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Abstract: Energy consumption modeling has evolved along with building technology. Modeling
techniques can be largely classified into white box, gray box, and black box. In this study, the thermal
behavior characteristics of building components were identified through time-series data analysis
using LSTM neural networks. Sensors were installed inside and outside the test room to measure
physical quantities. As a result of calculating the overall heat transfer coefficient according to the
international standard ISO 9869-1, the U value of the multi-window with antireflection coating was
1.84 W/(m2·K). To understand the thermal behavior of multiple windows, we constructed a neural
network using an LSTM architecture and used the measured data-set to predict and evaluate the heat
flux through deep learning. From the measurement data, a wavelet transform was used to extract
features and to find appropriate control time-step intervals. Performance was evaluated according
to multistep measurement intervals using the error metric method. The multistep time interval
for control monitoring is preferably no more than 240 s. In addition, multivariate analysis with
several input variables was performed. In particular, the thermal behavior of building components
can be analyzed through heat flux and temperature measurements in the transient state of physical
properties of pre-installed building components, which were difficult to access with conventional
steady-state measurement methods.

Keywords: heat flux; unsteady state; neural network; deep learning; LSTM (long short term memory);
building window

1. Introduction

Global energy consumption has increased over the past decades due to economic
development and changes in human lifestyles. According to the latest energy statistics
report published by the IEA in 2021, the building sector is one of the most energy-intensive
sectors, accounting for 30–40% of global final energy demand [1]. In addition, among
building components, energy loss through glass windows accounts for the largest portion,
at over 30%, and is on the rise with urbanization and high-rise development [2]. Therefore,
in order to suppress global warming and reduce global energy consumption through the
realization of zero carbon, it is important to develop more efficient materials, components,
and thermal system equipment.

Since it is very difficult to translate experimental ideas into real buildings, simulation
models play an important role in developing efficient thermal design techniques. However,
thermal systems have highly nonlinear dynamics, and their thermal properties are strongly
influenced by the external environment, such as the outdoor temperature. We have been
working on developing accurate simulation models for a long time, and accurate simulation
models allow new ideas to be incorporated and validated. Along with the development of
building technology, various numerical modeling studies for building energy reduction
are being conducted, focusing on advanced control technology and the use of renewable
energy [3–5]. The American Society for Heating, Refrigeration and Refrigeration (ASHRAE)
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emphasizes several topics in building energy, such as calculating heat loads and controlling
the thermal systems. Building energy modeling techniques used in various fields can be
largely classified into three models: white box, black box, and gray box. White box models
are fundamentally based on the laws of conservation of mass, momentum, and energy.
Although this method is time-consuming, simulation results provide detailed information.
Numerical solvers using the finite element method (FEM) and finite volume method (FVM),
EnergyPlus, and TRNSYS are popular software that use white box models. The black box
model is in the limelight as a data-based modeling representation method with the advent
of machine learning algorithms. The basic conditions for this model are a sufficiently large
amount of clean data and the selection of an appropriate algorithm. Since this method is a
data input-data output method, it has the advantages of low cost and high adaptability.
Although no physical meaning can be derived from the result, the so-obtained result can be
applied to building energy management, dynamic system control, and so on. The gray box
model is intermediate between the white and the black box models and has properties of
both, so the analysis results are physically meaningful and computationally more efficient
and simpler than the white box model. The biggest advantage of the most common RC
model is that it can perform fast load calculations with physical dynamics, especially for
control via state-space analysis. However, the theoretical limitations and assumptions are
unclear, and the solver is insufficient. A hybrid reverse engineering model was proposed
and was used to suggest the guidelines for the optimal use of data [6].

Artificial intelligence (machine learning and deep learning) technologies, currently hot
topics around the world, have been applied to dynamic systems, control, energy prediction,
and fuel cell applications [7–10]. Although energy modeling in the planning and design
phases is important from the standpoint of energy conservation and efficient use, also
important are the system instrumentation and AI control in the operation and maintenance
phases. For the former, the mid- to long-term forecasts are used. For the latter, the very
short-term predictions or forecasts in the control horizon are important. It should be noted
that the occupant comfort conditions and the heat control become more demanding in
accordance with the improvement of living standards.

There are many research articles related to energy and artificial intelligence; some
recent reviews are available [11–15]. To name a few in relation to the present study, the
artificial neural network has been used to predict the indoor temperature of an existing
building and was successful in obtaining good results [16]. The long short-term memory
(LSTM) model shows that the short-term temperature is best predicted by applying a con-
volutional neural network (CNN) to data from several weather stations [17]. A CNN-LSTM
architecture was adopted to predict the room temperature with prediction horizons [18]. A
statistical model was used to simulate the room temperature of an experimental test cell,
and the error metrics thereof were studied [19]. To determine the transient heat flux of a
system, a new method has been proposed that can measure the heat flux absorbed by the
heating medium, both by collecting temperature histories and by using machine learning
based on the gradient-boosting decision tree algorithm [20]. The temperature and the heat
flux were measured to estimate the thermal resistance and the effective thermal mass of the
wall [21].

Even though many energy analysis models are available, it is difficult to find how often
and how many physical quantities are necessary to be measured for accurate predictions via
adopting a data-driven model for control [22]. Our goal is to find clues to these questions.
Recently, glass has been widely adopted in buildings to improve aesthetics and reduce
construction periods and costs. Since the energy consumption of many buildings is due to
heat loss through envelopes and windows are one of the most vulnerable thermal compo-
nents, glazing systems have great potential to reduce building energy losses. Therefore, it
is important to describe more accurately the heat transfer rate or heat flux in the compo-
nents of the building. In this study, experiments were performed in a multiple-windows
room inside an engineering building, and unsteady physical quantities were measured.
Using these data-sets, a data-driven LSTM neural network has been investigated in detail,
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especially focusing on the effects of measuring-time intervals and/or the number of data.
A variety of error metrics have been calculated to evaluate network performance. Further,
other models, such as MLP and the hybrid model, are briefly discussed.

2. Data and Methods
2.1. Data Acquisition

To obtain physical quantity data related to the transient phenomenon by applying arti-
ficial intelligence technology to the thermal energy system, this study focused on predicting
the heat flux in a test room (laboratory). The test room (size: 5.3 mW × 10 mL × 2.7 mH,
glass 50 mm thick, metal frame 150 mm thick) was prepared on the middle floor of the
Engineering Building, Seoul National University, facing to the north, with multi-glazed
windows. In order to identify the heat transfer characteristics required for AI training and
acquire learning data, two heat flux sensors, six temperature sensors, and one illuminance
sensor were installed inside and outside the test room to measure related physical quanti-
ties. Figure 1 shows a photograph of (a) windows facing to the north and a schematic of
(b) the test room.
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2.2. Overall Heat Transfer Coefficient

Assuming a one-dimensional heat flow through the depth of the windows, the heat
transfer and total thermal resistance can be expressed by the following equations.
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The overall heat transfer coefficient U of a multi-glazed window can be calculated
according to the International Standard ISO 9869-1:2014 using the above equations with
known values of the heat flux and the indoor and outdoor temperatures [23].

2.3. Deep Learning Model

In time-series forecasting problems, traditional statistical methods have been reported
to outperform complex methods, such as MLP, CNN, and RNN [24]. However, machine
learning and deep learning are expected to outperform statistical methods in many predic-
tive modeling problems [25]. Researchers are competing to conduct various application
studies. In this study, LSTM, among artificial neural network structures, was used for
heat flux modeling. The main characteristics and advantages and disadvantages of this
LSTM are briefly described. The key idea of LSTM is that the degree of opening and
closing of the input gate and output gate at each moment determined by learning can
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be adjusted in the range of 0 to 1. A LSTM neural network is a type of recurrent neural
network (RNN) that can learn long-term dependencies between time-steps in sequence
data. LSTM’s memory blocks are connected to each other by hidden nodes, and the output
of the memory blocks can go into input gates and output gates. LSTMs can learn the short-
and long-run dependencies of a problem and can handle the vanishing gradient problem,
which most RNN architectures struggle with. It is very suitable for indoor temperature
modeling because it includes both low-speed and high-speed movement phenomena [26].

A cell, the main information processing unit of an LSTM, has several gates that
maintain and control the flow of information for sequences of arbitrary length. A feature of
this cell is that LSTMs can determine whether information is useful in the long run or in
the short run, making it suitable for sequential problems. An LSTM cell can be defined as
follows [9,18].

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

c̃t = tanh(Wc · [ht−1, xt] + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot � tanh(ct) (8)

where x and h are the input state and hidden state, respectively; t is the current time-step;
� is the Hadamard product; and σ is the sigmoid activation function. c̃t, ft, it, and ot are
the current state cell, forget, input, and output gates, respectively, and W and b denote
learnable weights and biases, respectively. Figure 2 shows the internal structure of an
LSTM cell to intuitively understand the flow of information.
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The ultimate goal of machine learning is to find the optimal function that maps the
input data to the measured output values and, consequently, the optimal parameters that
minimize the error between the model output data and the measured output values.

In this study, the bi-directional long short-term memory (BiLSTM) network archi-
tecture is used for time-series data, and a feature matrix is created by considering the
time delay of features. Including lagged input vectors allows the model to learn different
dynamics of the system that may occur in different time periods. Choosing too small a lag
can reduce the comprehensiveness of the learned dynamics, while too many lags needlessly
increase it and can lead to overfitting.
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As a structural detail of BiLSTM, this study used 2 hidden layers and 60 time-step
delays for each feature. Each previous state is connected to an individual LSTM cell,
resulting in a layer of 60 cells with a channel for each function. We then deepened the
LSTM network into two layers by modifying the replicas of these layers. Finally, we flatten
the output of the LSTM layer and use the fully connected layer to obtain a single prediction.
The max epoch is 200, the mini-batch size is 128, the number of neurons in the first hidden
layer is 120, the number of neurons in the second hidden layer is 80, the dropout is 0.5, and
the learning algorithm is Adam.

The method for comparing and evaluating the performance of the deep learning
architecture described above is defined and used in various ways [7]. Typically, R2, RMSE,
and MAE error metrics are expressed as formulas and defined as follows.

R2 = 1 −
(

∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − yi)

2

)
(9)

RMSE =

√
∑m

i=1(yi − ŷi)
2

m
(10)

MAE =
1
m

m

∑
i=1

(yi − ŷi)
2 (11)

where ŷ and y are the model predicted and actual outputs, respectively; y is the average of
the outputs; and m is the number of samples.

3. Results and Discussion
3.1. Measurement Data and Analysis

Physical quantities were measured under ideal conditions in the model room of the
Engineering Building. The data measured by installing temperature and heat flux sensors
on the inside and outside of the sample room, fan coil outlet, and north-facing multi-
glass windows were analyzed. First, the overall heat transfer coefficient of a building
component in the unsteady state can be obtained according to the international standard
ISO 9869-1:2014. This standard presents average value calculation methods and dynamic
calculation methods for data analysis methods. If there is no phase change material, or
the heat storage effect is not large, the heat flux and indoor/outdoor temperature can
be measured and calculated using Equation (1). The indoor/outdoor convective heat
transfer coefficient required here varies greatly depending on the shape of the environment,
and various relationships exist. However, in the case of buildings, hi = 9.30 W/(m2·K)
and ho = 23.26 W/(m2·K) were used as empirical approximations [27]. In addition, the
ISO standard recommends a measurement time of at least 72 h and an analysis error
of 5% or less in the consideration of thermal inertia in the case of wall structures. The
overall heat transfer coefficient was calculated according to the international standard ISO
9869-1:2014. The U value of the multilayer glass window with anti-reflective coating was
1.84 W/

(
m2 · K

)
, with an error of 3.4% (Figure 3).

The temperature in the laboratory, roughly regulated by a central plant control system,
could also be mildly tuned by a local heater. The air flow rate could also be set by the
switch in the fan coil unit (FCU). The air temperatures both inside and outside the room
were measured with sensors placed near the center and edges of the walls. Since the
room was empty, the impact of occupant movements was negligible. Instead of measuring
scattered insolation indirectly, illuminance was measured and considered to improve future
prediction accuracy.
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Figure 3. Thermal measurements and U-value analysis for the North window based on ISO 9869-1: 2014.

Measurements were made every 1-s interval over approximately 7 days, and thereby,
a total of 592,124 samples were collected. Detailed information on the measured variables
and statistics is summarized in Table 1. Data subsampling was performed at multistep
time intervals of 1, 60, 180, 300, 600, 900, 1800, and 3600 s. The heat flux measured through
multiple windows is the model’s output variable for prediction. The variable profile is
visualized and presented in the Supplementary Material Figure S1. Since the heat flux
dynamics are repeatable, the previous values of the output variables were used as features
of the model. We split the first 80% of the data into a training set and the remaining 20%
into validation and test data.

Table 1. Statistical summary of the data-set.

Minimum Maximum Mean Standard Dev.

Heat_Flux −3.16 58.50 22.45 8.18

T1 17.00 27.00 21.23 1.86

T2 2.75 18.88 8.84 3.39

T3_1 16.00 48.75 23.36 7.38

T3_2 15.00 27.00 18.80 2.35

T3_3 6.75 23.00 11.84 3.32

T3_4 16.00 26.00 20.42 1.83

Ev_Flex72 0.09 201.60 30.92 41.99

Figure 4 shows the results obtained using a wavelet transform to extract and visualize
features from the measured heat flux. It is obtained using the analytic Morse wavelet with
the symmetry parameter, gamma (γ), equal to 3. The minimum and maximum scales
are determined automatically based on the energy spread of the wavelet in frequency
and time [28]. It shows a more accurate representation of the signal by using L1 normal-
ization. In this three-dimensional scalogram, it can be seen that when the frequency is
very low, the magnitude is maintained at a high level regardless of time. In the case of
time greater than 440,000 s and frequency greater than 10−3 Hz, the magnitude is apt to
be very low, and this specific case mainly happened during the weekend. For the case
of the frequency from 0.001 to 0.1 Hz, the time-dependent characteristics are relatively
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high. It is estimated that peaks in power levels are time-dependent, but are generated at
approximately 3.377 × 10−6 Hz (82.2 h), 1.182 × 10−5 Hz (23.5 h), 2.364 × 10−5 Hz (11.8 h),
3.377× 10−5 Hz (8.2 h), 4.56 × 10−5 Hz (6.1 h), 5.742 × 10−5 Hz (4.8 h), 6.418 × 10−5 Hz
(4.3 h), etc. from the Fourier transform. Note that the frequency information can also be
obtained conceptually by integrating the temporal spectral function g(f,t) with respect
to time. At frequencies higher than 0.2 Hz (5 s), power levels were found to be low and
insignificant. Therefore, the characteristics of the system can be understood, and it is
considered appropriate to adopt the control-monitoring interval of the system as 1 s, 60 s,
180 s, 300 s, etc. through subsampling. Considering the thermal conductivity of glass, the
reason for the large system characteristic time is considered to be due to the effect of the air
layer insulation inside the multi-window room and the thermal mass of concrete slab on
the ceiling and floor.
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3.2. LSTM Neural Networks

The LSTM neural network was used for prediction of heat flux in this study, and the
configuration of the neural network is 60-120-80-1. The input size depends on the network
architecture. We apply 60 time-step lag observations for every function and output, and
train it to predict the heat flux at the next time-step. Performance evaluation was performed
on training, testing, and full sets. To evaluate the short-term predictive ability of the model,
we used 40 prediction horizons.

Figure 5 shows the heat flux measurement and deep learning prediction, along with
lines splitting the training and test data. In Figure 5a–h, we feel that the predictions of
all measuring time intervals are plausible, except for 3600 s. It shows that the shorter the
subsampling time interval, the higher the prediction accuracy. It can be seen that the trained
and test data-sets agree very well with the outputs when the multistep time interval tmsi is
600 s or less.

Figure 6 is the error histogram for all training and test data over several multistep
time intervals. When the tmsi was 1 s, the mean and standard deviation of errors were good
at −0.0641 and 0.6771, respectively. Good symmetry was shown when the subsampling
time interval tmsi was 180 s or less.
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Figure 7 shows the regression graph of heat flux targets and predictions by fitting all
data. When the multistep time interval is 180 s or less, the coefficient of determination R2

for the test data is good at 0.918 or more. When the multistep time interval tmsi is 600 s, the
decision R2 of the entire data is 0.7 or more (Table 2).
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Table 2. Comparison of calculated error metrics between test and all data for various multistep time
intervals.

tmsi
Rank

Correlation Error-Mean Error-Std R-Squared Rank
Correlation Error-Mean Error-Std R-Squared

all all all all test test test test

1 0.99625 −0.06409 0.6771 0.99329 0.99503 −0.0592 0.5158 0.9936

60 0.96881 0.21859 1.8321 0.94761 0.94232 0.1082 1.9528 0.9018

180 0.97433 −0.21160 1.7245 0.95580 0.87300 −0.6096 3.1914 0.7571

300 0.95255 −0.13889 2.2913 0.92355 0.78438 −0.7541 4.1731 0.5557

600 0.94454 −0.08921 2.4118 0.91843 0.76105 −0.1466 4.0779 0.6046

900 0.90634 −0.53380 3.1776 0.86069 0.75344 −1.9784 4.7284 0.5914

1800 0.83488 −0.86957 4.8497 0.69665 0.73051 −2.8145 4.6613 0.4865

3600 0.92751 −0.47679 2.5883 0.88362 0.54675 −2.3841 5.4823 -

The control and monitoring time intervals are critical in real plant operation and
management. To investigate the effect of the sampling rate on predictions, the data are
extracted by subsampling, as was described previously. That is, the data for tmsi at 1800 s are
a subset of that of 60 s because the sample pick-up is performed at multiples of 60. For every
target and prediction of heat flux, several error metrics, such as R2, RMSE, and MAE, were
calculated [7]. In order to understand the effect of the sampling rate on prediction accuracy,
modeling was performed. Various error metric indicators were compared, as shown in
Tables 2 and 3. As expected, when training data are included as a precision measurement
index, the index value is higher. Yet, the sensitivity for comparison and differentiation
between models is lower. Looking closely at the coefficient of determination R2 for the test
data, it can be seen that R2 is higher than 0.757 when the heat flux measurement interval is
less than 180 s, and then drops to less than 0.6 when it is greater than 900 s. Therefore, it can
be seen that it is desirable to maintain the sampling interval at a level of at least 180 s or less,
if possible. Even if the window area is small and the indoor temperature change is relatively
slow compared to the heat flux change, it is desirable to keep it within 1000 s. For other error
metric indicators (MAE, MAPE, MSE, and CVRMSE) shown in Table 3, they increase as the
multistep time increases. From an instrument control point of view, the faster the sampling
rate, the better. It should be noted that the computational cost increases significantly as the
sampling rate increases. Therefore, the exponentially increasing computation time must be
taken into account when performing dynamic simulations, as well as real machine controls.
This shows that the LSTM network structure can be usefully utilized for heat flux modeling.
This allows transient physical characterization of pre-installed building components, which
was difficult to access with conventional steady-state methods.

Table 3. Calculated error metrics for various multistep time intervals (tmsi) in test data.

tmsi MAE MAPE MSE CVRMSE SSE MBE NMBE MRE

1 0.397973 2.079677 0.269544 11.591301 31917.574 −0.059168 0.294933 0.002949

60 1.279373 6.910730 3.823162 43.899478 7531.630 0.108167 0.545243 0.005452

180 2.276929 11.972710 10.540832 71.542785 6809.377 −0.609629 2.960212 0.029602

300 2.444384 13.095413 12.267932 77.330986 7925.084 −0.530171 2.584353 0.025843

600 2.912069 15.002258 17.937658 93.062156 6870.123 −0.754123 3.641018 0.036410

900 3.089057 16.366962 16.561100 90.113342 3063.803 −0.146656 0.719103 0.007191

1800 3.922452 16.595949 26.085100 107.81336 3130.211 −1.978366 −8.815754 0.088157

3600 4.254764 18.244894 29.246843 110.98442 1579.329 −2.814484 11.853427 0.118534
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To forecast or predict future outcomes, modeling was performed over the prediction
horizon. Figure 8 shows a short-term forecast of the future output for a prediction horizon
of 40, i.e., 40 steps, after predicting the test data. In this process, the model uses the results
to make further predictions for the future. In general, for one-step ahead predictions, the
model performs satisfactorily for target predictions, but care must be taken when increasing
the prediction horizons. In Figure 8a–h, we feel that the predictions of all measuring time
intervals are plausible, apparently in spite of very low R2. The forecasts behave similarly or
differently over the sampling interval. Figure 9 shows a typical, right, enlarged view of
Figure 8c for the multistep time interval of 180 s. Intuition and experience are still helpful
in the data-driven engineering. We can presume a little bit because it starts around 21:00 on
Sunday. Heat flux has highly sensitive and repeatable dynamics, so previous values have a
significant impact on future predictions. As the time of the prediction horizon increases,
deviations between measured and predicted values are inevitable in the next step due to an
error accumulation effect similar to extrapolation [29]. Even if we can challenge to predict
the future, the exact details are in the realm of the gods.

We have also used other models, such as multilayer perceptron (MLP) and hybrid
convolutional neural network-long short time memory (CNN-LSTM) models [25,26]. The
results are shown in Table 4. For the hybrid CNN-LSTM model, the performance in-
dex is unexpectedly similar and not the best [13], but the computation time is about 10
times longer [18]. Further investigations are necessary, and details will appear later in
another article.

Table 4. Error metrics comparison for typical models.

(tmsi = 60 s) Rsquared RMSE MAE MAPE MSE CVRMSE SSE MBE NMBE MRE

MLP 0.9203 1.800 1.206 6.52 3.243 40.246 6363.3 −0.061 −0.302 0.003

CNN-LSTM 0.9046 2.027 1.435 7.56 4.110 44.996 8063.8 −0.337 −1.658 0.017

On the other hand, an analysis was performed on a multivariable input single-variable
output system (MISO) considering inputs such as the indoor temperature, outdoor tem-
perature, indirect illuminance, and outlet air temperature of the fan coil units, in addition
to heat flux on the window [30]. Although not optimized, Table 5 shows the compared
results using the same network configuration. For the multivariate models, computing
time increased significantly, and data variance was slightly greater. As can be seen from the
table, the overall error metrics show almost similar results. Detailed results are presented
in the supplementary material. In future studies, it is necessary to seek ways to solve the
limitations of the number of data with various approaches, increase the long-term and
short-term prediction accuracy, improve the accuracy, and reduce the calculation time used
for system control.

Table 5. Performance evaluation of the LSTM model for test data (tmsi = 60 s); LSTM 2 layers.

Rsquared RMSE MAE MAPE MSE CVRMSE SSE MBE NMBE MRE

BiLSTM
(univariate) 0.9018 1.955 1.279 6.91 3.823 43.899 7531.6 0.108 0.545 0.005

BiLSTM
(multivariate) 0.888 2.263 1.642 8.34 5.121 47.921 14,717.6 0.147 0.659 0.007
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4. Conclusions

In this study, the BiLSTM structure was used to predict the heat flux of multiple
windows. A data-set consisting of various physical quantities was measured at intervals
of 1 s, using heat flux sensors and temperature sensors in the test room to obtain time-
series data. As a result of calculating the overall heat transfer coefficient according to
the international standard ISO 9869-1:2014, the U value of the multi-window with anti-
reflection coating was 1.84 W/(m2·K). Features were extracted from the measured data
using a wavelet transform and visualization. To understand the thermal behavior of
multiple windows, we constructed the BiLSTM network configurations, trained and tested
the measured heat flux, and predicted future values. Error metrics were used to evaluate
the performance of the neural network structures over multistep time intervals and to
provide reasonable baseline values for monitoring and control time intervals. The BiLSTM
structure has been shown to be useful for heat flux predictions. It is found that the multistep
time interval for control and monitoring is preferably no more than 240 s. The coefficient of
determination (R2, R-squared) is recommended for evaluating the performance of networks.
Forecasts or future prediction in short time behave similarly or differently over the sampling
interval. Intuition and experience are still helpful in the data-driven engineering. Transient
measurement of building components has been found to be useful for analyzing the
thermal behavior of a building. Multivariate analysis with several input variables was also
performed, and similar results were obtained.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings13030707/s1, Figure S1: Data-set for multivariate LSTM
neural network analysis; Figure S2: Regression evaluation for target and prediction values using eight
inputs (multistep time interval = 60 s, LSTM 2 layers); Figure S3: Variation of target and predicted
heat fluxes for test data-set (multistep time interval = 60 s, LSTM 2 layers).
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