
Citation: Narques, T.V.N.; Carvalho,

R.C.; Christoforo, A.L.; Mascarenhas,

F.J.R.; Arroyo, F.N.; Bomfim Junior,

F.C.; Santos, H.F.d. Use of Real

Coded Genetic Algorithm as a

Pre-Dimensioning Tool for

Prestressed Concrete Beams.

Buildings 2023, 13, 819. https://

doi.org/10.3390/buildings13030819

Academic Editor:

Andreas Lampropoulos

Received: 17 February 2023

Revised: 13 March 2023

Accepted: 16 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Use of Real Coded Genetic Algorithm as a Pre-Dimensioning
Tool for Prestressed Concrete Beams
Tarniê Vilela Nunes Narques 1,* , Roberto Chust Carvalho 1, André Luis Christoforo 1 ,
Fernando Júnior Resende Mascarenhas 1 , Felipe Nascimento Arroyo 1 , Florisvaldo Cardozo Bomfim Junior 2

and Herisson Ferreira dos Santos 3

1 Department of Civil Engineering, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
2 Department of Electrical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
3 Research Department of the Federal Institute of Rondônia, Federal Institute of Education Science and

Technology of Rondônia, Vilhena 76980-000, RO, Brazil
* Correspondence: tarnienarques@outlook.com; Tel.: +55-(34)-99677-8591

Abstract: In project practice, the search for optimal solutions is based on the traditional process of trial
and error, which consumes much time and does not guarantee that solutions found are the optimal
solutions for the problem. Many studies have been developed in recent years with the aim of solving
problems in various fields of structural engineering with the aid of intelligent algorithms; however,
when it comes to the optimization of structural designs, the approaches considered by the authors
involve a large number of variables and constraints, making the implementation of optimization
techniques difficult and consuming significant processing time. This research aims to evaluate the
efficiency of intelligent algorithms when associated with structural optimization approaches that
are simpler to implement. Therefore, a Genetic Algorithm in Real Coding was built to serve as an
auxiliary tool for pre-dimensioning prestressed concrete beams. With this, the problem becomes
simpler to implement, as it depends on a smaller number of variables, leading to less processing time
consumption. Simulations were performed to calibrate the Genetic Algorithm and find the optimal
solution later. The solution found by the algorithm was compared with the real solution of a project
that had already gone through a traditional optimization process. Even in these circumstances, the
proposed Genetic Algorithm was able to find, in 210 s, a more economical solution. Our studies
found that even with more straightforward approaches, intelligent algorithms can help in the search
for optimal solutions to structural engineering problems; in addition, using real coding in fact proved
to be a great strategy due to the nature of the problem, making the implementation of the algorithm
simpler and ensuring answers with little processing time.

Keywords: optimization; prestressed concrete; I-girger; pre-dimensioning; Genetic Algorithm; real
coded; Simulated Binary Crossover (SBX)

1. Introduction

In recent years, there has been significant growth in the number of research works
that apply intelligent algorithms to solve problems in the most diverse areas of the field of
structural engineering. The authors in [1], for example, combining Support Vector Machine
(SVM) and Moth-flame Optimization (MFO), presented an efficient method to solve the
problem of identifying damage in bridge structures considering the ambient temperature
variation. To validate the research, the authors [1] applied the method to identify damages
in a simply supported numerical beam and an experimental example of a bridge. Several
other works in the same line of research, i.e., using intelligent algorithms for structural
health monitoring, were highlighted in the summary review carried out by [2].

Intelligent algorithms have also been widely used in structural engineering to assist
in the search for design solutions at the lowest possible cost [3,4]. Although research
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in this area has already advanced a lot, even today, the search for optimal solutions to
these problems, in practice, is based on the empirical process of trial and error. This
procedure is considered inefficient for this purpose because it consumes much time from
the professional and works with a very restricted search universe, not guaranteeing that
the adopted solution represents the optimum one for the analyzed problem.

However, this behavior that professionals have is understandable due to the difficulty
of equating models to search for optimized solutions for problems in the structural engineer-
ing field since many variables and restrictions surround them. The authors of [4–7] pointed
out that the ideal would be to seek optimal solutions through metaheuristic techniques
in these cases. The authors of [3,4] even demonstrated that the number of studies using
these techniques to optimize problems in the civil engineering field has increased in recent
decades. However, there is a certain lack of research focused on practical ways to optimize
prestressed concrete elements.

Optimizing prestressed concrete elements, mainly precast ones, becomes particularly
interesting since they are generally produced in series to meet project and market demands.
In addition, they are used to solve problems of highly costly works, such as industrial sheds
and bridges, where any cost reduction becomes significant. Furthermore, this type of struc-
tural project and construction is surrounded by many variables and restrictions, making
the optimization process very difficult, using the traditional trial and error methodology.
Hence, these facts were the reasons that guided the choice of the element to be optimized
in the research.

Among the works published in the literature on optimizing prestressed elements
using metaheuristic techniques, we can highlight [8], which modeled a Genetic Algorithm
(GA) to propose a new cross-section of prestressed concrete wind turbine towers. The
solution presented in the paper guaranteed savings of 15% compared with the traditionally
used cross-sections. In [9], a procedure to optimize prestressed concrete flat slabs was pre-
sented, where initially, the authors tested two direct research methods, Nelder–Mead and
Sequential Quadratic Programming. However, both methods did not provide satisfactory
results due to the nature of the problem, which led the authors to work with a combination
of Multi-Objective Evolutionary Algorithms with GA to find the optimal solution. The
authors of [10] used a traditional Genetic Algorithm to optimize prestressed unidirectional
ribbed slabs.

In [11], the authors modeled a GA to optimize the design of the structural elements
of a bridge composed of multiple precast beams of I cross-section, reinforced concrete
slabs, and columns with H cross-section. Based on that, 33 constraints were imposed on
the problem, and the final result was 12.6% more economical than the actual solution
implemented. The authors of [12] presented an automated approach associating the model
of a prestressed slab simulated in SAP2000 with two metaheuristic algorithms, Particle
Swarm Optimization (PSO) and its improved version PSOHS, the latter being the one that
presented the best performance. A new method for optimizing prestressed slabs using the
Method of Moving Asymptotes (MMAs) was presented in [13]. This methodology led to up
to 50% savings compared with the traditional design methodology; however, the authors
pointed out that a lot of processing time was consumed to find the optimal solutions to
the problems.

It is evident, analyzing the results of [8–13], that the metaheuristic techniques, particu-
larly the GA, have presented themselves as a good alternative for optimizing prestressed
elements, corroborating with the reports of [4–7]. However, as shown in [13], the way
the problem is approached can significantly influence the processing time of the optimiza-
tion algorithm.

In [5], for example, the authors considered 59 discrete variables in the optimization
problem. The objective was to find the final design solution for a road bridge composed
of a solid concrete slab and U-section beams. Seven geometric variables were considered:
beam height, slab thickness, beam soffit width, beam soffit thickness, width and thickness
of flanges, and thickness of webs, and two variables to consider different concrete grading



Buildings 2023, 13, 819 3 of 15

used in beams and slab. The other 50 variables were used to define the pattern and
positioning of the transverse and longitudinal reinforcement of the beams and slab. Due
to the complexity of the problem, it took 36,233 s for the algorithm to find the most
economical solution.

Approaches such as these, which involve a large number of variables and constraints,
require a lot of programming effort and consume a lot of processing time, distancing the
applicability of metaheuristic techniques from the leading agents they would serve, the
professionals in the field of structural engineering [14].

An alternative to these issues would be applying approaches that involve fewer
variables and constraints, making the coding of metaheuristics more straightforward to
implement and delivering results with less processing time. In line with this proposal, this
research aimed to evaluate the GA efficiency when applied as an auxiliary pre-dimensioning
tool since, in this context, the problems depend on fewer variables and restrictions.

To validate the research, a GA was elaborated to assist in pre-dimensioning prestressed
beams for the roof of sheds. Its optimal solution was compared with the real solution of an
already executed project. It is noteworthy that the real solution, according to the engineers’
report, was the product of a succession of optimization studies using the traditional trial
and error methodology, which aimed to find the lowest possible cost solution. Even so, the
GA proposed in the research, composed of only six variables, could find a more economical
solution in 210 s, showing that algorithms such as the one proposed in this research,
designed for the pre-dimensioning level, can also lead to optimal results.

In order to maintain the proposal for more straightforward coding to be implemented,
the entire GA was structured in real coding, eliminating the need for conversion routines
between the real and binary systems, thereby significantly reducing the processing time of
the algorithm. In addition, real codes guarantee a greater approximation of the optimal
solutions to the problems. They are more precise, mathematically speaking, than binary
codes, which have their precision directly related to the number of bits adopted in the
programming. Another point worth mentioning in this research is the use of the Simulated
Binary Crossover (SBX), a Crossover Operator suitable for real coding, which had not yet
been considered in the optimization of structural engineering problems.

2. Materials and Methods

This research evaluated the efficiency of applying a GA, designed simpler, to work
as an auxiliary tool for pre-dimensioning a prestressed concrete beam. The prestressed
element sizing routine and the Genetic Algorithm routine were coded in the MATLAB com-
putational environment [15] on a laptop with an Intel® Core™ i5-3210M CPU @ 2.5 GHz
and 4.00 GB of installed RAM. It is noteworthy that, although there is already a tool-
box formatted for the Genetic Algorithm for MATLAB (Genetic Algorithm Optimization
Toolbox—GAOT), the entire GA coding of this research was implemented by the authors.
It was performed to assess its complexity, obtain greater control over the algorithm’s be-
havior, and provide the flexibility to choose the operators that best fit the problem and
research proposal. The entire design routine of the prestressed element followed the criteria
established by Brazilian codes [16–19].

The optimization problem was detailed in the following sections, and the particulari-
ties of the beam design routines and the implemented Genetic Algorithm were later de-
tailed.

2.1. Problem to Be Optimized

The object optimized in this research was a prestressed concrete beam on the roof of an
industrial shed built using the precast system, a widespread type of structure in Brazil [20].
To evaluate the efficiency of the GA, its result was compared with the actual project of one
of the roof beams of a shed, already executed, of 5280 m2, whose schematic perspective is
presented in Figure 1.
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The studied industrial shed in question is formed by a set of 11 frames spaced every
12 m, with internal frames composed of three rectangular columns and two beams with an
I cross-section spanning 22 m, as shown in Figure 2.
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Figure 2. The internal frame of the industrial shed.

The roof of the industrial shed was fabricated of metal tiles, supported by prestressed
purlins of T-section, which in turn, were supported by the roof beams. The beams with an I
cross-section of the internal frame of the industrial shed were chosen to be optimized in
this research. The following parameters were considered fixed:

• The distance between the frames: 12 m, according to the project;
• Beam Length: 21.60 m;
• Beam Concrete Strength: 40 MPa;
• Prestressing reinforcement: CP 190 RB;
• Use of pretensioning;
• Distance from the CG of the active reinforcement to the bottom edge of the beam:

0.10 m;
• Cost of concrete and steel reinforcement.

The costs were raised in Tables of Unified Unit Prices for Bridges (in Portuguese Tabelas
de Preços Unitários Unificados Não Desonerados de Obras de Artes Especias), developed by the
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Department of Logistics and Transport of the State of São Paulo (in Portuguese Secretaria de
Logistica e Transporte do Estado de São Paulo) at the time of the development of the research.

The same loads used in the real project were considered in calculating the forces acting
on the beams. The permanent loads due to the own weight of precast elements (beam
and purlins); the permanent load due to the own weight of the metallic tile (0.11 kN/m2);
a permanent overload of 0.05 kN/m2 representing equipment permanently fixed to the
roof (lighting, sprinklers, and others.); and an accidental overload of 0.25 kN/m2. It is
noteworthy that the beam’s own weight was calculated within the Genetic Algorithm
routine after defining the geometric characteristics of the beams.

To determine the forces due to the wind, the program Visual Ventos Version 2.0.2 was
used, which follows the prescriptions of [18] and a basic wind speed of 40 m/s. As in the
project, it was considered that the building would have industrial installations with a low
occupation factor. It would be executed on flat land, covered by numerous and closely
spaced obstacles in an industrial zone. It was also considered that the studied building
would be effectively watertight to determine the internal pressure coefficient.

2.2. Genetic Algorithm

According to [21], Genetic Algorithms are metaheuristic optimization techniques that
are simple to understand and implement, developed in the 1960s by John Holland and
a group of researchers from the University of Michigan. The method used consecrated
concepts of genetics and was inspired by Charles Darwin’s theory of natural selection of
individuals and the survival of those most adapted to the environment [21,22].

Genetic Algorithms have already been widely applied, and their efficiency has been
proven through studies in different fields of knowledge. Its adaptability and operating
mechanics allow it to quickly escape the local optimum points surrounding nonlinear
and non-convex problems, such as those in structural engineering [23]. Figure 3 presents
the Flowchart of a Genetic Algorithm. As GA has already been widely publicized in the
technical field, we suggest reading [21,22,24,25] for further studies on its structure and the
particularities of its operators.

2.3. Genetic Algorithm Implemented in the Research

Enabling future reproductions of the algorithm to anyone interested and demon-
strating the simplicity of the coding, a brief presentation of each of the steps of the GA
was made. The particularities adopted in the code implemented in the research were
also demonstrated.

2.3.1. Step 1—Generate Initial Random Population

In order to design an initial space for searching for solutions, the Genetic Algorithm
creates a population with a predetermined number of individuals, each of which is a
possible solution to the problem. Each individual carries a set of variables with values
randomly assigned at this stage to guarantee that they assume different positions in the
search space for the optimal solution to the problem. These are the variables manipulated
by GA during the optimization process. After some preliminary tests, it was decided to
structure the research’s GA with a population of 150 individuals, i.e., 150 possible beams.

Six variables were considered in the optimization of this problem: the width and
height of the bottom flange of the beam (bw e h5); the width and height of the top flange of
the beam (b f e h1); and the thickness and height of the web (ba e h3). All these variables
were schematically detailed in Figure 4. Dimensions h2 and h4, which complete the section,
were determined as a function of angles of 20◦ and 45◦, respectively, respecting the same
specifications as the reference project. As mentioned, structuring the GA in real coding
eliminated the need to convert all the variables of all individuals to the binary system.
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Aiming to eliminate infeasible solutions and guarantee less processing time until the
solution converges, the values attributed to the variables of the individuals of the initial
population followed the rules demonstrated by Equations (1)–(6), which were created
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based on border technical criteria. In these equations, rand(0, X) é was a random value
determined by MATLAB between 0 and X.

bw,i = 0.30 + rand(0, 0.20), (1)

ba,i = 0.12 + rand(0, 0.08), (2)

b f ,i = 0.40 + rand(0, 0.20), (3)

h1,i = 0.12 + rand(0, 0.10), (4)

h3,i = 0.25 + rand(0, 0.40), (5)

b5,i = 0.12 + rand(0, 0.10), (6)

2.3.2. Step 2—Rating of Individuals

In Step 2, individuals were assessed using the Fitness Function (Equation (7)). For this
to be possible, all individuals, prior to this step, went through the sizing routine described
in Section 2.6.

F(x) = f(x) + pen(x), (7)

where F(x) is the Fitness Function; f(x) is the Objective Function of the optimization problem;
and pen(x) is the Penalty Function.

There are different types of Fitness Functions found in the related literature, and one
of them was used in developing this work research. This variety of functions is because
Genetic Algorithms are adaptable to different optimization problems. Despite the different
formulations in the literature, their purposes always remain to determine how well each
individual solves the problem.

The Objective Function ( f(x)) quantifies the fitness of individuals according to some
measurable parameter, such as the cost of its production, for example. To make this possible,
a cost calculation routine for concrete (Cc) and steel reinforcement (Cap) was implemented
in the research GA. These values were later added to the Objective Function of the problem
in question (Equation (8)).

f(x) = Cc + Cap, (8)

The Penalty Function (pen(x)) is linked to the restrictions of the problem and aims
to penalize those individuals who, by chance, did not meet some of these restrictions,
purposefully increasing, in the case of this research, their aptitude (Cost), making them
less eligible for the next steps. The Penalty Function used in the algorithm was detailed in
Equation (9).

pen(x) = K C, (9)

where “C” is the number of unfulfilled constraints, and “K” is a constant with a value
proportional to the Objective Function of the problem; in this case, USD 100.00 was adopted,
a value equivalent to approximately 20% of the average cost of beams of this size.

To meet the requirements of [16], 10 restrictions were imposed on this research problem,
namely:

1. Stress limit in concrete to meet the decompression limit state (evaluation of the upper
edge of the cross-section);

2. Stress limit in concrete to meet the decompression limit state (assessment of the lower
edge of the cross-section);

3. Stress limit in concrete to meet the limit state of crack formation (evaluation of the
upper edge of the cross-section);

4. Stress limit in concrete to meet the limit state of crack formation (evaluation of the
lower edge of the cross-section);

5. Stress limit in concrete to meet the limit state of excessive compression (evaluation of
the upper edge of the cross-section);
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6. Stress limit in concrete to meet the limit state of excessive compression (evaluation of
the lower edge of the cross-section);

7. Stress limit in concrete to meet the decompression limit state (evaluation of the upper
edge of the cross-section);

8. Stress limit in concrete to meet the ultimate limit state in the moment of prestressing
(assessment of the lower edge of the cross-section);

9. Excessive deformation limit state verification;
10. Verification regarding the arrangement of reinforcements in the cross-section.

2.3.3. Step 3—Selection of Individuals

At this time, individuals with the best aptitudes were selected as progenitors of the
following population employing a Selection Operator. It was decided to implement the
traditional operator “Selection by Tournament” in the research algorithm, which promotes
competition between randomly selected individuals in the population and assigns a posi-
tion in the ranking (parent population) to the champion. In this research, those with the
lowest cost were the champions.

2.3.4. Step 4—Crossover of the Individuals

In Step 4, the construction of the new population of possible solutions to the problem
began. With the Crossover Operator, new individuals were created by merging informa-
tion from pairs of individuals from the parent population to bring them closer, in each
generation, to the optimal solution of the problem. The Crossover Operator used in the
research algorithm was the Simulated Binary Crossover (SBX), a real coding operator that
simulates the operation of the traditional Single Point Binary Crossover Operators [26,27].
It is noteworthy that, although the efficiency of the SBX has already been proven concerning
the Binary Crossing Operators [28–30], no structural optimization works that considered its
use was found in our research. More detailed information about this operator is presented
in Section 2.4.

2.3.5. Step 5—Mutation

Finally, the last step of the Genetic Algorithm is the application of the Mutation
Operator. This has the purpose of changing the characteristics of a small portion of
individuals of the new population (generated in Step 4), forcing it to remain diversified
and providing the algorithm with escape routes from local optimal points at each iteration.
The mutation rate used by the operator must be previously defined in the coding.

After completing this entire march, the algorithm counts an iteration and starts its
routine again; however, now, adopting as initial population, that of new solutions generated
in Step 4 and finalized in Step 5. This routine is repeated countless times until a predefined
stopping point is reached or until the predetermined cycle of iterations is completed.

In the GA of this research, the 6 variables of each individual were tested at this stage
according to the mutation rate. If any of these were chosen for mutation, a new value,
controlled by Equations (1)–(6), was assigned to it. For the first simulations of the research,
a mutation rate of 1% was fixed, and a total of 60 iterations was adopted as a stopping
criterion.

2.4. Simulated Binary Crossover (SBX)

The SBX is a real variable Crossover Operator designed to simulate the operation of
traditional Single Point Binary Crossover Operators. According to [26], the motivation
for creating the SBX came from the success of Binary Crossing Operators when applied
to optimization problems with discrete search space and their difficulties in operating in
a continuous search space, as in the case of this research. The SBX uses a non-uniform
bimodal probability distribution, and as it automatically adapts during the GA execution,
it is considered a self-adaptive operator [31].
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According to [26], several simulations were performed to compare the efficiency of
the SBX with the Single Point Binary Operator. According to the authors [26], when the
SBX was not shown to be more efficient than the binary operator, it was at least equal to
its efficiency.

Similar to most Crossover Operators, SBX generated two new individuals (F1 e F2),
conventionally treated as children, from two individuals of the parent population (P1 e P2),
usually treated as parents. Equations (10)–(14) were used to structure the construction of
the operator [27].

F1 = 0.5[(1− β)P1 + (1 + β)P2] (10)

F2 = 0.5[(1− β)P2 + (1 + β)P1] (11)

u = rand(0, 1) (12)

u ≤ 0.5→ β = (2u)
1

η+1 (13)

u > 0.5→ β =

(
1

2(1− u)

) 1
η+1

(14)

where u is a random variable with a uniform distribution between 0 and 1; and η any
non-negative real number. The authors of [27] pointed out that the greater the value of η,
the greater the probability of creating children with characteristics close to the parents.

2.5. GA Solution Validation Criteria

In several stages of the GA, randomization processes are commonly used. For this
reason, there is the possibility of not finding the optimal global solution to the problems
with only one simulation. Therefore, it is recommended that a series of simulations be
carried out to validate the solution. It was established in this research that 10 simulations
would be performed to investigate the optimal solution to the problem.

2.6. Beam Design Criteria

According to the Brazilian normative code, the design of prestressed elements must
ensure compliance with the ultimate and serviceability limit states and present geometric
conditions that favor good conditions for assembling the reinforcement and concreting of
the element. The necessary normative specificities regarding each item implemented in the
algorithm’s sizing routine are presented below.

2.6.1. Ultimate Limit State (ULS)

To ensure compliance with the ULS, the demands imposed on the structural elements
must be less than their resistant capacity, as shown by Equation (15):

Sd ≤ Rd, (15)

where Sd represents the acting loads according to the typical load combinations, and Rd is
the resistance (load-carrying capacity) of the element.

Following this condition, an active longitudinal reinforcement dimensioning routine
was implemented to determine the minimum amount necessary to meet the bending
moment acting in the most critical section of the beam (mid-span). Routines for calculating
passive transverse and longitudinal reinforcement were not implemented, considering
that the final amount of these in the project is usually defined according to the designer’s
particular detailing criteria, surpassing the designed reinforcement value.

In addition, a routine was implemented to verify compliance with the ULS at the time
of prestressing, taking into account the normal stresses caused by the loads acting at the
time of prestressing and the compressive strength of the concrete on the date of prestressing,
limited to 70% of its value, as recommended in item 17.2.4.3 of [16].
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2.6.2. Serviceability Limit State (SLS)

In order to guarantee ideal conditions of use and durability of the structural element,
routines were implemented to verify the limit state of excessive deformation and the
other verifications associated with the stress limits established for the concrete, namely,
verification of crack formation, decompression, and excessive compression. The limit
stresses for each case are presented in Equations (16)–(18), respectively:

σ ≥ −0.7·α· f ct,m (16)

σ ≥ 0 MPa (17)

σ ≤ 0.7· f ck (18)

where σ represents the normative maximum stresses for each one of the respective cases,
fct,m is the average tensile strength of concrete, and fck is the characteristic compressive
strength of concrete.

To validate the above conditions, the normal stresses acting on the top and bottom
edges of the cross-sections of the beam were calculated, considering the load combinations
specified by the Brazilian code for each case. In addition, the loading conditions operating
in the assembly phase were also considered.

Notably, the due prestressing losses and the maximum value allowed by the Brazilian
code for the initial prestressing stress were considered in the calculations, both in the ULS
and SLS studies.

2.6.3. Reinforcement Detailing Criteria

In order to guarantee feasible solutions from an executive point of view that did not
generate problems during concreting, a routine was implemented, following the recom-
mendations of item 18.6.2.3 of [16] to assess whether the dimensions of the beam were
sufficient to accommodate the set of active armor assigned to it.

3. Results and Discussion

The studies developed to optimize the beam proposed in this research were divided
into three stages. Initially, simulations were carried out to evaluate the behavior of the
GA against the parameter settings assumed in the construction of the algorithm. Subse-
quently, new simulations were performed to calibrate the GA parameters and improve
their performance. Finally, the final simulations were carried out in search of the optimal
solution to the problem. Each of these stages of the research is presented in more detail in
the following text.

3.1. Initial Simulations to Evaluate GA Behavior

With the algorithm built as described in Section 2, 10 simulations were performed,
and the solutions found in each of them are listed in Table 1.

All the solutions found by GA met the 10 restrictions imposed on the problem, showing
that the Penalty Function, calibrated with a constant “K” equal to USD 100.00, helped to
exclude solutions that did not meet some criteria as established by [16]. Analyzing the
results, it was possible to notice that the GA was not able to converge to a single solution
and that the price difference between the two extremes was significant, USD 83.98. This
possibly occurred due to the strong influence of the variables on the final result; and due
to the assumed GA parameter configuration. The graph representing the average value
of the Fitness Function of the individuals at each iteration of Simulations 2-1, 4-1, and 6-1
was plotted in Figure 5 to illustrate the discrepancy in the behavior of the GA. Thus, these
results highlight the need for a study to calibrate its parameters.
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Table 1. Summary of solutions (150 individuals, 60 iterations, 1% mutation rate η = 4).

Simulation bw
(m)

ba
(m)

bf
(m)

h1
(m)

h2
(m)

h3
(m)

h4
(m)

h5
(m)

htotal
(m)

Cost
(USD)

1-1 0.30 0.12 0.45 0.11 0.06 0.31 0.09 0.15 0.72 479.22

2-1 0.30 0.16 0.41 0.10 0.05 0.40 0.07 0.12 0.74 482.72

3-1 0.30 0.12 0.46 0.13 0.06 0.26 0.09 0.12 0.66 502.70

4-1 0.31 0.17 0.42 0.12 0.05 0.30 0.07 0.15 0.69 531.46

5-1 0.30 0.17 0.45 0.10 0.05 0.35 0.06 0.13 0.69 509.08

6-1 0.30 0.12 0.41 0.16 0.05 0.27 0.09 0.13 0.70 496.98

7-1 0.32 0.15 0.43 0.13 0.05 0.29 0.09 0.15 0.71 523.86

8-1 0.31 0.12 0.41 0.10 0.05 0.38 0.09 0.10 0.72 448.48

9-1 0.30 0.13 0.43 0.13 0.05 0.30 0.07 0.16 0.71 490.76

10-1 0.30 0.13 0.40 0.13 0.05 0.40 0.07 0.10 0.75 454.26
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3.2. Calibration of GA Parameters

To improve the performance of the GA, a series of simulations were performed,
varying the number of iterations, the SBX operator η coefficient value, and the Mutation
Rate value. Altogether, 48 combinations were generated, each tested 10 times.

The best performance was found with the combination considering 500 iterations
as a stopping criterion, Mutation Rate of 5%, and the adoption of the coefficient η equal
to 3. It was noted in this study that the increase in the number of iterations was crucial
to improving the performance of the GA, as it provided more time to escape the local
optimum points.

3.3. Final Simulations for the Optimization

After GA calibration, 10 new simulations were performed, and their solutions are
listed along with the final beam solution of the reference design in Table 2.
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Table 2. Summary of solutions (150 individuals, 500 iterations, 5% mutation rate, and η = 3).

Simulation bw
(m)

ba
(m)

bf
(m)

h1
(m)

h2
(m)

h3
(m)

h4
(m)

h5
(m)

htotal
(m)

Cost
(USD)

1-2 0.30 0.12 0.41 0.10 0.09 0.45 0.05 0.10 0.79 427.68

2-2 0.30 0.12 0.40 0.10 0.09 0.45 0.05 0.11 0.80 427.78

3-2 0.30 0.12 0.42 0.10 0.09 0.34 0.05 0.12 0.70 460.62

4-2 0.30 0.12 0.42 0.11 0.09 0.42 0.05 0.10 0.77 436.64

5-2 0.30 0.12 0.42 0.10 0.09 0.42 0.05 0.10 0.76 437.32

6-2 0.30 0.12 0.40 0.15 0.09 0.45 0.05 0.10 0.84 444.10

7-2 0.30 0.13 0.43 0.10 0.09 0.36 0.05 0.12 0.72 459.08

8-2 0.30 0.12 0.41 0.10 0.09 0.43 0.05 0.10 0.77 431.28

9-2 0.30 0.13 0.42 0.10 0.09 0.42 0.05 0.10 0.76 442.00

10-2 0.30 0.12 0.40 0.11 0.09 0.41 0.05 0.10 0.76 436.00

Real
Project 0.30 0.12 0.40 0.11 0.06 0.37 0.09 0.12 0.75 447.00

Note that even after the calibration, the GA could not find a single solution to the
research problem; however, with the new combination of parameters, the difference in cost
between the extreme solutions became USD 32.94 (a reduction of 54%). Furthermore, the
geometric characteristics of the beams found are more homogeneous than those found in
the first set of simulations (Table 1). Thus, it is possible to assume that this new combination
of parameters led to acceptable beam solutions for the pre-design level.

The best solution found in the second set of simulations, solution 1-2 with a total cost
of USD 427.68, surpassed the results found in the first 10 simulations and proved to be 4.3%
more economical than the real design solution. It is noteworthy that the comparison was
carried out with a beam that had already gone through a lengthy traditional optimization
process, as previously mentioned. Even in these circumstances, the GA proposed in the
research found a more economical solution in an average processing time of 210 s.

Figure 6 presents the graph representing the mean value of the Fitness Function of
individuals in simulations 1-2 in each interaction. Note that results close to the final solution
were found in the optimization after the four hundredth iteration, previously crossing two
zones of local optimum points.
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To finalize and confirm whether it would be possible to find more economical solutions
than the one found in simulations 1-2, new simulations were performed with the same
parameter settings; however, setting 600 and 700 iterations as a stopping criterion. Even
providing the GA with more time to escape local optimal points, the results were similar to
those of the simulations with 500 iterations, as seen in Figure 7.
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Due to the complexity of the problem, we cannot say that the GA found the optimal
global solution to the problem; however, the redundancy of the results found shows that
the solution found is adequate for the research problem. Furthermore, this solution would
hardly be found as quickly and easily using traditional design routines.

4. Conclusions

In this research, the efficiency of the Genetic Algorithms was evaluated when applied
as an auxiliary tool for the pre-dimensioning of prestressed concrete elements. In this
context, its coding becomes simpler to implement because it depends on fewer variables
and restrictions, saving programming effort and algorithm processing time.

The element chosen to be optimized in the research was a prestressed concrete beam
from the roof of a precast shed. The GA efficiency was evaluated by comparing its solution
with the real solution of a beam in the roof of an already executed shed. To escape the
possibilities of convergence of the solution for points of local optimum, it was established in
this research that a series of 10 simulations would be carried out to investigate the optimal
solution of the problem.

The results found in the first 10 simulations, considering a population of 150 individ-
uals (150 possible beams cross-sections), 60 iterations, η = 3, and a mutation rate of 1%,
were unsatisfactory, as they delivered very different solutions. Subsequently, a study was
conducted, varying the abovementioned parameters to make GA more efficient. The best
response was achieved with the following parameters; the population of 150 individuals,
500 iterations, η = 5, and a mutation rate of 5%.

A second series of 10 simulations were performed, and a solution was found to be
4.3% more economical than the real solution implemented in the project. Despite being a
relatively small cost reduction, it is noteworthy that this beam was repeated several times in
the shed structure. In addition, the real solution, according to the designers, was the product
of a succession of optimization studies using the traditional trial and error methodology,
which aimed to find the lowest possible cost solution. Even so, the GA proposed in the
research, composed of only six variables, could find a more economical solution in 210 s,
showing that algorithms such as the one proposed in the research, designed for the level of
pre-dimensioning, can also lead to optimal results.

The result validated the proposed application of GA as an auxiliary pre-dimensioning
tool, as it guarantees the designer a good starting point reference for elaborating their
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executive projects. It is important to remember that the Genetic Algorithm does not
guarantee the finding of the optimal global solution to the problem, but rather better
solutions than traditional design routines in a much shorter time, by simulating, in a
targeted way, a large number of possibilities.

The proposal to program the entire GA in real coding proved to be simpler and
delivered results with little processing time. In addition, it was possible to see that the SBX
operator adapted very well to the search optimization problem. Therefore, opportunities
for new studies in the line of structural optimization using GAs with similar real coding
operators are opened, because there is a lack of studies exploring the implementation of
these in the field of civil engineering.
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