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Abstract: Few studies have investigated the structural behavior of steel-concrete composite alveolar
beams in hogging bending regions. Their resistance can be reached by lateral distortional buckling
(LDB), coupling LDB and local failure modes, or limit states of cracking or crushing in the concrete
slab. This case is characteristic of continuous or cantilever elements. Another critical issue is that
the design and calculation recommendations only address the LDB verification on steel-concrete
composite beams without web openings, thus disregarding the interaction between the buckling
modes. Furthermore, it is necessary to use adaptations of these formulations for beams with web
openings. This review paper aims to evaluate the different approaches for standard code adaptations
to verify the LDB resistance of the beams in question and to highlight the investigations that addressed
this issue. The addressed adaptations consist of different approaches which determine the cross-
section geometric properties in the central region of the openings, the so-called double T section, in
the region of the web posts (solid section), and the averages between the solid section and double T
section. The accuracy of the formulations in question is verified against experimental results from the
literature. Furthermore, discussions and suggestions for further studies are presented.

Keywords: steel-concrete composite alveolar beams; lateral distortional buckling; hogging moment;
web openings; castellated beams; cellular beams

1. Introduction

Steel profiles generally meet the resistance needs obtained in the structural pre-
dimensioning of beams with large spans and relatively low loads. However, there is
difficulty in meeting the service requirements. In this case, there is a need for beams with
greater height and, consequently, greater stiffness. This kind of situation usually occurs in
roof structures (sports halls, industrial sheds, supermarkets, theaters), parking buildings,
bridges, walkways, and bus station floors [1].

The use of steel profiles with sequential web openings is an adequate solution to this
problem. These profiles have greater flexural stiffness when compared to the parent profile
used for its manufacturing. Moreover, beams with web openings allow the passage of
ducts that favor integration between services [2].

The first kind of steel profiles with sequential web openings were the ones with
hexagonal opening geometry. These beams received the nomenclature of castellated beams,
as their geometry is similar to the walls of medieval castles [3]. As an alternative to
castellated beams, the steel beams with circular web openings, known as cellular beams,
were consolidated. Castellated beams require only one cut with a zig-zag pattern along
their web (Figure 1), and cellular beams require two cuts in a semicircular pattern (Figure 2).
Although cellular beams were developed primarily for architectural application, being
considered aesthetically pleasing, they produce an efficient and economical solution due
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to their geometry [4]. Figure 3 shows the geometric parameters of castellated and cellular
beams.
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The considerable gain in the resistant capacity of the floor system justifies the use of
alveolar profiles in steel-concrete composite beams. Thus, these beams can be designed to
cover spans from 12 to 20 m [8,9]. However, the behavior of steel alveolar beams becomes
more complex than steel profiles without sequential web openings [10]. Alveolar profiles
are susceptible to different types of buckling modes or their interaction [10–12]. The increase
in the composite alveolar beam resistance over non-composite beams is more evident in
long spans [13]. Figure 4a,b show examples of composite castellated and cellular beams
with steel deck slab, respectively.
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section.

Steel-concrete composite beams subjected to hogging moment are characteristics of
continuous or cantilever elements. Continuous composite beams present hogging moments
near to supports. On the other hand, cantilever composite beams are submitted to hogging
moment in all their span.

The steel I-section is compressed in hogging moment regions of steel-concrete compos-
ite beams, and the concrete slab is tensioned [15]. Due to this, these beams can reach failure
by lateral distortional buckling (LDB), an instability mode characterized by a lateral dis-
placement and rotation of the lower flange accompanied by web distortion (Figure 5a) [16].
Since the steel profile is subjected to compressive stress, the lower flange tends to move
laterally out of the bending plane. When the profile web does not have enough flexu-
ral stiffness to contain this lower flange lateral displacement, the LDB can occur [17], as
shown in Figure 5b. The LDB behavior of the steel-concrete composite beams without
web openings was considerably investigated. Elastic numerical analyses [18–23], inelastic
numerical analyses [16,24–31], and experimental tests [32–40] were conducted. In addi-
tion to LDB, web local buckling has also been addressed by experimental and numerical
investigations [41–45]. Additionally, studies have assessed ways to improve the crack-
ing of the concrete slab of these beams, such as the use of high-performance concrete
(HPC) [46], ultra-high-performance concrete (UHPC) [47–49], engineered cementitious
composite (ECC) [49,50], prestressed concrete slabs [51], and carbon fiber-reinforced poly-
mer (CFRP) [52]. Other issues, such as the shear interaction steel beam-concrete slab [53–55],
beam-to-column joints [56], and residual deflections [57], have also been studied for the
beams in question.
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Among the few experimental studies that evaluated the behavior of composite alveolar
beams under hogging bending [58–60], Salah [58] and Gizejowski and Salah [59] present
the only tests in which the beams showed instability modes by the LDB (Figure 6). In all,
only five investigations that analyzed the LDB in composite alveolar beams were found;
the main focus of each is summarized in Table 1. The papers in question are discussed
in Section 2.3. Thus, it is clear that steel-concrete composite beams with solid web are
significantly more studied than those with web openings. However, due to the alveolus,
the behavior of the composite alveolar beams becomes more complex than the composite
beams without openings. The alveolar profiles are susceptible to local failure modes
that do not occur in I-sections with solid web [4,10,61–63]. These local failure modes
are web post buckling (WPB) and the Vierendeel mechanism (VM) due to shear force
and tee local buckling (TLB) caused by bending moment, which has been investigated in
steel castellated beams [64–68], steel cellular beams [12,69–75], steel beams with sequential
sinusoidal web openings [76,77], and steel-concrete composite cellular beams under positive
bending [13,78–81]. In addition, the lateral torsional buckling (LTB) and its interaction with
local failure modes has also been assessed in steel alveolar beams, with studies concentrated
on steel castellated beams [65,66,82–85], steel cellular beams [86–93], and steel beams with
sequential sinusoidal web openings [94–96].
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Table 1. Investigations on the LDB behavior of composite alveolar beam.

Model Reference Highlight

Experimental Salah [58] and
Gizejowski and Salah [59]

Performed tests with steel-concrete composite beams with circular, hexagonal, and
rectangular web openings

Numerical Salah [58] and
Gizejowski and Salah [59]

Carried out sensitivity analysis with geometrical and physical nonlinear finite
element models

Gizejowski and Salah [97] Used geometrical nonlinear finite element models to analyze the stability behavior
of continuous composite cellular beams

Oliveira et al. [98] Conducted nonlinear analysis to investigate the effect of the opening diameter, web
post width, I-section dimensions, free span, and hogging moment distribution

Oliveira et al. [99] Analyzed the elastic behavior of the same beams investigated by Oliveira et al. [98]

According to Bradford [20], web distortion causes different effects on the elastic
critical moment depending on the structure type. In steel I-sections, web distortion is
responsible for reducing the elastic critical moment compared to the classical theories of
LTB [20,100,101]. However, Bradford [20] states that in the case of steel-concrete composite
beams, the LDB elastic critical moment is higher than that obtained by analytical formu-
lations that do not consider the possibility of cross-section distortion. The classical LTB
theories consider Vlasov’s hypothesis [102].

AISC 360-16 [103], AASHTO 2017 [104], AS: 1998 R2016 [105], AS/NZS2327-2017 [106],
EN 1994-1-1: 2004 [107], and ABNT NBR 8800: 2008 [108] are codes that address the LDB
resistance prediction of steel-concrete composite beams with full web. As these codes do
not include composite alveolar beams, it is necessary to make adaptations for the beams
in question to predict their bearing capacity to LDB. The resistance of composite alveolar
beams can be reached by an interaction between LDB and local failure modes, such as WPB
and the formation of plastic mechanisms [58,59,97–99]. These interactions are disregarded
in the analytical procedures for the LDB resistance prediction analyzed in the present
paper. This is because the cited codes’ formulations were not developed for beams with
web openings. SCI P355 [109] and Steel Design Guide 31 [110] provide methodologies to
evaluate the resistance to WPB and VM of composite and non-composite alveolar beams.
However, they do not present approaches for LDB.

The present review paper focuses on two issues: the gap in the investigations of the
LDB behavior in composite alveolar beams and the need for codes procedures for these
structures. Furthermore, this work discusses the parameters that need further assessment
and describes some approaches for adapting the LDB resistance predictions developed
for beams without web openings. The accuracy of these approaches is assessed with
experimental results from Salah [58]. Therefore, this paper can support future investigations
of the LDB resistance of composite alveolar beams.

2. LDB Standard Codes, Analytical Methodologies, and Investigations

The standard procedures presented in this section do not address the LDB verification
on continuous steel-concrete composite beams with web openings. However, some authors
give adaptations of these standards [111–113]. In addition, assessments on the lateral-
torsional buckling behavior of steel cellular beams show that the methodologies developed
for solid I-beams can be adapted to cellular I-beams, which must determine the cross-
section geometric properties in the central region of the openings, the so-called double T
section [94–96,114,115]. On the other hand, Sonck and Belis [114,115] recommend that the
torsional constant (J) must be obtained by an average (J2T,Average) between the J of the I-
section (Jsolid) and the J of the double T section (J2T) obtained through Equation (1), where the
parameters are: number of openings (n), equivalent opening length for the adapted torsion
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constant (l0,avg), and I-section unrestrained length (L). The opening equivalent length (l0,avg)
for the castellated and cellular I-sections are determined as shown in Figure 7 [114,115].

J2T,Average =
nl0,avg

L
J2T +

(
1−

nl0,avg

L

)
Jsolid (1)
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Other approaches were presented by Carvalho, Rossi, and Martins [94], which cover
different methods in the determination of geometric properties: without web openings
(solid section); the calculation of properties at the center of the opening (double T); and three
approaches using average values between the properties of the solid section and the double
T section, the so-called “average section”, “linear weighting section”, and “superficial weighting
section”. The mean value between the properties is used in the “average section”. In addition,
the weighting of the values, the total length of the web post, and the total length of the
openings, are utilized in the “linear weighting section”. Finally, the weighting of the values,
the total area of steel in the web, and the total area of the web openings, are adopted in the
“superficial weighting section”. The last two approaches are detailed in Figure 8, where the
parameters are: arbitrary geometric property (GP), arbitrary geometric property calculated
at plain section web (GPsol), and the arbitrary geometric property calculated at the middle
of the opening (double T section).
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The resistance predictions of LDB addressed in the present paper are based on the
calculus of the elastic critical moment. This way, design curves are applicated to obtain
the ultimate moment. Thus, the elastic and ultimate moment formulations found in the
literature are described in Sections 2.1 and 2.2, respectively. In Section 3, a comparison
between the methods is discussed.

2.1. LDB Elastic Critical Moment

The standard procedures that address the LDB verification in steel-concrete composite
beams use the conventional LTB theories of partially constrained beams or the U-frame
model [116]. These methodologies are illustrated in Figure 9.

Buildings 2023, 13, x FOR PEER REVIEW 7 of 37 
 

Figure 8. Approaches to weighting the geometric properties of the cross-section: (a) superficial way; 
(b) linear. Adapted from Carvalho, Rossi, and Martins [94]. 

The resistance predictions of LDB addressed in the present paper are based on the 
calculus of the elastic critical moment. This way, design curves are applicated to obtain 
the ultimate moment. Thus, the elastic and ultimate moment formulations found in the 
literature are described in Sections 2.1 and 2.2, respectively. In Section 3, a comparison 
between the methods is discussed. 

2.1. LDB Elastic Critical Moment 
The standard procedures that address the LDB verification in steel-concrete 

composite beams use the conventional LTB theories of partially constrained beams or the 
U-frame model [116]. These methodologies are illustrated in Figure 9. 

  
(a) (b) 

Figure 9. Models used by the standards: (a) Partially restricted beams [105,106]; (b) Inverted U-
frame model [107]. 

The European standard (EN 1994-1-1: 2004 [107]) and Brazilian standard (ABNT NBR 
8800: 2008 [108]) use the inverted U-frame model to determine the elastic critical moment 
to LDB (Mcr). The U-frame model (Figure 9b) considers the composite beam cross-section 
as an I-section with its upper flange with lateral displacement completely prevented and 
rotation partially prevented by a rotational stiffness spring (ks). The rotational stiffness ks, 
given by Equation (2), is composed of the bending stiffness of the slab (k1, Equation (3)) 
per unit of beam length and the bending stiffness of the web I-section (k2, Equation (4)): 

=
+
1 2

1 2
s

k k
k

k k
 (2)

( )α
= 2

1
cEI

k
a

 (3)

( )=
−

3

2 2
04 1

wEt
k

v h
 (4)

where the parameters are: coefficient related to the I-section position (α), being equal to 2 
for end beams, 3 for intermediate beams, and 4 for internal beams having four or more 
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The European standard (EN 1994-1-1: 2004 [107]) and Brazilian standard (ABNT NBR
8800: 2008 [108]) use the inverted U-frame model to determine the elastic critical moment
to LDB (Mcr). The U-frame model (Figure 9b) considers the composite beam cross-section
as an I-section with its upper flange with lateral displacement completely prevented and
rotation partially prevented by a rotational stiffness spring (ks). The rotational stiffness ks,
given by Equation (2), is composed of the bending stiffness of the slab (k1, Equation (3)) per
unit of beam length and the bending stiffness of the web I-section (k2, Equation (4)):

ks =
k1k2

k1 + k2
(2)

k1 =
α(EIc)2

a
(3)

k2 =
Et3

w
4(1− v2)h0

(4)

where the parameters are: coefficient related to the I-section position (α), being equal
to 2 for end beams, 3 for intermediate beams, and 4 for internal beams having four or
more similar neighboring sections [17]; flexural stiffness of the reinforced concrete slab
with homogenized composite section per unit of beam length (EIc2); distance between the
I-sections; I-section elasticity modulus (E); web thickness (tw); I-section Poisson ratio (n);
and distance between the flanges centroids (h0).

The study by Müller et al. [111] was one of the first found in the literature that
addressed the verification of resistance to LDB in composite beams with web openings.
The authors presented an adaptation of the European standard (EN 1994-1-1-2004 [107]),
contemplating the calculation of k2 for composite cellular beams and composite beams with
only one rectangular opening in the web. To calculate the Mcr, the authors suggest using
the proposition by Hanswille et al. [117]. According to Müller et al. [111], it can be taken as
shown in Equations (5) and (6).

k2 =
Et3

w
4(1− v2)h0

k∗hole (5)
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k∗hole = 1− 3D0

4p
forcellularbeams. (6)

Studies of LDB in composite castellated beams also presented adaptations of k2 rota-
tional stiffness [112,113]. Basically, these propositions approach the k2 rotational stiffness
determination of a composite alveolar beam from the adaptation of the k2 of a composite
beam without web opening, applying a reduction factor referring to the web openings.
Silva et al. [113] presented a reduction factor equal to 0.51, and the method by Müller
et al. [111], for the experimental models of Salah [58], provided a reduction factor equal
to 0.524.

Silva et al. [112] presented an analytical formulation for calculating the rotational stiff-
ness of castellated composite beams. For this, the authors performed numerical simulations
of composite beams using castellated beams with Anglo-Saxon, Litzka, and Peiner opening
patterns. According to the authors, rotational stiffness strongly depends on the web’s
rotational stiffness (k2), which can be determined by considering the web as a cantilever
plate in the centroid of the upper flange and free in the centroid of the lower flange [112].
Thus, a simplified numerical slab model was developed to determine the web stiffness
of the castellated profiles. Silva et al. [112] verified a linear relationship between the k2
results obtained by the numerical models of the plates with hexagonal openings and
the results obtained by the analytical formulations provided by the Brazilian standards
(ABNT NBR 8800: 2008 [108]) and European standards (EN 1994-1-1-2004 [107]) of the web
without openings adopting the same dimensions as the plates with hexagonal openings.
The relationship between the numerical/analytical results was 0.53, 0.54, and 0.55 for
the Anglo-Saxon, Litzka, and Peiner opening patterns, respectively. Thus, the authors
proposed an adjustment coefficient (β) whose value is equal to the relationship between
the numerical/analytical results of each type of opening. According to the authors, the
determination of the rotational stiffness of castellated profiles, considering the total height
of the expanded I-section, dg, can be taken as:

k2 = β
E tw

3

4dg(1− ν2)
(7)

Subsequently, Silva et al. [113] presented a new equation for calculating k2 very similar
to the one shown by Silva et al. [112]. However, to maintain the same parameters used in
the standard prescriptions, they adopted the distance between the flanges centroids (h0),
instead of the total height of the section (dg). The equation proposed by Silva et al. [113]
is limited only to the castellated composite beams with Anglo-Saxon pattern openings.
Equation (8) presents the expression proposed by the authors to calculate the rotational
stiffness of the web of castellated composite beams:

k2 = 0.51
E tw

3

4h0(1− ν2)
(8)

The procedure proposed by Silva et al. [113] was verified from the results obtained
by numerical simulations using ANSYS software. According to the authors, with the
statistical treatment of the results, it was observed that the proposed procedure is suitable
for evaluating the LDB behavior of castellated composite beams. In addition, the authors
also observed that the procedure remains valid when the stiffness of the slab is varied.

According to Fan [37], the inverted U-frame model is more appropriate to evaluate
the LDB in steel-concrete composite beams than the T section, which is composed of only
one I-section associated with the slab. Given that the U-frame model better represents
the slab’s collaboration in the LDB strength, it is possible to analyze the lateral displace-
ment and torsional restrictions imposed on the steel I-section by the concrete slab and
by the shear connector. The U-frame model also relates to typical situations since most
constructions use floor systems of parallel steel beams equally spaced under the concrete
slab [112]. However, Rossi et al. [116] explain that the inverted U-frame model consists of
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the simplified consideration of a beam uniformly compressed by the maximum bending
stress and restricted by springs along its length. Thus, the compressed beam represents the
I-section lower flange, and the springs represent the rigidity imposed by the web I-section,
as shown in Figure 10. In most cases, the steel-concrete composite beams under hogging
moment present a significant moment gradient, which makes the procedure based on the
inverted U-frame model highly conservative in most cases [116].
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Currently, the Brazilian standard (ABNT NBR 8800: 2008 [108]) uses the methodology
proposed by Roik et al. [118] to determine the Mcr based on the inverted U-frame model.
That method was also presented in the previous version of EC4 (ENV 1994-1-1: 1992 [119]).
The current version of EC4 (EN 1994-1-1: 2004 [107]) does not present equations for deter-
mining the Mcr. However, it proposes the use of calculation methodologies based on the
inverted U-frame model. In the literature, calculation propositions based on this model are
also presented in the works by Hanswille et al. [117] and Dias et al. [120].

According to Rossi et al. [116], the LDB research methods for the elastic critical moment
determination generally fall into two categories: studies based on the energy method
(Galerkin method) or those based on the elastic foundation-beams theory. The formulations
of Roik et al. [118] and Dias et al. [120] are within the methodologies developed using the
energy method as well as the propositions of Svensson [121] and Williams and Jemah [122].
On the other hand, Hanswille et al. [117] utilized the elastic foundation-beams theory in
their prediction procedure. The methods in question are objectively described below.

2.1.1. Svensson [121]

The first procedures found in the literature are based on the energy method, such as the
works of Svensson [121] and Williams and Jemah [122], and the methodologies proposed
in these works are very similar. Starting with the method proposed by Svensson [121], the
author adopted the T section model (considers only an I-section associated with the slab) to
evaluate the structure, in which it was considered that the I-section compressed flange could
be treated as a column subjected to axial compressive loads. The author proposed a method
that can be applied to several bending moment distributions. Svensson’s formulation [121]
is described in Equations (9)–(12), where Wx is the elastic section modulus taken about the
strong axis. Equation (12) and Table 2 describe the formulation to obtain the slenderness
parameter (λ).

Mcr =
π2E
λ2

el
Wx (9)
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λel =
Lel

b f /
√

12
(10)

Lel = L · λ−0.5 (11)

βL = 1.35

(
tw

3L4

dg3t f b f

) 1
4

(12)

Table 2. λ values for different bending moments [121]. Adapted from Svensson [121].

λ Values

Case

βL 1 2 3 4 5 6 7 8 9
0 1.000 1.881 2.355 5.824 2.835 4.518 10.83 5.824 0.377
1 1.010 1.889 2.376 5.856 2.860 4.538 10.84 5.856 0.438
2 1.164 2.166 2.694 6.309 3.235 4.827 11.02 6.309 1.332
3 1.832 3.240 3.944 7.952 4.732 5.884 11.72 7.952 4.543
4 3.628 5.472 6.450 11.06 8.044 7.875 13.26 11.06 6.775
5 5.604 8.110 9.537 15.24 13.16 10.41 15.65 15.24 9.135
6 7.326 10.91 12.86 20.06 19.48 13.20 18.67 20.06 12.48
8 13.67 18.06 20.91 30.99 33.16 20.28 25.23 30.99 20.26

10 20.41 26.92 30.75 43.62 47.21 29.27 34.17 43.62 29.18
12.5 31.66 40.41 45.51 61.89 66.65 42.74 47.83 61.89 42.73
15 45.79 56.56 63.00 82.97 88.86 58.73 64.10 82.97 58.73

17.5 62.75 75.35 83.20 106.8 113.9 77.21 82.96 106.8 77.20
20 81.63 96.78 106.1 133.5 141.7 98.18 104.4 133.5 98.18

Legend
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2.1.2. Williams and Jemah [122]

Williams and Jemah [122] presented a proposal based on Svensson’s method [121].
The authors considered that in addition to the compressed flange, a 15% portion of the web
could also be analyzed as a column under compression (Figure 11). The proposition of
Williams and Jemah [122] is presented in Equation (13). The slenderness parameter (λel) is
obtained as described in Section 2.1.1.

Mcr =

π2E
λ2

el
Wx(

1 + 0.15
b f t f
h0tw

) (13)
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2.1.3. Roik et al. [118]

The formulation proposed by Roik et al. [118] is presented in Equations (14)–(16),
where the parameters are: coefficient referring to the hogging moment distribution (Cdist),
as described in Tables 3 and 4; I-section shear modulus (G); flange inertia moment about the
weak axis (Iaf,y); composite cross-section inertia moment about the strong axis (Ix); I-section
inertia moment about the strong axis (Iax); I-section inertia moment about the weak axis
(Iay); I-section sectional area (Aa); composite cross-section sectional area (A).

Mcr = αg
Cdist

L

√(
GJ +

ksL2

π2

)
EIa f ,y (14)

αg =
h0 Ix/Iax

h2
0/4+ (Iax+Iay)

Aa
e + h0

(15)

e =
AIax

Aayc(A− Aa)
(16)

Table 3. Cdist coefficient for continuous beams with loading on the analyzed span (L). Adapted from
ABNT NBR 8800:2008 [108].

* Moment Distribution
ψ
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The formulation for Mcr proposed by Hanswille et al. [117] is presented in Equa-
tion (17).

Mcr =
1
kz

((
π2ECw,d

)
(βbL)2 + GJe f

)
(17)

where the parameters are the cross-section geometric parameters described by Equation (18)
(kz, yf and e), the distance between the I-section centroid and the composite section (rein-
forcement bar and I-section) centroid (y*),

kz =
Iax

Ix

(
2y f −

1
e

(
y2

f +
Iax + Iay

Aa

))
; y f =

dg − b f

2
; e =

Iax

y ∗ Aa
(18)

where the warping constant calculated with the pole in the center of the profile upper
flange had by Equation (19) (Cw,d),

Cw,d = Ia f ,yh0
2 (19)

where the effective length factor determined by Equation (20) (βB),

βB = β0B

 1

1 +
(

a
√

ηb
π

)n1


1/n2

(20)
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where the stiffness factor presented in Equation (21) (ηb), and the effective Saint Venant
torsion stiffness (GJef), as shown in Equation (22).

ηb =

√
ksL4

ECw,d
(21)

GJe f = A(1.5− 0.5ψ)GJ (22)

To calculate the parameters BB and GJef it is necessary to obtain the coefficients A, a, η1,
and η2, which are dependent on the hogging moment factors: the relationship between the
end moment and the maximum moment (ψ); and the relationship between the smaller end
moment and the higher end moment. The parameters A, a, η1, and η1 are given according
to the load configurations, which are detailed in Table 5 (for members with end moments),
Table 6 (for members with concentrated load and end moments), and Table 7 (members
with uniformly distributed load and end moments).

Table 5. Approximate determination of the elastic critical moment for members with end moments.
Adapted from Hanswille et al. [117].

* Moment Distribution
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η =
4

,

s
b
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β0B = –0.11ψ2 − 0.37ψ + 0.74 
ψ a η1 η2 

1.0 1.48 9.10 9.30 

β0B = –0.11ψ2 − 0.37ψ + 0.74

ψ a η1 η2

1.0 1.48 9.10 9.30
0.5 1.45 8.30 8.80
0.0 1.40 6.40 7.30

–0.5 1.25 4.70 5.70
–1.0 1.00 4.20 5.10

* Mo is the maximum moment, considering the analyzed span as simply supported.

Table 6. Approximate determination of the elastic critical moment for members with concentrated
load and end moments. Adapted from Hanswille et al. [117].
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( )
2

2,
2

0

g w d b
cr

k EC
M GJ n

h nL
η

π
π

     = + +  
     

 (23)

The kg coefficient considers the elastic neutral axis and moment portion absorbed by the 
reinforcement bars. 

( )0*0.31 0.69 0.05y hx
g

ax

I
k

I
= + ⋅  (24)

As in the proposition of Hanswille et al. [117], ηb is the stiffness factor (Equation (25)), and 
Cw,d is the warping constant calculated with the pole in the center of the profile upper 
flange (Equation (26)). 

4

,

s
b

w d

k L
EC

η =  (25)

β0B = 0.320ψ + 0.53 β0B = 0.075ψ2 + 0.25ψ + 0.35 β0B = 0.116ψ2 + 0.06ψ + 0.21

α = 1
A = 1.25

α = 0.5
A = 1.5

α = 0.25
A = 1.6

a η1 η2 a η1 η2 a η1 η2

ψ = 1.0 1.46 9.85 9.55 1.35 7.10 6.85 0.95 4.90 4.50
ψ = 0.5 1.45 9.00 9.75 1.30 5.75 6.80 0.85 4.50 5.60
ψ = 0.0 1.35 5.95 7.75 1.05 4.60 6.30 0.70 4.15 6.10

* Mo is the maximum moment, considering the analyzed span as simply supported.
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Table 7. Approximate determination of the elastic critical moment for members with uniformly
distributed load and end moments. Adapted from Hanswille et al. [117].

* Moment Distribution
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2.1.5. Dias et al. [120] and Oliveira [123]

The methodology proposed by Dias et al. [120] and Dias [124] only covers steel-
concrete composite beams under uniform hogging moment and is shown in Equation (23).

Mcr =
kg

h0

{
GJ +

ECw,d

L2

[
(nπ)2 +

( ηb
nπ

)2
]}

(23)

The kg coefficient considers the elastic neutral axis and moment portion absorbed by the
reinforcement bars.

kg =
Ix

Iax

(
0.31 + 0.69 · 0.05y∗/h0

)
(24)

As in the proposition of Hanswille et al. [117], ηb is the stiffness factor (Equation (25)), and
Cw,d is the warping constant calculated with the pole in the center of the profile upper
flange (Equation (26)).

ηb =

√
ksL4

ECw,d
(25)

Cw,d = Ia f ,yh0
2 (26)

According to Dias et al. [120], the number of waves (n) must be an integer to fulfill essential
boundary conditions. Thus, one may calculate the Mcr value for the two integers n1 and n2
nearest to nid (Equation (27)) and adopt the smallest value of the critical moment obtained.

nid =

√
ηb

π
(27)

Oliveira [123] presented an adaptation based on the methodology of Dias [124] to
verify beams subjected to non-uniform moment, according to Equation (28).

Mcr =
kg

h0

{
GJ +

ECw,d

L2
neg

[
(nπ)2 +

( ηb
nπ

)2
]}{

2.13β

(
Lneg

h0

)−0.1
}

(28)

Oliveira’s proposition [123] imposed a reduction factor equal to 1/4 in the stiffness
factor (ηb), determined according to Equation (29).

ηb =
1
4

√
ksL4

neg

ECw,d
(29)
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Equation (30) describes the conditions to determine the β coefficient related to the posi-
tions of supports for different hogging moment diagrams. The parameters of Equation (30)
are the smallest length of the negative moment stretch (L1); and the critical length of the
composite beam (Lcr) had by Equation (31), in which hw is the web depth. The lengths Lneg
and L1 are determined as shown in Figure 13.

β =

{
β = 1.0, i f L1

Lcr
≥ 1.0

β = −0.16
(

L1
Lcr

)
+ 1.15, i f L1

Lcr
< 1.0

(30)

Lcr = 2.4hw

[
b f

3t f
(
1− v2)

tw3hw

]0.25

(31)
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2.2. LDB Ultimate Moment

The standards address the LDB in continuous composite beams by applying a reduc-
tion factor in the plastic moment (Mpl) of the analyzed section under hogging moment.
For this, these standards use curves expressed in terms of the slenderness ratio and the
reduction factor determined by full-scale tests of steel elements with initial geometric
imperfections and residual stress.

European codes (EN 1994-1-1: 2004 [107]) and Brazilian codes (ABNT NBR 8800:
2008 [108]) present analogous formulations to determine the cross-section plastic moment
(Mpl-C.beam), which are composed of steel I-beam and reinforcement bars (composite section).
According to the codes in question, the plastic theory (full plastic rectangular distribution
stress) must be used, and Mpl-C.beam is obtained with Equation (32), where the parameters are:
longitudinal reinforcement area (Abar); reinforcement bars yield strength (fy,bar); I-section
tensioned area (Aat); I-section compressed area (Aac); steel I-section yield strength (fy);
distance between the geometric centers of the composite cross-section and reinforcement
bars (d3); distance between the geometric centers of the composite cross-section and I-
section tensioned area (d4); and distance between the geometric centers of the composite
cross-section and I-section compressed area (d5).

Mpl−C.beam = Abar fy,bard3 + Aat fyd4 + Aac fyd5 (32)

The parameters which compose Equation (32) depend on the composite section ge-
ometry, materials yield strength, and plastic neutral axis (PNA) position. This way, two
cases of PNA position usually occur in steel-concrete composite beams in hogging moment
regions: PNA on the I-section web and PNA on the I-section upper flange. In the present
paper, the Mpl-C.beam formulations are developed considering the composite section in the
center region of the opening. Thus, to calculate Mpl-C.beam in the region with solid web, Do
equal to zero must be adopted. The cases in question are detailed below.

I—PNA on the I-section web is true if “(Aa − Af) * fy ≥ Af * fy + Tds”, which can have
PNA position (yPNA) defined in relation to the I-section upper face, as shown in Figure 14.
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The parameters are Af, which is the flange area, and Tds, which is the calculation tensile
strength of the reinforment bars (Abar * fy,bar).
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As the PNA position is on the web, the steel I-section’s tensioned area (Aat) and
compressed area (Aac) are defined as presented in Equations (33) and (34), respectively.

Aat = b f t f +
(

yPNA − t f

)
tw (33)

Aac = Aa − Aat − Dotw (34)

This way, the PNA position is obtained with the equilibrium of resulting forces. These
resulting forces are equivalent to full plastic rectangular distribution stress on reinforcement
bars and the I-section’s tensioned and compressed area. Thus, the PNA position in relation
to the I-section upper face is determined by Equation (35).

yPNA = t f +
−Abar fy,bar + fy

(
Aa − 2b f t f

)
− Dotw

2 fytw
(35)

To calculate the distances d2 and d3 of Equation (32), the geometric center positions
of the I-section’s tensioned (y*at) and compressed area (y*ac) are necessary. Equation (36)
shows the formulation for the tensioned area with the origin on the I-section upper face.
On the other hand, Equation (37) presents the calculus for the compressed area with the
origin on the I-section lower face.

y∗at =
0.5b f t f

2 + tw

(
yPNA − t f

)[
0.5
(

yPNA − t f

)
+ t f

]
Aat

(36)

y∗ac =

0.5b f t f
2 + tw

[
0.5
(

dg − yPNA − t f − Do

)2
+ t f

]
Aac

(37)

Finally, the distances d1, d2, and d3 are obtained according to Equations (38)–(40), in
which c is the distance between the geometric center of the reinforcement bars and the
I-section upper face.

d1 = yPNA + c (38)

d2 = yPNA − y∗at (39)
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d3 = dg − yPNA − y∗ac (40)

II—PNA on the I-section upper flange is true if “(Aa − Af)*fy < Af * fy + Tds” and “Aa *
fy ≥ Tds”, which can also have the PNA position (yPNA) defined in relation to the I-section
upper face. Figure 15 illustrates this case.
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As the PNA position is on the upper flange, the steel I-section’s tensioned area (Aat)
and compressed area (Aac) are obtained by Equations (41) and (42), respectively.

Aat = b f yPNA (41)

Aac = b f t f + tw

(
dg − 2t f − Do

)
+ b f

(
t f − yPNA

)
(42)

Thus, the PNA position in relation to the I-section upper face is determined by Equa-
tion (43).

yPNA =
−Abar fy,bar + fy

[
2b f t f + tw

(
dg − 2t f − Do

)]
2 fyb f

(43)

Like the case I, the formulation for the center position of the tensioned area is devel-
oped with the origin on the I-section upper face, and for the compressed area, the origin
is on the I-section lower face. Equations (44) and (45) describe the calculus of the center
positions y*at and y*ac. Equations (38)–(40) must be used to obtain the distances d1, d2,
and d3.

yat =
yPNA

2
(44)

yac =
0.5b f t f

2 + tw

(
dg − Do − 2t f

)
0.5dg + b f

(
t f − yPNA

)[
dg − yPNA − 0.5

(
t f − yPNA

)]
Aac

(45)

EN 1994-1-1: 2004 [107] uses multiple Perry–Robertson design curves that constitute
the ECCS (European Convention for Constructional Steelwork) curves [125], while ABNT
NBR 8800:2008 [108] uses the 2P design curve provided by the SSRC (Structural Stability
Research Council) [116]. However, according to Rossi et al. [116], the Perry–Robertson
curves were developed considering only steel elements under bending. This situation can
lead to an inaccurate determination of the LDB strength in steel-concrete composite beams.
On the other hand, the 2P curve provided by SSRC is the result of experimental tests of
steel elements under compression.
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Differently from the standards that are fundamental in the inverted U-frame model,
the North American standards (AISC 360-16 [103] and AASHTO 2017 [104]) and Australian
standards (AS4100: 1998 R2016 [105] and AS/NZS2327-2017 [106]) present adaptations
of the classic lateral-torsional buckling theories of partially constrained beams. These
methodologies consider only the steel I-beam as a resistant cross-section against LDB.
Equation (46) determines the I-section plastic moment (Mpl.I.-beam).

MplI−beam
= 2b f t f

( t f + hw

2

)
+

tw
(
h2

w − D2
0
)

4
(46)

AASHTO [104] proposes modifications to the LTB formulation of steel I-beams present
in AISC [103]. On the other hand, the Australian standards (AS4100: 1998 R2016 [105]
and AS/NZS2327-2017 [106]) present a method that evaluates the so-called critical flange
that is not restricted against instability phenomena [116]. According to the above, there
are differences between the standard procedures. Table 8 presents the formulations for
determining the LDB ultimate moment present in the mentioned standards, except the
North American standards (AISC 360-16 [103] and AASHTO 2017 [104]), as they will not be
covered in this work. In Table 8, le is the effective length according to the codes [105,106].

Table 8. Procedures for determining the LDB strength in SCCB. Adapted from Rossi et al. [29].

Source EN 1994-1-1: 2004 [107] NBR 8800: 2008 [108] Australian Standards [105,106]

Mu

Mu,dist = χLT Mpl−C.beam

χLT =

[
φLT +

√
φ2

LT − λ
2
LT

]−1

≤ 1

φLT = 0.5
[
1 + αLT

(
λLT − 0.2

)
+ λ

2
LT

]
λLT =

√
Mpl−C.beam

Mcr

Mu,dist = χMpl−C.beam

λ0 ≤ 1.5 : χ = 0.658λ2
0

λ0 > 1.5 : χ = 0.877/λ2
0

λ0 =
√

Mpl−C.beam
Mcr

Mu,dist = αmαs MplI−beam
≤ MplI−beam

αm = 1.7Mm∧x√
[(M2)

2+(M3)
2+(M4)

2]
≤ 2.5

αs = 0.6


√√√√[(MplI−beam

Mcr

)2

+ 3

]
−
(

MplI−beam
Mcr

)
Mcr

Formulations developed based on the
U-frame model (Sections 2.1.3–2.1.5)

Formulation proposed by
Roik et al. [118]
(Section 2.1.3)

Mcr =

√{(
π2EIy

l2e

)[
GJ +

(
π2ECw

l2e

)]}

Salah [58] performed experimental tests on twelve composite beams with web open-
ings under hogging bending. The author also numerically investigated the behavior of the
models tested using the ABAQUS software. Salah [58] used the results of these investiga-
tions to validate the direct strength equation developed to verify the Mu to LDB. According
to Gizejowski and Salah [126], calculations were performed to predict the relative slender-
ness λ in terms of the elastic buckling load factor Λcr and the limit load factor Λpl. For
each tested beam, the dimensionless distortion buckling load Λb,exp/Λpl was calculated,
where Λb,exp is the experimentally obtained distortional buckling load factor. The results
were compared with the predictions of the Λb,dsm/Λpl direct strength method, according to
Equations (47) and (48).

Λb,dsm

Λpl
=

(
α1 − α2

1

λ
k

)
1

λ
k (47)

λ =

√
Λpl

Λcr
(48)

From the parametric study of Salah [58], the author obtained the following constants
for Equation (47): α1 = 0.75, α2 = 0.11, and k = 1. The proposed methodology was compared
with the results of the experimental tests. The authors concluded that the proposed method
provides safe results of the LDB-resistant capacity of the composite beams with web
openings.
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2.3. LDB Experimental and Numerical Investigations

Salah [58] and Gizejowski and Salah [59] performed experimental investigations on
twelve beams. Two sets of specimens were assessed, six with long spans to represent the
cases where bending is predominant in the behavior of composite beams and another six
short spans to the instances where shear is dominant. The specimens had rectangular,
circular, and hexagonal openings, and for a beam with equal geometry, the steel was varied
(S355 and S420). The authors observed the lateral distortional mode predominance (LDB)
in the long-span beams with circular and hexagonal openings, showing a significant lateral
displacement in the I-section lower flange and a small deformation with web distortion
(Figure 16a). This failure occurred due to the significantly hogging moment and because
these beams have longer unrestrained lengths than those with a short span, which favors
global lateral instability. On the other hand, in the short-span beams there occurred a
torsional-distortional mode (WPB) with a not significant contribution of lateral lower flange
deformations (Figure 16b). This failure mode is characteristic of beams with a predominance
of shear forces, the case of the short-span beams, in which the shear force was more critical
than the hogging moment. In addition, this behavior was also noted in the beams with
rectangular openings and long spans, as, due to the lower web post area than the ones
with circular and rectangular openings, these beams are more susceptible to the local web
post-failure modes.
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Figure 16. Experimental tests by Salah [58] and Gizejowski and Salah [59]: (a) Lateral distortional
mode; (b) Torsional-distortional mode.

Salah [58] also performed a sensitivity analysis of the numerical models developed in
the ABAQUS software, which was verified with the experimental results obtained by the
author. Furthermore, the author conducted a parametric study using validated numerical
models. Salah [58] observed, by the deformations obtained numerically, that the slender
sections of composite beams fail by excessive bending, presenting the LDB before reaching the
load of the Vierendeel mechanism in the beam plane.

Gizejowski and Salah [97] analyzed the continuous composite cellular beams behavior
via geometrically nonlinear analysis. The authors noted that the buckling mode in short-
span beams is characterized by the interaction between LDB and WPB. On the other hand,
in long-span beams, the instability mode changes to LDB.

Oliveira et al. [98] carried out numerical investigations on the behavior of composite
cellular beams subjected to hogging moment. The authors observed that models subjected
to uniform hogging moment distribution (without shear loads) reached failure by LDB or its
interaction with compression tee yielding (CTY). In contrast, the models subjected to linear
hogging moment distribution (with shear loads) reached failure by WPB with the formation
of plastic mechanism (PM), LDB, LDB+CTY, LDB+WPB+PM, LDB+WPB+PM+CTY, and
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LDB+WPB+CTY. According to the authors, in many models with lower global slenderness
(L/ry) and subjected to linear hogging moment, the ultimate moment to LDB reached
values above the plastic moment of the composite section. Oliveira et al. [98] concluded
that the I-section dimensions were the parameters that had the most significant influence
on the load-carrying capacity of the models.

Oliveira et al. [99] conducted elastic analyses and compared them with the inelastic
assessments previously performed by Oliveira et al. [98]. Analyzing the first positive
eigenvector of the beams, the authors observed buckling modes characterized by LDB,
WPB, TLB, web local buckling (WLB), and the interaction between them. Furthermore,
Oliveira et al. [99] verified that the instability modes by TLB and WLB did not occur in the
inelastic analysis.

According to the above, the behavior of composite cellular beams under hogging
bending requires further investigation. There is still no knowledge about the influence
of composite cellular beam parameters, such as the dimensions of the slab cross-section
(height and width), slab typology, the longitudinal reinforcement ratio, shear interaction
degree, expansion ratio of the cellular profile, mechanical properties of structural steel (E,
fy, fu), and the use of asymmetric I-sections.

As described in this section, there are many possibilities to calculate the ultimate
moment to LDB of steel-concrete composite alveolar beams. Most of these approaches still
need to have their precisions measured for the beams in question, mainly for composite
castellated beams, in which there is no assessment present in the bibliography. This way,
Section 3 deals with the accuracy verification of all approaches shown in this section for
composite castellated and cellular beams.

3. Accuracy Obtained by LDB Resistance Formulations

To verify the accuracy of the calculation procedures presented in Sections 2.1 and 2.2,
the results obtained by these procedures were compared to the experimental results of
Salah [58]. Four composite alveolar beams which reached the failure by LDB were used,
two with cellular I-section (C4S355 and C4S420) and two with castellated I-section (H4S355
and H4S420), as illustrated in Figure 17. Table 9 describes the geometric parameters of the
specimens, and Table 10 presents their mechanical properties and ultimate load (Pu). As
these specimens are the only ones in the literature with the instability mode characterized
by LDB, there are no experimental results of other composite alveolar beams to use in this
study to verify the accuracy of the analytical formulations from Sections 2.1 and 2.2.
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Figure 17. Analyzed beams: (a) C4S355 and C4S420; (b) H4S355 and H4S420. Adapted from [58].

Table 9. Geometric parameters of the specimens (in mm and mm2).

Specimen L dg bf tf tw D0 bw s p *n Abar c

C4S355 2116 480 100 6 4 336 193 92 529 4 1256.64 50
C4S420 2116 480 100 6 4 336 193 92 529 4 1256.64 50
H4S355 2116 480 100 6 4 321 193 92 529 4 1256.64 50
H4S420 2116 480 100 6 4 321 193 92 529 4 1256.64 50

* n is the number of openings.
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Table 10. Mechanical properties and ultimate load of the specimens.

Specimen E (GPa) fy (MPa) fy,bar (MPa) Pu (kN)

C4S355 200 355 459.6 59.56
C4S420 200 420 459.6 62.26
H4S355 200 355 459.6 62.03
H4S420 200 420 459.6 62.55

The used methodologies are adaptations of procedures developed to verify the LDB
in composite beams without web openings, so it was necessary to adopt geometric prop-
erties that were adapted to sections of the alveolar beams, as presented in Section 2. The
approaches presented by Sonck and Belis (J2T,Average) [114,115] and Carvalho, Rossi, and
Martins (solid, double T, average, superficial, and linear weighting section) [94] were utilized.
To determine the rotational stiffness of the web (k2), the adaptation proposed by Müller
et al. [111] and Silva et al. [113] was adopted for cellular and castellated beams, respectively.

The graphs below show the comparison of the experimental results of Salah [58]
with the following calculation procedures to determine the Mu,dist to the LDB: AS4100:
1998 R2016 [105] and AS/NZS2327-2017 [106], EN 1994- 1-1: 2004 [107], ABNT NBR 8800:
2008 [108] and Salah [58]. The proposition of Roik et al. [118] is described in the Brazilian
code (ABNT NBR 8800: 2008 [108]) to calculate the Mcr. On the other hand, Eurocode 4 (EN
1994- 1-1: 2004 [107]) does not specify a formulation to obtain the Mcr. However, this code
proposes calculation methodologies based on the inverted-U frame model. The equations
of Roik et al. [118], Hanswille et al. [117], and Dias et al. [120] are based on the model in
question. These methodologies and those proposed by Svensson [121] and Williams and
Jemah [122] to determine Mcr were also used in the calculation of Salah’s proposition [58]
for the determination of Mu,dist. The proposition by Dias et al. [120] considers only the
uniform hogging moment configuration. However, the procedure by Oliveira [123] was
used, which adopted the proposal by Dias et al. [120] for other loading settings. In the
graphs below, the capital letters S, W, R, H, and O mean that the procedure for determining
the Mu,dist is the calculation of the Mcr from the propositions of Svensson [121], Williams
and Jemah [122], Roik et al. [118], Hanswille et al. [117], and Oliveira [123], respectively.
The ratio between the ultimate moment theoretical and the ultimate moment of the tests
(Mu-Theoretical/Mu-test) with values above 1 represent unsafe results.

From Figures 18 and 19, it is noted that most code’s adaptation methods provided
unsafe results. The procedures that had conservative results were: ABNT NBR 8800:
2008 [108] for all geometric properties approaches (Figures 18b and 19b); and EN 1994-1-1:
2004 [107], from Mcr determination by Roik et al. [118] for all approaches, and Mcr by
Oliveira [123] for J2T,Average and double T (Figures 18c and 19c). Among these formulations,
EN 1994-1-1: 2004 [107] with Mcr by Oliveira [123] and J2T,Average was the formulation that
had the highest average of the ratio (Mu-Theoretical/Mu-test = 0.951), followed by the same
equations with double T geometric properties (Mu-Theoretical/Mu-test = 0.949). For ABNT NBR
8800: 2008 [108], the highest Mu-Theoretical/Mu-test value (0.83) was obtained with the solid
section (Figure 18b). The methods that had non-conservative results were: AS4100:1998
R2016 [105] for all geometric properties approaches (Figures 18a and 19a); EN 1994-1-1:
2004 [107] with Mcr by Hanswille et al. [117] for all geometric properties approaches; and
EN 1994-1-1: 2004 [107] with Mcr by Oliveira [123] for the solid, average, superficial, and linear
weighting section (Figures 18c and 19c). EN 1994-1-1: 2004 [107] with Mcr by Hanswille
et al. [117] and solid section obtained the most unsafe results within the code’s adaptations,
having the highest Mu-Theoretical/Mu-test value equal to 1.97. For EN 1994-1-1: 2004 [107] with
Mcr by Hanswille et al. [117], the solid, average, superficial, and linear weighting section pro-
vided Mu-Theoretical/Mu-test values above 1.5, which shows the significant non-conservatism
of then. Within the other combinations of Mu and Mcr equations with unsafe results, the
Mu-Theoretical/Mu-test values were: AS4100:1998 R2016 [105] for solid section (1.42); and EN
1994-1-1: 2004 [107] with Mcr by Oliveira [123] for solid section (1.32). Another issue is that
no significant differences were observed between the accuracies obtained for the models
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with circular and hexagonal openings considering the same calculation method. For the
Australian code (AS4100:1998 R2016 [105]), the geometric properties considering J2T,Average,
double T and average section had similar values to Mu-Theoretical/Mu-test (Figures 18a and 19a),
which also occurred with superficial and linear weighting sections in the composite cellular
beams (Figure 18a). On the other hand, superficial and linear weighting section provided lower
values of Mu-Theoretical/Mu-test than J2T,Average, double T, and average section in the composite
castellated beams (Figure 19a). In addition, these geometric properties approaches pre-
sented a trend for the other procedures, shown in Figures 18 and 19. This trend is double T,
J2T,Average, linear weighting, average, superficial weighting, and solid section from the smallest to
highest values of Mu-Theoretical/Mu-test (Figures 18 and 19). Finally, the only methodologies
that obtained safe results for all section approaches were EN 1994-1-1: 2004 [107] and ABNT
NBR 8800: 2008 [108] with Mcr by Roik et al. [118].
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Figure 18. Accuracy obtained by the code’s adaptation approaches for composite cellular beams:
(a) AS4100:1998 R2016 [105]; (b) ABNT NBR 8800: 2008 [108]; (c) EN 1994- 1-1: 2004 [107].
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Figure 19. Accuracy obtained by the code’s adaptation approaches for composite castellated beams:
(a) AS4100:1998 R2016 [105]; (b) ABNT NBR 8800: 2008 [108]; (c) EN 1994- 1-1: 2004 [107].

Figures 20 and 21 show that most approaches with Salah’s Mu proposition [58] pro-
vided unsafe results. This Mu formulation with Mcr by Roik et al. [118] for J2T,Average, double T,
average section, superficial, and linear weighting section were the procedures that had conserva-
tive results (Figures 20a and 21a). Among these calculation methodologies, the one with the
superficial weighting section had the highest average of the ratio (Mu-Theoretical/Mu-test = 0.902),
followed by the average section (Mu-Theoretical/Mu-test = 0.863). The use of Mcr, proposed by
Roik et al. [118], with solid section and Mcr by Oliveira [123] with the J2T,Averange, and double
T section provided the most similar results against the tests. However, the results of the
models C4S420 and H4S420 were non-conservative (Figures 20a and 21a). The methods
that obtained non-conservative results were: Mcr by Roik et al. [118] with solid section; and
Mcr by Hanswille et al. [117], Oliveira [123], Svensson [121], and Williams and Jemah [122]
for all geometric properties approaches. Some methodologies fall into a high level of non-
conservatism with Mu-Theoretical/Mu-test values above 2, such as Mcr by Hanswille et al. [117]
with solid section; Mcr by Svensson [121] and Williams and Jemah [122] with solid, average,
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superficial, and linear weighting section. Within these methods, Mcr by Svensson [121] and
Williams and Jemah [122] with solid section presented Mu-Theoretical/Mu-test values above 2.5.
The most unsafe result was observed in Mcr by Svensson [121] and solid section, having a
Mu-Theoretical/Mu-test value equal to 2.65 for the specimen C4S420 (Figure 20b). Other formu-
lations with significant non-conservatism provided Mu-Theoretical/Mu-test values above 1.5,
such as Mcr by Hanswille et al. [117] with J2T,Average, double T, superficial, and linear weighting;
and Mcr by Svensson [121] and Williams and Jemah [122], with double T section. As well
as for the code’s adaptation methods (Figures 18 and 19), significant differences were not
observed between the accuracies obtained for the models with circular and hexagonal open-
ings considering the same calculation method (Figures 20a and 21a). Finally, the same trend
of the geometric section approaches in Figures 18 and 19 are noted in Figures 20 and 21, in
which, from the smallest to the highest values of Mu-Theoretical/Mu-test, is double T, J2T,Average,
linear weighting, average, superficial weighting, and solid section.
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Figure 20. Accuracy obtained by the Salah’s Mu proposition [58] for composite cellular beams: (a) Mcr

calculation based on the U-frame model; (b) Mcr calculation proposed by Svensson [121] and Williams
and Jemah [122].
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Figure 21. Accuracy obtained by the Salah’s Mu proposition [58] for composite castellated beams:
(a) Mcr calculation based on the U-frame model; (b) Mcr calculation proposed by Svensson [121] and
Williams and Jemah [122].

Table 11 shows the Mu-Theoretical/Mu-test values obtained by the calculation procedure of
AS4100:1998 R2016 [105]. As noted, all geometric property approaches provide significantly
unsafe results, with Mu-Theoretical/Mu-test values above 1.23. This may occur because the code
disregards some factors that occurred in the specimens, such as the web distortion and the
interaction with local failure modes (WPB). On the other hand, ABNT NBR 8800: 2008 [108]
provides only safe results as described in Table 12, in which the highest average of the ratio
(Mu-Theoretical/Mu-test = 0.80) was obtained with the solid section approach. In addition, the
double T section had the most conservative result (Mu-Theoretical/Mu-test average = 0.66).
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Table 11. Mu-Theoretical/Mu-test obtained by the calculation procedure of AS4100:1998 R2016 [105].

Model
Geometric Properties Approach

J2T-Average Double T Solid Average Superficial Linear

C4S355 1.22 1.22 1.38 1.22 1.17 1.17
C4S420 1.27 1.27 1.42 1.27 1.27 1.27
H4S355 1.18 1.18 1.32 1.18 1.18 1.18
H4S420 1.28 1.28 1.42 1.29 1.29 1.28

Avg. 1.24 1.24 1.39 1.24 1.23 1.23
SD. (%) 4.77 4.75 4.52 4.78 6.09 6.07
Var. (%) 0.23 0.23 0.20 0.23 0.37 0.37

Table 12. Mu-Theoretical/Mu-test obtained by the calculation procedure of ABNT NBR 8800: 2008 [108].

Model
Geometric Properties Approach

J2T-Average Double T Solid Average Superficial Linear

C4S355 0.69 0.67 0.83 0.76 0.78 0.74
C4S420 0.69 0.67 0.79 0.74 0.75 0.71
H4S355 0.67 0.65 0.79 0.73 0.75 0.71
H4S420 0.68 0.67 0.79 0.73 0.75 0.72

Avg. 0.68 0.66 0.80 0.74 0.76 0.72
SD. (%) 1.05 0.92 2.01 1.42 1.51 1.36
Var. (%) 0.01 0.01 0.04 0.02 0.02 0.02

Table 13 presents the Mu-Theoretical/Mu-test values provided by the standard recommen-
dation of EN 1994-1-1: 2004 [107]. As observed, utilizing the Mcr calculation proposed
by Roik et al. [118], this code obtained safe results for all geometric property approaches,
with the highest average of the ratio (Mu-Theoretical/Mu-test = 0.71) obtained with the solid
section approach. In addition, considering all the results in Table 13, the Mcr proposition
by Hanswille et al. [117], with the solid section, had the most unsafe Mu-Theoretical/Mu-test
values, having an average equal to 1.90. As previously stated, using Mcr by Oliveira [123]
and J2T,Average, EN 1994-1-1: 2004 [107] formulation had the highest average of the ratio
(Mu-Theoretical/Mu-test = 0.951) considering only the safe values, followed by the double T
section approach (Mu-Theoretical/Mu-test = 0.949). Finally, within all methods analyzed in
this study, the most conservative results were obtained by EN 1994-1-1: 2004 [107] rec-
ommendation with Mcr by Roik et al. [118] and the double T section (Mu-Theoretical/Mu-test
average = 0.58).

Within all formulations analyzed in this work, Salah’s Mu proposition [58] with Mcr by
Roik et al. [118] and solid section, as well as with Oliveira [123] and the double T section, had
the better average of the ratio (Mu-Theoretical/Mu-test = 1.00), as shown in Table 14. However,
these formulations provided unsafe results for the specimens C4S420 and H4S420. On the
other hand, among the results presented in Table 14, the most unsafe results were obtained
using Mcr by Hanswille et al. [117] and solid section (Mu-Theoretical/Mu-test average = 2.06).

As noted, all results presented in Table 14 were significantly unsafe. Within all for-
mulations analyzed in the present review paper, Salah’s Mu proposition [58] with Mcr by
Svensson [121] and the solid section provided the most unsafe results, in which the average
Mu-Theoretical/Mu-test ratio was 2.55 (Table 15). This way, one must have a critical eye when
adopting the propositions of Svensson [121] and Williams and Jemah [122] to determine
the Mcr.
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Table 13. Mu-Theoretical/Mu-test obtained by the calculation procedure of EN 1994- 1-1: 2004 [107].

Model

Mcr Proposition/* Geometric Properties Approach

Roik et al. [118] Hanswille et al. [117] Oliveira [123]

J2T-Avg Db. T Solid Avg. Sup. Lin. J2T-Avg Db. T Solid Avg. Sup. Lin. J2T-Avg Db. T Solid Avg. Sup. Lin.

C4S355 0.60 0.58 0.73 0.66 0.68 0.64 1.24 1.24 1.86 1.57 1.66 1.48 0.94 0.93 1.31 1.14 1.19 1.09
C4S420 0.59 0.58 0.72 0.65 0.67 0.62 1.34 1.34 1.97 1.68 1.77 1.59 0.97 0.97 1.32 1.16 1.21 1.11
H4S355 0.58 0.56 0.70 0.64 0.65 0.62 1.22 1.22 1.79 1.52 1.60 1.44 0.92 0.91 1.26 1.10 1.15 1.05
H4S420 0.59 0.58 0.71 0.65 0.67 0.63 1.37 1.37 1.96 1.69 1.77 1.60 0.98 0.98 1.31 1.16 1.21 1.11

Avg. 0.59 0.58 0.71 0.65 0.67 0.63 1.29 1.29 1.90 1.61 1.70 1.53 0.95 0.95 1.30 1.14 1.19 1.09
SD. (%) 0.94 0.83 1.39 1.11 1.19 1.09 7.35 7.35 8.89 8.30 8.51 8.07 2.93 2.91 2.96 2.88 2.89 2.87
Var.(%) 0.01 0.01 0.02 0.01 0.01 0.01 0.54 0.54 0.79 0.69 0.72 0.65 0.09 0.08 0.09 0.08 0.08 0.08

* Db. T is the double T, Avg. is the Average, Sup. is the Superficial, and Lin. is the Linear weighting section approaches.

Table 14. Mu-Theoretical/Mu-test obtained by the calculation procedure of Salah’s Mu proposition [58] with Mcr calculation based on the U-frame model.

Model

Mcr Proposition/*Geometric Properties Approach

Roik et al. [118] Hanswille et al. [117] Oliveira [123]

J2T-Avg Db. T Solid Avg. Sup. Lin. J2T-Avg Db. T Solid Avg. Sup. Lin. J2T-Avg Db. T Solid Avg. Sup. Lin.

C4S355 0.72 0.71 1.00 0.86 0.90 0.82 1.50 1.49 2.04 1.79 1.86 1.72 0.99 0.99 1.42 1.21 1.27 1.15
C4S420 0.74 0.73 1.03 0.88 0.92 0.83 1.58 1.58 2.13 1.88 1.95 1.80 1.03 1.03 1.47 1.26 1.32 1.20
H4S355 0.70 0.69 0.96 0.83 0.86 0.79 1.46 1.46 1.96 1.73 1.80 1.66 0.97 0.97 1.36 1.17 1.23 1.12
H4S420 0.75 0.74 1.02 0.88 0.92 0.85 1.60 1.60 2.12 1.88 1.95 1.80 1.04 1.04 1.46 1.26 1.32 1.20

Avg. 0.73 0.72 1.00 0.86 0.90 0.82 1.53 1.53 2.06 1.82 1.89 1.74 1.01 1.00 1.43 1.23 1.28 1.17
SD. (%) 2.39 2.34 3.28 2.78 2.75 2.40 6.67 6.66 7.84 7.25 7.42 7.08 3.54 3.53 4.86 4.16 4.36 3.98
Var.(%) 0.06 0.05 0.11 0.08 0.08 0.06 0.44 0.44 0.61 0.52 0.55 0.50 0.13 0.12 0.24 0.17 0.19 0.16

* Db. T is the double T, Avg. is the Average, Sup. is the Superficial, and Lin. is the Linear weighting section approaches.
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Table 15. Mu-Theoretical/Mu-test obtained by the calculation procedure of Salah’s Mu proposition [58] with Mcr calculation proposed by Svensson [121] and Williams
and Jemah [122].

Model

Mcr Proposition/Geometric Properties Approach

Svensson [121] Williams and Jemah [122]

Double T Solid Average Superficial Linear Double T Solid Average Superficial Linear

C4S355 1.66 2.51 2.10 2.22 1.99 1.65 2.48 2.08 2.19 1.96
C4S420 1.78 2.65 2.23 2.35 2.11 1.76 2.61 2.20 2.30 2.05
H4S355 1.64 2.41 2.04 2.15 1.93 1.62 2.38 2.02 2.12 1.91
H4S420 1.82 2.64 2.24 2.35 2.13 1.80 2.60 2.21 2.32 2.10

Avg. 1.72 2.55 2.15 2.27 2.04 1.71 2.52 2.12 2.23 2.01
SD. (%) 8.57 11.06 9.68 10.05 9.34 8.34 10.78 9.43 9.36 8.45
Var. (%) 0.73 1.22 0.94 1.01 0.87 0.70 1.16 0.89 0.88 0.71
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4. Discussion

Due to a gap in the studies that investigated composite alveolar beams under hogging
bending, there are no studies that investigated all possible failure modes in these structures.
However, based on the main observations by the works presented in this literature review,
it was observed that the composite alveolar beams subjected to hogging bending could
reach failure by LDB, WPB, the formation of plastic mechanisms, and their interactions.

It is noted that the assessment presented in Section 3 is limited, as it addresses only
four specimens (C4S355, C4S420, H4S355, and H4S420). Furthermore, when verifying the
same formulations addressed in this study for beams with other geometries and materials,
the calculation procedures can obtain different precisions from those presented in Section 3.
Salah [58] tested the other four composite cellular and castellated beams with short spans
(C2S355, C2S420, C2S355, and C2S420). However, these beams reach failure predominantly
by WPB. This way, formulations for WPB resistance must be verified.

Furthermore, it is also essential to investigate the influence of other parameters not
assessed in Salah’s experimental tests [58]. According to the LDB studies discussed in
Section 2.3, the only parameters that have already been analyzed are the unrestrained
length, the web openings pattern, the strength of the steel I-beam, the I-section dimensions,
hogging moment distribution, the opening diameter of composite cellular beams, and the
web post width of composite cellular beams. This way, suggestions for future investigations
are stated in Section 5.

LDB resistance predictions provided by the standard codes do not comprehend com-
posite alveolar beams, having only the formulations for composite beams with solid webs.
This way, it is necessary to use adaptation approaches for beams with web openings. An-
other critical point is that calculation propositions directly developed to verify the Mcr to
LDB of the composite alveolar beams were not found in the literature. Only adaptations
made by authors who proposed changes to the methodologies that consider the verifi-
cation of the Mcr of composite beams without web openings were found. From these
adaptations, it is possible to obtain the Mu to LDB by the methodologies presented by
Salah [58] and the European standards (EN 1994-1-1: 2004 [107]) and Brazilian standards
(ABNT NBR 8800: 2008 [108]). In addition to these methodologies, using the geometric
properties of alveolar sections presented by Sonck and Belis [114,115] and Carvalho, Rossi,
and Martins [94], it is also possible to verify the Mu to LDB using the Australian stan-
dards procedure (AS4100: 1998 R2016 [105] and AS/NZS2327-2017 [106]). The accuracy of
these procedures was verified by comparing their results with the experimental results of
Salah [58]. Through this analysis, it was observed that many analyzed approaches provided
unsafe results. Among the formulations that had only safe results, the combination of
EN 1994-1-1: 2004 [107] with Mcr by Oliveira [123] and J2T,Average obtained the highest
average of the ratio (Mu-Theoretical/Mu-test = 0.951). Additionally, EN 1994-1-1: 2004 [107] and
ABNT NBR 8800: 2008 [108] with Mcr by Roik et al. [118] were the only methodologies that
provided conservative results for all section approaches.

As discussed, the procedures assessed in the present study are adaptations of method-
ologies for checking the LDB in steel-concrete composite beams without web openings.
Therefore, specific development design calculation for composite alveolar beams is neces-
sary to consider the possibility of WPB. However, it is a complex study to be carried out
due to the significant influence of many parameters. This way, some authors have been
using artificial intelligence algorithms, in which a reliable database with information on
the behavior of alveolar beams is adopted to generate mathematical formulations for the
beams resistance prediction [83,127–133]. These techniques were also used for the LDB
resistance prediction of beams without web openings [134–137].

5. Conclusions

The investigations on the LDB behavior of composite alveolar have few studies, in
which the assessments by Salah [58] and Gizejowski and Salah [59] are the only ones
that present experimental results. However, few parameters were evaluated in the Salah
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tests [58]. These parameters were the free span under hogging bending, the opening
pattern, and the strength of the steel. According to the above, it is concluded that further
investigations are necessary to understand the LDB behavior of steel-concrete composite
alveolar beams. Many parameters that have a significant influence on the resistance capacity
of these structures need to be clarified. Therefore, some guidelines for the development of
future investigations are:

• Investigations on the influence of the concrete slab and the longitudinal reinforcement
ratio in elastic stability analysis and the LDB inelastic behavior;

• Assessments of composite beams with high-strength steel alveolar I-section and ultra-
high-performance concrete;

• The influence of the expansion factor (dg/d) of the alveolar profile;
• The influence of the presence of transverse stiffeners in the web of the alveolar profile

on the LDB behavior;
• Investigations into the influence of the use of asymmetrical alveolar profiles;
• Investigations on the LDB behavior of steel-concrete alveolar composite beams with

sinusoidal web openings;
• Investigations via experimental tests of the LDB behavior of composite alveolar beams

subjected to uniform hogging moment distribution, and others’ moment distribution;
• Calculation propositions that are directly developed for LDB verification in steel-

concrete composite alveolar beams. One option is to use artificial intelligence algo-
rithms to determine the LDB ultimate moment using a set of input parameters.
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