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Abstract: The effect of (1) initial imperfections and (2) material degradation of reinforced concrete
columns on their safety in emergency situations was investigated. The research was limited to low-
and medium-flexibility columns. Numerical modeling and proven regulatory methods of analysis
were applied to determine the ultimate bearing capacity, taking into account supplementary dy-
namic loading by a longitudinal force and a bending moment in case of emergency. The numerical
model, describing the column structure, has 3D elements simulating concrete, and rebars simulat-
ing reinforcement frames (cages). Imperfections are simulated by (1) the physical loss of elements,
(2) unzip of nodal elements, and (3) unzip and further zip using nonlinear elements simulating gaps
and cohesion between concrete and reinforcement. Implicit dynamics and an incremental method
were employed to make computations. Within the framework of this computational scheme, a non-
linear problem was solved using the Newton–Raphson method with nodal forces convergence. The
effect of imperfections, such as geometrical deviations and deterioration of mechanical characteristics,
on the bearing capacity of compressed bending elements was identified under emergency actions.
Risks of mechanical safety loss were analyzed to find that columns in the frame structures of highly
hazardous, technically complex, and unique buildings and structures, subjected to supplementary
loading, need an additional safety margin in the range of 3–21%. Rectangular cross-sections of
columns are the most effective in terms of the safety criterion.

Keywords: emergency risk; numerical modeling; reinforced concrete structures; columns; finite
element analysis; supplementary dynamic loading; geometrical imperfections; physical imperfec-
tions; safety

1. Introduction
1.1. Review of the Literature on the Problem of Research

Advanced research in the literature focuses on studying the bearing capacity of com-
pressed elements with different types of imperfections. Imperfections are understood as
(1) initial deviations of parameters from design values or (2) those deviations that develop
in the process of operation. Initial geometrical imperfections are investigated most fre-
quently. Initial geometrical imperfections predetermine decisions that can be made in
respect of the arrangement of frame ties [1], simulated using the Monte Carlo method. A
number of works, such as [2,3], address the reliability and stability of columns made of
cold-formed thin-walled steel, which can be closed and open. The mutual influence of
imperfections and the mechanism of steel failure were investigated. Combined systems,
made of steel tubes filled with concrete with imperfections, are used apart from thin-walled
steel structures [4]. The strength of such structures is studied using numerical simulation
based on a finite element method. Apart from initial geometrical imperfections, the effect of
residual welding stresses on strength is considered in this work. Dynamics of a multilayer
structure, with a geometrically imperfect longitudinal axis, are considered in [5], where
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flexible cohesion of layers is also taken into account. Studies on columns, made of steel
pipes filled with concrete, are addressed in [6], where the bearing capacity of such structures
is identified in an experiment for the case of geometrical deviations in the thickness of
the pipe wall. Research results were verified using ANSYS software, and a 9% deviation
from the results of numerical analysis from the experiment was recorded. Works [7,8]
are no less important studies on such columns. Here, gaps between concrete and a steel
pipe, as well as deviations in pipe bending angles, are considered as initial geometrical
imperfections. Geometrical imperfections also have a strong effect on the results of thermal
strength analyses [9]. This idea is also shared in [10], where geometrical imperfections
arise due to buckling caused by the heating of pipes. Of interest are works that inves-
tigate structures that (1) have imperfections and (2) are subjected to ultimate dynamic
loading [11,12], as well as structures that fail due to initial geometrical imperfection and cor-
rosion defects [13]. At the same time, sensitivity to the source of corrosion and its influence
on the collapse mechanism were analyzed, including the case of the symmetrical location
of defects. Article [14] is an important work on stability analysis of corrosion-damaged
pipes. Here, such important imperfections as centroid displacement and reduction in the
pipe cross-section are taken into account. In addition to bearing structures, imperfections
are also taken into account in the design of nodal connections. Thus, work [15] studies
the ability to transfer internal forces (axial forces and bending moments) through a bolted
connection. The influence of imperfections on the resistance of structures is investigated
for the case of combined effects [16]. Simulation of low-speed impacts, proposed by the
authors, seems to be important here. It is also important to mention the studies on the
bearing capacity, stability, and simulation of geometrical imperfections in cylindrical shells,
which have already become classical [17–19]. These works study shells made of different
materials, including multilayered composite and reinforced concrete shells. In recent works,
aimed at designing structures featuring a higher bearing capacity, imperfections of geomet-
rical parameters of webs in corrugated steel beams as well as prefabricated wall sections
with V- and ∑-shaped stiffening ribs are considered [20,21]. A large number of studies
demonstrate the importance of considering both initial and secondary (those that emerge
in the course of the structure operation) imperfections in reinforced concrete structures
as well. For example, works [22–24] investigate the effect of imperfections on reinforced
concrete structures, mainly columns, under various types of special effects. They include
seismic damage, high-temperature effects, and the state of deformation after a fire. Such
effects on structures can be fatal even without imperfections, so the issue under study
becomes even more relevant.

The stability of rod structures [25], including the transverse stability of columns, espe-
cially flexible columns [26–30], is an independent problem where imperfections can also
affect mechanical safety. These works consider both geometrical and material imperfections,
in particular, initial cracks and concrete strength defects. When simulating these imperfec-
tions, transition is made from actual values to statistically valid equivalent values to enable
their further use in analytical techniques. Here, analytical dependencies are constructed
to evaluate ultimate forces and moments, taking into account the presence of imperfec-
tions and their combinations in the structure. Some authors consider defects affecting the
cohesion of reinforcement with concrete as imperfections, in addition to under low-cycle
loading conditions and the action of fire [31–33]. The use of flexible reinforced concrete and
concrete-filled steel columns in structural systems of buildings, and the effect of initial and
secondary imperfections on their mechanical safety, energy dissipation properties, nature
of loading, etc., are frequently addressed by contemporary authors [34–36].

Attention is also paid to relatively rarely used structures, for example, pre-stressed
CFRP-reinforced steel columns with nonmetallic reinforcement [37], and prefabricated
beams with FRP and without cohesion [38].

Initial imperfections are taken into account in the course of studying and designing slab
structures, flat frame structures of buildings, and tower structures [39–43]. Degradation
of their material characteristics as a result of man-induced and natural loads, and the
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deviation of the median surface from the idealized position are modeled. The first steps
towards the optimization of structures, taking into account the geometry and location of
initial imperfections, are made in [37].

This paper addresses an understudied aspect of the problem of imperfection, related to
mechanical damage of reinforced concrete columns with medium flexibility and subjected
to emergency actions. For example, this includes dynamic overloading at the mechanical
removal of the adjacent column, and the ability to bear the loads associated with the
localization of collapse from an explosion. It is understood that in standard conditions
of operation, imperfections do not have a considerable effect on the bearing capacity of
such columns, but their effect is completely different in the case of emergency actions.
If imperfections are not taken into account, a dynamically loaded column can suddenly
collapse in the case of an accident, leading to the collapse of the whole building.

1.2. Purpose, Objectives, and Overview of the Research in This Article

The purpose of this article is to enhance the safety of buildings and structures with
reinforced concrete frames. Columns are among the key sources of major risks of socio-
economic losses in an emergency situation. Columns should prevent the propagation of
progressive collapse in emergency situations. However, the analysis of dangers triggered
by different types of imperfections requires a 3D analysis for the entire structural system of
a building. Even now this is problematic, due to the high computational capacity of such
calculations. Therefore, it is necessary to propose acceptable approaches and assumptions,
discussed in Section 2.1.1, which would help to adequately simulate emergency loads
(Section 2.1.2) and describe the stress–strain state (SSS) of systems, subjected to supplemen-
tary loading, to achieve this goal. At the same time, SSS by itself does not allow judging the
degree of danger of an element failure, because it does not take into account any subsequent
damage triggered by the accident. Therefore, the criterion of relative risk, described in
Section 2.1.3, is proposed to evaluate mechanical safety.

Simplified finite element schemes, frequently used in engineering calculations, allow
determining the SSS of structures quite accurately. In these schemes, bearing elements
are geometrically idealized, and characteristics of materials are deterministic constants.
Taking account of imperfections seems problematic for such schemes, so a 3D numerical
model, described in Section 2.2, was proposed. Section 3.3 presents generalized final
results of numerous calculations and some particular results, explaining peculiarities of
columns deformation.

The scientific novelty of this research lies in the algorithm of risk analysis, which
enables researchers to quantitatively evaluate the mechanical safety of a design solution
for reinforced concrete columns. Versatile initial and secondary geometrical and physical
imperfections, emerging in the process of long-term operation, are taken into account. Such
an evaluation of a design solution is a practical opportunity to enhance the mechanical
safety of entire buildings, taking into account the prevention of failures triggered by
deviations from regular modes of operation.

2. Materials and Methods
2.1. Statement of the Research Problem
2.1.1. General Statements and Assumptions

The most frequently used square and rectangular cross-sections of columns are consid-
ered in this project. Three-dimensional models of columns under dynamic loads (Figure 1)
are analyzed using an implicit scheme of integration. In each case the following items are
registered: (1) the value of ultimate load, at which the bearing capacity is no longer guaranteed,
as well as (2) possible substantial changes in geometry, interpreted as the local loss of stability
caused by damages. For this purpose, geometrical nonlinearity is considered as a means of
registering coordinate changes in the deformed system. Three possible positions l1, l2, l3 of
initial imperfections (Figure 1a) are set.
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Figure 1. Problem statement: the initial system (a) and its representation using the finite element
method, simulation of concrete and reinforcement (b–d): volume, height d1 as a possible location of
an imperfection.

The following items are considered as initial imperfections:

- Deviations in the geometry of rebars from the design position;
- Local buckling of rebars;
- Local failure of the protective layer of concrete accompanied by the loss of cohesion

between the reinforcement and concrete;
- Local deterioration of mechanical characteristics of concrete;
- Loss of strength in the connection of reinforcement cage rods as a result of the failure

to comply with the welding process requirements.

Symmetrical reinforcement with supplementary vertical loading by the longitudinal
force and the bending moment, arising as a result of emergency mechanical damage to the
frame structure, was considered when square-section columns were analyzed. In this case,
it was assumed that the moment arises in one of the planes perpendicular to the side and
passing through the centre of gravity of the section. For rectangular columns, two planes
were considered; these were the planes in which the bending moment arose: one plane that
was perpendicular to the long side and the other plane that was perpendicular to the short
side. The pre-set location of initial imperfections has the maximum effect on the dynamic
resistance of a loaded column.

Figure 2 shows cross-sections of columns under consideration, their geometrical
parameters and loading patterns, and the computational model. When drafting the com-
putational model, we assumed that the greatest emergency effects were focused on the
basement columns, which rigidly rested on the foundation slab. The upper supporting
node is considered to be hinged. This assumption is made because, as a rule, a plastic hinge
is formed in the junction node connecting the slab and the neighboring loaded column,
subjected to supplementary loading in the event of an emergency situation caused by the
loss of column. An external moment is applied there (the moment in the plastic hinge in
Figure 2a), transmitted by the slab to the column during an emergency situation.



Buildings 2023, 13, 1054 5 of 19

Buildings 2023, 13, x FOR PEER REVIEW 5 of 20 
 

Figure 1. Problem statement: the initial system (a) and its representation using the finite element 
method, simulation of concrete and reinforcement (b–d): volume, height 1d  as a possible location 
of an imperfection. 

 
(a) (b) (c) 

Figure 2. Structural model of the column (a), the reinforcement, and types of sections (b,c). 

 In Figure 2, the variable t denotes the integration time. At the moment t = t0, the 
column is under static load, which corresponds to the mode of normal operation. At the 
moment t = t1, the system is under emergency dynamic overloading. Initial design 
solutions are based on SP 63.13330 [44], in accordance with which the rebars d28 and d10 
(Figure 2b,c) have diameters of 28 and 10 mm, respectively, and the steel grade is A500 
(compressive stresses are equal to 420 MPa). Transverse stirrups have a height step of S = 
250 mm. 

Simulation of an emergency effect on the structural system of a building in the case 
of its analysis in the 3D formulation requires a substantial amount of computer time. 
These costs are incomparable with the requirements applicable to the design 
documentation. Hence, we applied the principle of a degree of detail to a computational 
model. This principle consists of the fact that a separate structural element is simulated in 
detail (this is the column we are focused on). The presence of this element in the structural 
model of a building is simulated by the application of internal forces obtained using an 
equivalent structural model within the framework of a simplified approach. For example, 
one can refer to Section 2.1.2 to find the structural model of a frame structure with rod 
elements (Figure 3). 

In the case of emergency dynamic loading, not only the material of reinforced 
concrete columns can collapse, but columns can lose stability depending on their 
flexibility. In some works, flexibility values are provided. If the flexibility is 50λ ≥  , 
material failure is replaced by the loss in stability. In addition to evaluating the flexibility 
of a square column that we considered, the calculation was carried out to determine the 
minimum value of the critical force at which the phenomenon of stability loss would be 
observed. We obtained the value of ,ult bP , which is more than eight times higher than the 
real operating load on such a column. Consequently, if the load is higher, the column 
collapse occurs much earlier than its stability loss. The flexibility of the column is 

22 50сλ ≈ < . This calculation allows us to not consider the phenomenon of stability loss 
any further. 

Figure 2. Structural model of the column (a), the reinforcement, and types of sections (b,c).

In Figure 2, the variable t denotes the integration time. At the moment t = t0, the column
is under static load, which corresponds to the mode of normal operation. At the moment
t = t1, the system is under emergency dynamic overloading. Initial design solutions are based
on SP 63.13330 [44], in accordance with which the rebars d28 and d10 (Figure 2b,c) have
diameters of 28 and 10 mm, respectively, and the steel grade is A500 (compressive stresses are
equal to 420 MPa). Transverse stirrups have a height step of S = 250 mm.

Simulation of an emergency effect on the structural system of a building in the case of
its analysis in the 3D formulation requires a substantial amount of computer time. These
costs are incomparable with the requirements applicable to the design documentation.
Hence, we applied the principle of a degree of detail to a computational model. This
principle consists of the fact that a separate structural element is simulated in detail (this
is the column we are focused on). The presence of this element in the structural model of
a building is simulated by the application of internal forces obtained using an equivalent
structural model within the framework of a simplified approach. For example, one can
refer to Section 2.1.2 to find the structural model of a frame structure with rod elements
(Figure 3).

In the case of emergency dynamic loading, not only the material of reinforced concrete
columns can collapse, but columns can lose stability depending on their flexibility. In some
works, flexibility values are provided. If the flexibility is λ ≥ 50, material failure is replaced
by the loss in stability. In addition to evaluating the flexibility of a square column that
we considered, the calculation was carried out to determine the minimum value of the
critical force at which the phenomenon of stability loss would be observed. We obtained
the value of Pult,b, which is more than eight times higher than the real operating load on
such a column. Consequently, if the load is higher, the column collapse occurs much earlier
than its stability loss. The flexibility of the column is λc ≈ 22 < 50. This calculation allows
us to not consider the phenomenon of stability loss any further.

2.1.2. Prerequisites for Operational and Supplementary Dynamic Loads

The maximum longitudinal force was evaluated during the period of operation. The
value of this force N, applied to the column, is calculated using the formula [45]:

Nult = ϕ× (Rb × A + Rsc × As,tot) (1)

where Rb is the design resistance of concrete to axial compression; A is the area of concrete
section; Rsc is the design resistance of the reinforcement to compression; As,tot is the area
of all rebars in the section of the element; and ϕ is the coefficient of longitudinal bending,
depending on the shape of the section and kinematic constraints on the structure.
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Taking into account the characteristics of concrete class Rb = 14.5 MPa and the re-
inforcement with the design resistance to compression of 420 MPa, the force value was
obtained for a column with a square section of Nult =2750 kN, and for a column with
a rectangular section of Nult =4250 kN. To take account of the behavior of a reinforced
concrete structure according to recommendations SP 63.13330 [45], the value of the modulus
of elasticity of concrete was corrected by factor kb:

kb =
0.15

ϕl(0.3 + δe)
, (2)

where ϕl is the coefficient that takes account of the load action time; δe is the relative value
of eccentricity of the longitudinal force. In our case study it is kb = 0.17. In turn, the
modulus of elasticity of rebars was multiplied by coefficient ks =0.7.

It is assumed that supplementary dynamic vertical load on the column arises as a result
of the local damage to the neighboring column in the frame system. Research, focused on
the dynamics of frame structures, shows that the value of the supplementary load depends
on many factors, including topology, geometry and parameters of frame elements, nodal
connections, and loading intensity. These factors are taken into consideration by applying
dynamic coefficient kd = 1.15. The value of the coefficient of supplementary dynamic
loading of a column is selected according to the results of the static analysis of the frame, in
which the column is located. For a longitudinal force, this coefficient can be found using
Figure 3a,b.

kl(N) = Ndam
st /Nop

st , (3)
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Then, the following inequality can be made for the limiting value of the longitudinal
force in the column, which has no imperfections in the course of operation:

Nop
st = Nd/(kl(N)kd)→ Nd/Nop

st = kl(N)kd, (4)

where Nd is the maximum value of the dynamic force taken by the column before the
failure of materials, Nop

st is the actual value of the longitudinal force in the column during
its operation.

Obviously, the supplementary loading coefficient can be determined in terms of bend-
ing moments using Formula (3) by substituting N for M only for eccentrically compressed
columns. If the column is centrally compressed (conditionally), then the following formula
can be used to calculate dynamic moment Md

Md = kd Mdam
st −Mop

st . (5)

Here, Mdam
st is the moment in the static analysis of an emergency effect (Figure 3c).

Formulas (4) and (5) are used to construct functions of a time-driven change in the dynamic
load used in Equation (8) of Section 2.2. The value of the horizontal force can be determined
as the ratio between the difference of moments at the top and bottom of the column and its
geometrical length. For a column with a rectangular cross-section, it is assumed that the
dynamic moment acts in the plane of the lowest stiffness of the cross-section.

Verification calculations of dynamic effects were made to justify the consideration of
soil base characteristics. The rigid (rock) base and the elastic Winkler base were considered.
Calculations show that taking the base into account dampens dynamic effects and reduces
the degree of danger of the stress–strain state. Therefore, a decision was made to use the
rigid base to most conservatively evaluate the safety of structures.

2.1.3. Mechanical Safety Evaluation Criterion

The criterion for mechanical safety is a structural condition in which the risk of
loss of material in an accident is minimized. For clarification purposes, the case of the
frame, provided in Figure 3, is considered. It is assumed that if column 2, subjected to
supplementary loading, can no longer behave as a bearing structure, then progressive
collapse of the entire frame occurs. If it retains its strength, then failure is localized in
the two middle spans. In the general case, to evaluate the danger of loss of an element
followed by the supplementary loading of the neighboring elements, the value of relative
risk is applied:

r =
R

Utot
=

p(∆εb)U
Utot

,∆εb = εult − |εb|. (6)

where r is the relative risk; R is the absolute risk value; U is the damage caused by the
emergency effect during the localization of collapse; Utot is the damage from the complete
destruction of the facility; p(∆εb) is the probability of failure of the column, subjected to
supplementary loading, which can be calculated using the probability theory assuming the
normal distribution of random value ∆εb; value εult is the greatest value of the main relative
deformations of compression; and εb is the actual value of such deformations developing
during the emergency dynamic loading of the column.

Criterial values of r should be introduced to evaluate mechanical safety. In conditions
of uncertainty, the value of p(∆εb) will be taken as being equal to 0.5. Let it be assume
that safety is considered to be ensured at r ≤ 0.25. It actually means that in the case of the
emergency loss of the column, according to Formula (6), dynamically loaded elements must
not lose their strength, and localization of collapse must not exceed 50% of the total damage.
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2.2. Dynamic Formulation of the Calculation Method for the Stress–Strain State of Columns
with Imperfections
2.2.1. General Equation

Analysis of the stress–strain state of columns is performed using the equation, describ-
ing the motion of the system, within the framework of the finite element method, given
that columns are subjected to the vertical impact [46]:

[MC + MR]
..
y(t) + [KCτ + KCσ + KRτ + KRσ]

(
β

.
y(t) + y(t)

)
= F(t), (7)

where MC, MR are matrices of masses, reduced to nodes, for concrete and reinforcement
elements, respectively; KCτ , KRτ are matrices of minor deformations for concrete and
reinforcement elements, respectively; KCσ, KRσ are geometrical matrices for concrete and
reinforcement elements, respectively;

..
y(t) is the acceleration vector for time moment t;

.
y(t),

y(t) are velocity and displacement vectors, respectively; F(t) is the vector of external nodal
load, and β is the structural damping factor according to Rayleigh.

2.2.2. Simulation of Imperfections in a Reinforced Concrete Column

The following types of initial imperfections were considered:

- Collapse of a concrete column fragment accompanied by the loss of cohesion between
the rebars and concrete (MIM_1);

- Inaccurate design rebar position in the framework (GIM_2);
- Local bending (buckling) of the rebar (GIM_3);
- Defective connection of the cage bars (GIM_4);
- Local deterioration of concrete strength (MIM_4).

Geometrical parameters of imperfections are provided in Table 1.

Table 1. Simulation of the studied imperfections using the case of a square column.

Notation Location, mm Size, mm Model/FE Model Model Parameters

1 2 3 4 5

MIM_1

l1 = 1000
(Figure 1)

d1 = 250
d∗1 = 150
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reinforcement elements, respectively; ( )y t  is the acceleration vector for time moment t ; 

( )y t  , ( )y t  are velocity and displacement vectors, respectively; ( )F t   is the vector of 
external nodal load, and β  is the structural damping factor according to Rayleigh. 

2.2.2. Simulation of Imperfections in a Reinforced Concrete Column 
The following types of initial imperfections were considered: 

− Collapse of a concrete column fragment accompanied by the loss of cohesion between 
the rebars and concrete (MIM_1); 

− Inaccurate design rebar position in the framework (GIM_2); 
− Local bending (buckling) of the rebar (GIM_3); 
− Defective connection of the cage bars (GIM_4); 
− Local deterioration of concrete strength (MIM_4). 

Geometrical parameters of imperfections are provided in Table 1. 

Table 1. Simulation of the studied imperfections using the case of a square column. 

Notation Location, mm Size, mm Model/FE Model Model Parameters 
1 2 3 4 5 

MIM_1 

1 1000l =  
(Figure 1) 

1 250d =  
*
1 150d =  

 
Fragment of a column 

1 50h =  mm; 
1—3D FE of concrete; 
2—Rod-based FE of 
reinforcement; 
3—FE of reinforcement with the 
unzip of nodes;  
4—Deleted FE of concrete. 

2 1750l =  2 250d =  
*
2 150d =  

3 1000l =  3 250d =  
*
3 150d =  

Fragment of a column

h1 = 50 mm;
1—3D FE of concrete;
2—Rod-based FE
of reinforcement;
3—FE of reinforcement with the
unzip of nodes;
4—Deleted FE of concrete.

l2 = 1750 d2 = 250
d∗2 = 150

l3 = 1000 d3 = 250
d∗3 = 150

GIM_2 - l = 4000
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Column section (concrete) 

Concrete strength 
deterioration in the layers that 
are 100 mm thick is simulated  
1—Upper layer: 
Modulus of elasticity 

1 0.85b bE E= . 
Cohesion stresses, including 
cohesion of constrained 
concrete by rebars 

1 0.8с с= . 
2—Inner layer: 

2 0.4b bE E= , 2 0.35с с=  

2 2000l =  2 500d =  

3 500l =  3 500d =  

2.2.3. Load Simulation 
A model of time-variable loads was used to study the transient process of 

supplementary emergency-induced dynamic loading. For this purpose, functions ( )f t , 
normalized in terms of the value of static load F , were constructed. Hence, at each point 
in time tF  the value of the load was calculated as 

( ).tF F f t= ⋅  (8) 

The type of ( )f t  functions is presented in Section 3. When modeling in volumetric 
formulation by elements with only linear degrees of freedom in the nodes, the 

Column section

Cases :
dx′ = ±25 mm, dy′ = 0;
dx′ = 0, dy′ = ±25 mm;
dx′ = 25 mm, dy′ = 25 mm;
dx′ = −25 mm, dy′ = −25 mm;

1—possible position of a rod;
2—position of stirrups.
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Table 1. Cont.

Notation Location, mm Size, mm Model/FE Model Model Parameters

1 2 3 4 5

GIM_3

l1 = 1000 d1 = 500
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Fragment of a frame

Calculation cases :
dx′ = 25 mm, dy′ = 0;
dx′ = 0, dy′ = 25 mm;
dx′ = −25 mm, dy′ = 25 mm;

l2 = 2000 d2 = 500
dx′ = 25 mm, dy′ = 0;
dx′ = 0, dy′ = 25 mm;
dx′ = −25 mm, dy′ = 25 mm;

l3 = 500 d3 = 500
dx′ = 25 mm, dy′ = 0;
dx′ = 0, dy′ = 25 mm;
dx′ = −25 mm, dy′ = 25 mm;

GIM_4

l1 = 1000 -
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2.2.3. Load Simulation 
A model of time-variable loads was used to study the transient process of 

supplementary emergency-induced dynamic loading. For this purpose, functions ( )f t , 
normalized in terms of the value of static load F , were constructed. Hence, at each point 
in time tF  the value of the load was calculated as 

( ).tF F f t= ⋅  (8) 

The type of ( )f t  functions is presented in Section 3. When modeling in volumetric 
formulation by elements with only linear degrees of freedom in the nodes, the 

Fragment of a frame

Setting the modulus of elasticity
for D rods
E = Es/108.
Calculation cases
D1; D1 ∧ D2

l2 = 2000 - D1

l3 = 500 - D2

MIM_4

l1 = 1000 d1 = 500

Buildings 2023, 13, x FOR PEER REVIEW 9 of 20 
 

GIM_2 - 4000l =  

 
Column section  

Cases: 
25 mm, 0;

0, 25 mm;
25 mm, 25 mm;

25 mm, 25 mm;

dx dy
dx dy
dx dy
dx dy

′ ′= ± =
′ ′= = ±
′ ′= =
′ ′= − = −

 

1—possible position of a rod; 
2—position of stirrups. 

GIM_3 

1 1000l =  1 500d =  

 
Fragment of a frame  

Calculation cases: 
25 mm, 0;
0, 25 mm;

25 mm, 25 mm;

dx dy
dx dy
dx dy

′ ′= =
′ ′= =
′ ′= − =

 

2 2000l =  2 500d =  
25 mm, 0;
0, 25 mm;

25 mm, 25 mm;

dx dy
dx dy
dx dy

′ ′= =
′ ′= =
′ ′= − =

 

3 500l =  3 500d =  
25 mm, 0;
0, 25 mm;

25 mm, 25 mm;

dx dy
dx dy
dx dy

′ ′= =
′ ′= =
′ ′= − =

 

GIM_4 
1 1000l =  - 

 
Fragment of a frame 

Setting the modulus of 
elasticity for D rods 

8/ 10 .sE E=  
Calculation cases: 

1D ; 1 2D D∧  

2 2000l =  - 1D  

3 500l =  - 2D  

MIM_4 

1 1000l =  1 500d =  

 
Column section (concrete) 

Concrete strength 
deterioration in the layers that 
are 100 mm thick is simulated  
1—Upper layer: 
Modulus of elasticity 

1 0.85b bE E= . 
Cohesion stresses, including 
cohesion of constrained 
concrete by rebars 

1 0.8с с= . 
2—Inner layer: 

2 0.4b bE E= , 2 0.35с с=  

2 2000l =  2 500d =  

3 500l =  3 500d =  

2.2.3. Load Simulation 
A model of time-variable loads was used to study the transient process of 

supplementary emergency-induced dynamic loading. For this purpose, functions ( )f t , 
normalized in terms of the value of static load F , were constructed. Hence, at each point 
in time tF  the value of the load was calculated as 

( ).tF F f t= ⋅  (8) 

The type of ( )f t  functions is presented in Section 3. When modeling in volumetric 
formulation by elements with only linear degrees of freedom in the nodes, the 

Column section (concrete)

Concrete strength deterioration
in the layers that are 100 mm
thick is simulated
1—Upper layer:
Modulus of elasticity
Eb1 = 0.85Eb.
Cohesion stresses, including
cohesion of constrained concrete
by rebars c1 = 0.8c.
2—Inner layer:
Eb2 = 0.4Eb, c2 = 0.35c

l2 = 2000 d2 = 500

l3 = 500 d3 = 500

2.2.3. Load Simulation

A model of time-variable loads was used to study the transient process of supplemen-
tary emergency-induced dynamic loading. For this purpose, functions f (t), normalized in
terms of the value of static load F, were constructed. Hence, at each point in time Ft the
value of the load was calculated as

Ft = F · f (t). (8)

The type of f (t) functions is presented in Section 3. When modeling in volumetric
formulation by elements with only linear degrees of freedom in the nodes, the concentrated
moments are represented in the form of a pair of follower forces. It is considered that the
dynamic overloading is not instantaneous, but over a finite time period. This time can be
taken into account by means of function f (t) or experimental information (if available).

2.2.4. Transient Dynamic Process Time

To substantiate the use of numerical integration in time calculations, experimental
data from the research literature were used. The authors of experiments provide different
values of time, varying from 0.8 s to 3 s, needed for vibrations of reinforced concrete
structures to decay and for the system to stabilize. In the analysis of columns, having
initial imperfections, the assumed integration time was 3 s after the onset of an emergency
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effect. In numerical calculations, no vibration process was detected in the column during
this time.

2.2.5. Models of Materials

Concrete was simulated using hexahedral elements, and their deformation was im-
plemented in accordance with the Drucker–Prager plasticity model. Model setting and
verification in terms of compliance of the results with the requirements of regulatory calcu-
lation methods SP 63.13330 [45] are provided in Section 3. The following values of model
parameters were used: cohesion stress (cohesion between particles) C= 3.3 Mpa. This value
takes into account an increase in concrete cohesion due to internal compression triggered
by frames made of stirrups. In this case, the value of design tensile strength of concrete
is Rbt = 0.9 MPa. The internal friction angle is ϕ = 28◦; dilatation angle is ϕD = 26◦, and
relative stresses σ/Rb= 0.3 are considered as the onset of dilatation. To simulate concrete
softening, a bilinear function is used, for which at εb1 ≤ ε ≤ εb2 stresses σ = Rb, fur-
ther at ε > εb2 stresses σ decreases linearly until the level of deformations ε f = 0.006 is
reached. Here, values of deformations εb1, εb2 correspond to maximum elastic and plastic
compression deformations for concrete, respectively, while ε f are fictitious deformations
that ensure the stability of the process of numerical integration. The reinforcement was
simulated using the Prandtl bilinear diagram of the steel behavior, in which the value of
design resistance Rs = 420 Mpa was used as yield strength, and elastic relative deformations
reached εs,el = 0.002038.

2.2.6. Algorithm of the Risk Analysis of Mechanical Safety of a Column with Imperfections

The following main stages are implemented:

- Consideration of options of supplementary dynamic loading of the column in terms of
different scenarios of local damages. For example, if we take column 2 in Figure 3, we
can see that two scenarios of supplementary emergency loading can be implemented
for it. The first scenario involves the loss of column 1, as shown in Figure 3, and the
second one is implemented in case of the loss of the edge column;

- Calculation of load values, taking into account dynamic effects that arise when an
emergency situation is considered for the structural system as a whole. For this
purpose, both quasi-static approaches, described in Section 2.1.2, and direct dynamic
methods, combined with the principle of the degree of detail, can be used:

- Selection of the location of one or more initial imperfections, as well as predicting
the location of secondary imperfections, for example, potential seats of corrosion and
open flame in case of fire, etc.;

- Calculation of the finite element model of a column without imperfections and deter-
mination of the limit emergency dynamic load the column can take;

- Calculation of the finite element model of the column with imperfections in their least
advantageous combination and determination of the limit emergency dynamic load
the column can take;

- Comparison of ultimate load values and deciding on the strength margin if the re-
quired value of relative risk is to be taken into account (see Section 2.1.3).

3. Results
3.1. Verification of the Calculation Model

The certified preprocessor “Femap Simcenter” 2021 with the solver “Nastran”, module:
“Transient Nonlinear Analysis” was used for the calculations. The Drucker–Prager model
was verified. Parameters of conventional cohesion and the angle of internal friction for
the B25 class concrete prisms, of standard sizes 150 × 150 × 600, were selected using the
ultimate load criterion of Nult = Rb Ab = 326.25 kN. Results of this calculation for the
case of the collapse load of 325 kN are presented in Figure 4, which shows that after the
achievement of the stress level of 14.5 MPa, quasi-plastic deformation and subsequent
collapse commences. Thus, Figure 4a shows the graph of normal stresses (vertical axis) as a
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function of vertical force equal to 1 MN acting on the specimen area with dimensions of
150 × 150 mm. The numbers on the horizontal axis indicate the step of loading. At each
step, the pressure consistently increases by the magnitude of the increment determined
in the nonlinear analysis. The leftmost point shows the stress in the specimen equal to
−2.2 MPa, the force is 0.1 of the nominal value of 1 MN. The far right point shows the failure
of the specimen. Prior to this (case 7, P = 0.325 MN), stresses of 14.5 MPa approximately
equal to the design resistance of the concrete arise in the specimen.
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Figure 4. Compression of a standard prism using the Drucker–Prager model, a numerical experiment.
Dependence of compressive stresses on dimensionless parametric load (a); a prism model with the
visualization of the minimum principal stress (b).

Further, values of cohesion stresses and the angle of internal friction were selected
with allowance for the cohesion of constrained concrete due to the presence of stirrups.
The main determinative factor was the bearing capacity, calculated using Formula (1). As a
result, concrete characteristics, described in Section 2.2.5, were obtained.

The effect of confinement for concrete is not fully accounted for by approximation for
the following reason. The pitch and small diameter of the stirrups, which are significantly
deformed in the calculation, are assigned. These strains almost eliminate the constraining
effect of the concrete. The presence of the concrete confining was taken into account by
increasing the value of cohesion stresses by 10% relative to the unconfined concrete.

3.2. Dynamic Loading and Calculation Parameters

To ensure the precise calculation of coefficients of dynamics, consider the frame
structure, shown in Figure 4. The structure has the following parameters.

The total span of the frame is 24 m (6 × 4), the floor height is 3 m. Each floor of the
frame is loaded with a uniformly distributed load, with the intensity of 10 kN/m. Columns
have dimensions 40 × 40 cm, 40 × 70 cm, girders—40 × 80 (h). Values of internal forces,
shown in Table 2, were obtained as a result of the nonlinear static calculations made for the
regular conditions of operation at the onset of emergency exposure.
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Table 2. Internal forces and calculation of dynamic effects.

№ Ndam
st , kN Nop

st , kN Mdam
st , kNm Mop

st , kNm Qdam
st , kN Qop

st , kN

1 (40 × 40) 978.6 610.4 35.3 0.5 17.7 0.2

Nd/Nop
st = 1.84 * Md = 40.09 ** Qd = 20.15

2 (40 × 70) 985.5 639.4 75.4 0.9 38.4 0.6

Nd/Nop
st = 1.77 Md = 85.81 Qd = 43.56

* Obtained using (4): 1.15 × 978.6/610.4; ** Obtained using Formula (5): 1.15 × 35.3 − 0.5 = 40.09.

Graphs of time functions for the longitudinal force are shown in Figure 5a, for
the pair of forces, simulating the effect of the moment—in Figure 5b, and for the trans-
verse force—in Figure 5c. According to Formula (5) and Table 2, the longitudinal force
value of F = N = 610.400 kN was introduced in the calculation, for moment
F = M/0.3 = 10/0.3 = 33.3333 kN, where 0.3 m is the distance between gravity centers of
rebars (see Figure 2b; a = 5 cm), and for transverse force F = Q = 10,000 N. It was assumed
that supplementary dynamic loading by the moment and the transverse force takes place
within 0.4 s and lags by 0.2 s. Here, complete supplementary loading of the system is
achieved at the time moment of t =1.5 s.
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Figure 5. Time functions for modeling the supplementary loading by the longitudinal force (a),
bending moment (b), and transverse force (c).

For the purpose of solving the nonlinear problem, using the Newton–Raphson method,
it is assumed that parameters of the dynamic calculation include the value of the force con-
vergence error, equal to 0.001. The structural failure criterion is the absence of good condi-
tioning of the system stiffness matrix, accompanied by interruption of the process of numer-
ical integration. An implicit solver (“Femap Simcenter“ 2021) is used to analyze dynamics.
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3.3. Diagrams of Temporal Variations in SSS Components for Square and Rectangular Columns,
Loaded as a Result of Emergency Effects in the Presence and Absence of Imperfections

A number of calculations of finite element models allowed obtaining initial data used
for the risk analysis of structures. In fact, in all calculations, rebars of columns reached
the yield strength under dynamic loading and thereafter, plastic deformations developed.
In a number of calculations the defining role of stirrups was identified. They ruptured
due to welding defects in the neighboring rods. The rupture was evaluated by the level of
relative strains, which exceeded the limit strain values. Some results of the finite element
analysis are shown in Figure 6. Figure 6a,b show that in case of deterioration of mechanical
characteristics of concrete surface layers in the bearing part of undamaged concrete, stresses
become equal to the design resistance. If the column is insufficiently massive, this can lead
to its failure under such supplementary dynamic loading.
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Figure 6. Stresses (Pa) in concrete and reinforcement for columns: (a) main compressive stresses for 
the concrete of a rectangular column in the presence of imperfection MIM 4 (location l1); (b) 
visualization of stresses in the internal layers of concrete; (c) von Mises stresses (Pa) in the 
reinforcement cage for a rectangular column without imperfections. 

  

Figure 6. Stresses (Pa) in concrete and reinforcement for columns: (a) main compressive stresses for
the concrete of a rectangular column in the presence of imperfection MIM 4 (location l1); (b) visual-
ization of stresses in the internal layers of concrete; (c) von Mises stresses (Pa) in the reinforcement
cage for a rectangular column without imperfections.

As shown in Figure 6c, stress in stirrups is almost equal to the yield strength under
supplementary dynamic loading, which makes welding defects a dangerous imperfection.

3.4. Calculation Results of the Ultimate Dynamic Load in the Presence and Absence
of Imperfections

As a result of the initial calculation, the limit value of the longitudinal force was found
that corresponded to supplementary dynamic loading of columns without imperfections.
For a square column, this value is Nop

ult = 1450 kN in the operating condition; for a rect-
angular column, it is Nop

ult = 2260 kN. Results of further calculations show that structural
failure is observed under such loading and in the presence of some imperfections. In this
regard, it seems reasonable to determine the load at which the presence of imperfections
does not have a major effect on the bearing capacity. A search was performed with a
25 kN decrease in the value of the ultimate longitudinal force. It is found that for a square
column, the value of SSS, at which the effect of imperfections on the bearing capacity is
insignificant, is close to the limit value and equal to Nop

st,imp =1400 kN; for a rectangular
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column it is Nop
ult = 2210 kN. The data on the condition of columns under supplementary

dynamic loading and the presence of imperfections of different types are presented in
Table 3. Imperfections are titled according to Table 1.

Table 3. Results of the column calculation, taking into account imperfections.

№
Calculation of

Columns
With Imperfections

Loading Value Used for Dynamic Calculation Purposes

Square Section Column Rectangular Section Column

Nop
st = 1450 kN

Md = 40.09 kNm
Nop

st,imp = 1400 kN
Md = 40.09 kNm

Nop
st = 2260 kN

Md = 85.81 kNm
Nop

st = 2210 kN
Md = 85.81 kNm

1 2 3 4 5 6

1 GIM_1
(location l1)

Collapse accompanied
by the formation of

a geometrically
changeable system

(mechanism), further
collapse t = 1.512 s

The bearing capacity
is ensured

The bearing capacity
is ensured -

2 GIM_1
(location l2)

Collapse
t = 1.524 s The same (-//-) The same (-//-) -

3 GIM_1
(location l3)

Collapse
t = 1.580 s -//- -//- -

4

GIM_2
(displacement

towards the face that is
parallel to the plane of
action of the moment)
dx′ = −25, dy′ = 0;

Collapse
t = 1.570 s -//- Collapse

t = 1.512 s
The bearing

capacity is ensured

5

GIM_2
(displacement

from the face that is
parallel to the plane of
action of the moment)

dx′ = 25, dy′ = 0;

The bearing capacity
is ensured -//- The bearing capacity

is ensured -

6

GIM_2
(inward

displacement)
dx′ = 25, dy′ = −25;

The bearing capacity
is ensured -//- The bearing capacity

is ensured -

7

GIM_2
(displacement
towards faces)

dx′ = −25, dy′ = 25;

Collapse
t = 1.570 s -//- Collapse

t = 1.482 s
The bearing

capacity is ensured

8
GIM_3

(location l1)
dx′ = 25, dy′ = 0;

Collapse
t = 1.542 s -//- Collapse

t = 1.540 s
The bearing

capacity is ensured

9
GIM_3

(location l2)
dx′ = 25, dy′ = 0;

The bearing capacity
is ensured -//- The bearing capacity

is ensured -

10
GIM_3

(location l3)
dx′ = 25, dy′ = 0;

Collapse
t = 1.521 s -//- The same -

11
GIM_3

(location l1)
dx′ = 0, dy′ = 25;

The bearing capacity
is ensured -//- -//- -
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Table 3. Cont.

№
Calculation of

Columns
With Imperfections

Loading Value Used for Dynamic Calculation Purposes

Square Section Column Rectangular Section Column

Nop
st = 1450 kN

Md = 40.09 kNm
Nop

st,imp = 1400 kN
Md = 40.09 kNm

Nop
st = 2260 kN

Md = 85.81 kNm
Nop

st = 2210 kN
Md = 85.81 kNm

1 2 3 4 5 6

12
GIM_3

(location l2)
dx′ = 0, dy′ = 25;

The same -//- -//- -

13
GIM_3

(location l3)
dx′ = 0, dy′ = 25;

Collapse
t = 1.542 s

The bearing capacity
is ensured

The bearing capacity
is ensured -

14
GIM_3

(location l1)
dx′ = −25, dy′ = 25;

Collapse
t = 1.524 s The same Collapse

t = 1.557 s
The bearing

capacity is ensured

15
GIM_3

(location l2)
dx′ = −25, dy′ = 25;

Collapse
t = 1.544 s -//- The bearing capacity

is ensured -

16
GIM_3

(location l3)
dx′ = −25, dy′ = 25;

The bearing capacity
is ensured -//- The same -

17 GIM_4
(location l1)

D1
D1 ∧ D2

The bearing capacity
is ensured -//- -//- -

18 Collapse
Collapset = 1.517 s -//- Collapse

t = 1.492 s
The bearing

capacity is ensured

19

GIM_4
(location l2)

D1
D1 ∧ D2

Collapse
t = 1.52 s -//- The bearing capacity

is ensured -

20

Collapse
t = 1.559 s

Deformations
εs ≈ 0.04� 0.015
(stirrup rupture)

-//-

Collapse
t = 1.562 s

(stirrup rupture)
εs ≈ 0.025� 0.015

The bearing
capacity is ensured

21 GIM_4
(location l3)

D1
D1 ∧ D2

Collapse
t = 1.518 s

The bearing capacity
is ensured

The bearing capacity
is ensured -

22 Collapse
t = 1.517 s

The bearing capacity
is ensured

Collapse
t = 1.496 s

The bearing
capacity is ensured

23 MIM_4
(location l1)

Collapse,
t = 1.480 s

(failure in the
damage area)

Collapse
t = 1.54 s

The bearing capacity is
ensured at

P = 1200 kN
Md = 40.09 kNm

Collapse
t = 1.523 s

Collapse
t = 1.568 s

The bearing
capacity is
ensured at

P = 2010 kN
Md = 40.09 kNm

24 MIM_4
(location l2)

Collapse
t = 1.514 s

The bearing capacity
is ensured

The bearing capacity
is ensured -

25 MIM_4
(location l3)

Collapse
t = 1.440 s

The bearing capacity
is ensured

σb = Rb

Collapse
t = 1.541 s

The bearing
capacity is ensured
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3.5. Risk Analysis of Mechanical Safety of Columns with Imperfections

The qualitative analysis of the table shows that the rectangular section is more resistant
to failures under emergency effects. Table 4 has a quantitative evaluation made using the
data obtained as a result of the finite element calculations.

Table 4. Calculation results of the column, taking into account imperfections.

№ Design Imperfections Numbered
as in Table 2 βε p(∆εb),% r

1
Column
section

400 × 400 (h)
1–4, 7, 8, 10, 13–15, 18–25. 1.3608 15.8 0.0158

2
Column
section

700 × 400 (h)
4, 7, 8, 14, 18, 20, 22, 23, 25. 1.6954 9.47 0.00947

If Formula (6) is applied, U/Utot = 0.1 is used for the frame structure, and the value
of p(∆εb) is calculated on the basis of the assumption of normal distribution of the random
value of deformation margin ∆εb.

This assumption is accepted since in this structure, concrete is the material that better
ensures its bearing capacity. The following reliability theory formulas are used to make
calculations in the table:

δ(∆εb) =
√

S2(σ1/Eb0) + S2(Rb/Eb0), (9)

βε =
∆εb

δ(∆εb)
, (10)

p(∆εb) = 1− (0.5 + Φ(βε)), (11)

where ∆εb is the mathematical expectation of the value ∆εb taking into account the con-
sidered imperfections; S2(σ1/Eb0), S2(Rb/Eb0) are mean-square deviations of actual and
limiting deformations, respectively; and σ1, Eb0, Rb are the main compressive stresses, the
initial modulus of elasticity, and the design compressive strength for concrete, respectively.
The table includes those calculations in which the condition of the column performance is
ensured for the imperfection under consideration. Cells with dashes are disregarded, since
the risk of failure is close to zero here.

As a result of the risk analysis carried out in Table 4, it is found that the column with
a 700 × 400 mm cross-section is safer under dynamic emergency loads (the risk value is
smaller for it). This method also allows for evaluating the level of the relative risk for other
bearing structures and normalizing the relative risk.

4. Discussion and Prospects for Further Investigation

The analysis of the table shows that initial geometrical imperfections do not have a
great effect on the bearing capacity of columns, if the design has a safety margin, taking into
account supplementary dynamic emergency loading. For square and rectangular columns,
this margin can vary from 3 to 5%.

Secondary imperfections, caused by man-induced or natural factors deteriorating the
mechanical characteristics of materials, have a greater effect. Hence, for the square column
under consideration, a safety margin of the bearing capacity of up to 21% is required to
ensure trouble-free operation. Rectangular columns are more resistant to such effects and
require a safety margin of 13%. If the safety margins are lower under emergency loading,
the presence of imperfections can lead to the progressive collapse of the frame system due
to the failure of the column subjected to supplementary loading.
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Obviously, locations of initial imperfections, their geometry, and topology can be
chosen in various combinations and their effect on the bearing capacity can be refined.

This problem can be solved using optimization algorithms of the search type, in which
sets of imperfection parameters are used as variable parameters. The maximum load at
which the bearing capacity of the column can be ensured, taking into account emergency
dynamic loading by vertical load and bending moment, is the purpose of optimization.
Calculations and results of risk analysis show that the symmetrical shape of the column
cross-section is less sensitive to the presence of imperfections. It is safer at equal load
intensities, close to the limit values.

Based on the approach outlined in this work, prospects for further research are related
to the following aspects:

- Analysis of mechanical safety of columns with imperfections, and if these columns
are subjected to special impacts, including lateral horizontal and angular impacts;

- Improvement in simulation accuracy based on the simulation of the brittle failure of
concrete using local GAP elements;

- Risk analysis of safety of columns and other key bearing elements of buildings with
advanced reinforcement patterns;

- Development of optimization methods, taking into account the risk analysis for
building frameworks, and the formation of algorithms needed to identify the worst
combinations of imperfections, for example, those that are based on the algorithms
outlined in papers [45,47,48].

5. Conclusions

1. An approach to risk analysis and modeling of columns is proposed. This approach
allows obtaining safe design solutions in the presence of initial or secondary imperfec-
tions and emergency situations not foreseen in the course of normal operation. This
approach is based on the reliability theory and the principle of continuum discretiza-
tion of the calculation model;

2. In the presence of initial or secondary imperfections and emergence of supplementary
emergency dynamic loads, columns with square and rectangular cross-sections and
medium and low flexibility (collapsing due to the failure of their material rather than
the loss in stability) must be designed with a safety margin of 3–21%;

3. The developed approach to the risk analysis of an emergency situation shows that
the smallest risk of column failure is observed for a rectangular cross-section and
symmetrical reinforcement.
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