. The ratio between the maximum IDR obtained from the wire displacement sensors
and that calculated from the smartphone data ranged from 99% (two stories along
the Y direction) to 114% (one story along the X direction). On the second floor in the
X direction and the first floor in the Y direction, where the IDR was 0.1% or higher,
the IDR obtained from the smartphone data was similar to that obtained from the
displacement sensors. Thus, the IDR measurement accuracy using smartphones is low
for IDRs less than 0.1%, which is considered as the elastic range in building design,
but is sufficient when the IDR is 0.1% or higher.
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