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Abstract: Alkali-activated materials (AAMs) result from the dissolution process and polycondensa-
tion of precursors in high pH solutions. This material is considered alternative cement with similar
properties and lower environmental impact than Portland cement. However, AAMs are subjected
to the same standardization applied to cement-based materials since no formal methods exist to
characterize this material and/or the precursor reactivity. Therefore, this work aims to develop a
method to characterize the reactivity of the main precursors used to produce AAMs. Hence, the
precursors were assessed in two steps after chemical, physical, and mineralogical characterization.
The first step evaluated the crystallinity change of the material after the acid attack by mixing
1 g of each material in 100 mL of 1% HF solution for 6 h at ambient temperature. The crystallinity
change was evaluated by comparing the X-ray diffraction of the materials before and after the acid
attack. The second step involved evaluating the formation of geopolymerization products in the
pastes of studied precursors through FTIR test. The pastes were produced with Na2SiO3 and NaOH
as activators. After 28 days of curing, the pastes were submitted to a FTIR test for structural analy-
sis. This method was tested evaluating the reactivity of traditional precursors for alkali activation
(i.e., silica fume (SF), blast furnace slag (BFS), and metakaolin (MK)), in addition sugarcane bagasse ash
mechanically treated (SCBAM) and sugarcane bagasse ash mechanically and heat treated (SCBAMH)
since SCBA is a promising precursor for alkali activation. Considering the crystallinity change
of precursors (step 01), the formation of geopolymerization products (step 02), and the chemical
composition of precursors (preliminary characterization), it could be concluded that: (i) surface area
is not relevant to materials with small particle size (<23 µm); (ii) amorphous area is only relevant if
the material exhibits the optimal chemical composition; and (iii) the chemical composition is a crucial
parameter for alkali activation. In addition, the potential precursors for alkali activation should have
a significant amorphous halo and a SiO2/Al2O3 ratio of 2 to 5. Also, it could be concluded that SF
and SCBAMH do not exhibit adequate reactivity while BFS, MK, and SCBAM can be classified as
reactive precursors.

Keywords: reactivity; precursors; alkali-activated materials; sugarcane bagasse ash; chemical
composition; surface area; crystallinity

1. Introduction

Civil construction is directly linked with the economy of countries and social growth.
The consumption of buildings material in developing countries is more expressive owing
to the highest demands for civil construction infrastructure. It is estimated that the cement
consumption in the world is about 450 kg per capita, and therefore cement is the most
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demanded building material globally [1]. This consumption tends to increase since it is
estimated that the world population in 2050 should be 9.8 billion, and 68% of this total
should live in urban areas. In 2020, the population increased to 7.8 billion, with nearly 55%
living in urban areas [2].

At the same time, the cement industry exhibits a wide impact on the environment.
It is estimated that the production of clinker, a major cement component, releases into
the atmosphere around 0.84 kg of CO2 for each kilogram of clinker produced [3]. The
cement industry is responsible for 6–7% of CO2 emissions around the world owing to
anthropogenic actions [4] and contributing to 5–8% of greenhouse gases [5–9]. In this
scenario, researchers for alternative types of cement are increasing around the world
and could be divided into two groups: (i) supplementary cementitious materials; and
(ii) alkali-activated materials.

Supplementary cementitious materials (SCM) partially replace the clinker to produce
sustainable cement [10–12]. These materials should be pozzolanic, that is, react with calcium
hydroxide present in the hydration of clinker and form hydrated calcium silicate. The
hydrated calcium silicate is the major product of cement’s hydration, which is responsible
for strength and material durability. Different methods are used to classify a material as
pozzolanic: (i) chemical analyses [13,14]; (ii) indirect pozzolanic activity index [15,16]; and
(iii) direct pozzolanic activity index such as the Chapelle test [17,18] and Luxán test [19].

Alkali-activated materials (AAMs) result from the dissolution and polycondensation
in high pH media of materials rich in silicon, aluminum, and calcium contents [20]. Thus,
residues and by-products from industry or agriculture, which are often landfilled, can be
used as raw materials [21–23]. For this reason, the production of AAM has great potential
to release less CO2 when compared to Portland cement [24]. However, despite the AAMs
are already accepted and applied for industrial production in some countries, there is still a
lack of formal methods to characterize their reactivity. This is a result of the complexity of
the factors involved in the synthesis of AAMs, such as the variety of chemical composition
of the precursors, types of precursors, combinations of activators, the molarity of activators,
and the conditions of curing [25–28].

Regarding the activators, some points are already consolidated in the literature, such
as the optimal molarity ratio to produce AAMs using sodium hydroxide as an activator [29],
and the role of sodium silicate in the reaction. It is known that the greater the increase of
the concentration of NaOH, the faster the precursors dissolve in the medium. However, if
the concentration of OH- is too high (around 12 M), the polycondensation phase might be
delayed in geopolymerization reactions [30,31]. Besides that, according to Palomo et al. [32],
the presence of soluble silica in the silicate contributes to cross-links between the chains
formed in the reactions, which improves the properties of alkaline binders owing to a more
compact structure. However, the higher concentrations of soluble silica tend to delay the
reactions due to a reduction in pH and an increase in the viscosity of the mixture [33].

Regarding the reactivity of the precursors, it is known that three main factors must be
observed: (i) chemical composition; (ii) surface area; and (iii) crystallinity [34]. It is known
that greater reactivity is achieved through the highest silica and alumina contents, high
surface area, and greater amorphous phase content. Previous works already evaluated the
reactivity of some precursors used in geopolymers [35–39]. However, these works focused
on only one type of precursor, and none of them assesses the reactivity of sugarcane bagasse
ash. In addition, these reactivity evaluation methods use NaOH or HF for the chemical
attack to dissolve the vitreous phase of the materials. Nonetheless, as mentioned before,
the vitreous phase is only one of many factors that guarantee the efficient reactivity of
alkaline precursors.

Therefore, this work aims to develop a method that can characterize the reactivity of
the many precursors used for the production of activated alkali materials. The method
created could be used to determine the viability of the precursor for the alkaline activation
through tests of simple execution and interpretation.
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In this method, in addition to evaluating the amorphous phases of the precursors already
exhibits in the literature [35–38], pastes were produced with commonly used precursors (blast
furnace slag, silica fume, and metakaolin) and NaOH and NaOH + Na2SiO3 as activators
for structural analysis. This proposed new step was performed by FTIR test to investigate
the formation of geopolymeric bonds in these pastes. The other novelty of this method is the
evaluation of the reactivity of sugarcane bagasse ash (SBCA). The SBCA has already been
studied as a pozzolanic material due to its chemical composition, high potential for clinker
substitution, and availability [40–47]. However, the research on SCBA as a precursor for
alkaline binders is incipient.

2. Materials and Methods
2.1. Materials

Blast furnace slag was supplied by Supermix company. The silica fume was supplied
by Tecnosil company. The metakaolin was supplied by Metacaulim do Brasil. Sodium
hydroxide (97% purity, Êxodo Científica Fina Indústria e Comércio LTDA) and sodium
silicate (14.98% Na2O, 32.85% SiO2 and 52.17% H2O, Sulfal Química Limitada) were used
as activators. Hydrofluoric acid (37–51% concentration) was used to assess the crystalline
phases in the precursors.

The SCBA was submitted to a beneficiation process to evaluate its influence on reac-
tivity [4,48]. The ashes samples were separated into categories according to the treatment
applied, namely: (i) sugarcane bagasse ash mechanically treated (SCBAM) and (ii) sugar
cane bagasse ash mechanically and heat-treated (SCBAMH). Then, the SCBAM was ground
in a ball mill for 2 h at 90 rpm speed with 90 steel spheres of 30 cm in diameter. The
SCBAMH was calcined in a muffle oven at 700 ◦C for 3 h before grinding.

2.2. Methods

The chemical composition of blast furnace slag (BFS), metakaolin (MK), silica fume
(SF), and sugarcane bagasse ashes (SCBAM and SCBAMH) were determined by X-ray
fluorescence analysis (XRF) using Philips/Panalytical spectrometer and are listed in Table 1.
The particle size distribution in the material was measured through laser granulometry,
using a Cilas 1090 Laser Particle Size Analyzer and the results are shown in Table 1.

Table 1. Chemical composition by XRF (wt%).

BFS SF MK SCBAM SCBAMH

SiO2 32.05 95.94 62.00 32.89 73.53
Al2O3 14.33 0.21 30.55 11.72 10.65
Fe2O3 1.27 0.12 2.51 18.26 6.14
CaO 39.46 0.35 0.04 2.90 2.39
MgO 8.77 0.41 0.25 2.82 1.39
TiO2 0.53 0.01 1.45 5.90 0.95
K2O 0.17 0.4 0.49 2.84 2.22
MnO 0.63 0.02 0.01 0.25 0.13
P2O5 <0.01 <0.01 <0.01 0.93 1.14
ZrO2 - <0.01 0.06 0.04 0.04
SO3 1.43 <0.01 - <0.01 0.02

Na2O 0.96 <0.1 <0.1 <0.1 <0.1
Cr2O3 0.11 <0.01 0.02 0.27 0.20

Sum of pozzolanic oxides 47.65 96.27 95.06 62.87 90.32

Loss on ignition (LOI) 0.18 2.15 2.44 20.68 0.98

SiO2/Al2O3 3.80 776.66 3.45 4.77 11.74

Particle size distribution
DM (µm) 22.92 21.91 22.79 17.27 17.77
D10 (µm) 1.75 5.12 3.08 2.56 2.20
D50 (µm) 15.78 20.52 19.64 13.34 12.73
D90 (µm) 55.10 40.86 46.84 38.26 41.68
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The BFS shows CaO as the major compound owing to its process of production [49].
SF is a by-product of silicon and ferrosilicon alloy production industries and presents silica
in the range of 85–95% [50]. MK exhibits SiO2 and Al2O3 as their major compounds [51].
Regarding the ashes, the SCBAM and SCBAMH are composed mainly of SiO2, Al2O3, and
Fe2O3. The heat treatment leads to an increase in SiO2 and a decrease in Fe2O3 content.
This behavior has been reported before [4,40].

SiO2 and Al2O3 are essential oxides for the alkaline activation of low calcium precur-
sors. At the same time, CaO and SiO2 are the main oxides for alkaline activation of high
calcium precursors. According to previous studies [34,37,52,53]. SiO2/Al2O3 reactivity is
fundamental for the reaction degree, the composition and structure of the N-A-S-H gel
formed, and consequently the strength and durability of the low-calcium binder. Recent
studies have been using this ratio from 2 to 4 to assess the reactivity of precursors [54–59].
In addition, precursors with high calcium content must have a CaO/SiO2 ratio between 0.9
and 1.2 for efficient activation [60–64]. Considering this range, only BFS and MK would be
considered appropriate precursors for alkaline activation.

Regarding the particle size test, all of the samples presented a particle size smaller
than 0.5 mm which significantly increases the performance of AAMs [65]. In addition,
the ashes had the smallest DM among the materials studied, and it could be indicative of
high reactivity since smaller particle size is related to higher surface area inducing higher
reactivity in the material [66–68].

Materials crystal phases and mineralogical composition were analyzed by XRD. The
X-ray diffraction was performed with a Shimadzu XRD-7000 diffractometer operating with
Cu K-alpha radiation (40 kV/30 mA), with 2θ from 5◦ to 100◦ at a step of 2◦/min. The peaks
were identified using the software Match! 3 (Version 3.7.0.124) with the Crystallography
Open Database (COD) revision no. 211633. The XRD patterns of SF, BFS, MK, SCBAM
and SCBAMH are shown in Figure 1. BFS (Figure 1e) and SF (Figure 1c) presented a
wide hump at around 30◦ and 23◦ [69], respectively, which is related to the presence of
amorphous phases. In the BFS (Figure 1e), the hump is also attributed to calcium silicate
oxide; and it can be attributed to the SiO2/Al2O3 ratio up to 2.2 [70]. This amorphous
feature present in BFS and SF is related to the reactivity in those materials. At the same
time, the MK spectra (Figure 1b) exhibit intense peaks of quartz (COD 96-101-1160) that
imply high silica content [51]. In addition, kaolinite (COD 96-900-9235) and muscovite
(COD 96-900-6330) is also observed in MK diffraction. This high content of crystalline
phases could indicate a reduction in its reactivity. The diffraction of SCBAM (Figure 1d)
exhibits an angle between 10◦ and 35◦ (2θ) [41,71]. Those angles are related to silica in
three forms: (i) crystalline quartz; (ii) cristobalite; and (iii) amorphous silica [43,72]. On
the other hand, the amorphous hump could also be related to the presence of carbon
content. The cristobalite phase in SCBAM describes the phase changing of amorphous
silica during uncontrolled burning while the quartz phase is associated with the sand
attached to the SCBA during harvesting [42,73]. Besides that, the amorphous content
of SCBAMH (Figure 1a) decreased [40], while the quartz peak intensity increased with
increasing temperature.

The analysis of the particle morphology of each material was performed using SEM
and is presented in Figure 2. The scanning electron microscopy was performed on a Hitachi
TM3000 scanning electron microscope under a low vacuum with a backscattered electron
detector and electron acceleration voltage of 15 kV.



Buildings 2023, 13, 693 5 of 19
Buildings 2023, 13, x FOR PEER REVIEW 5 of 20 
 

10 20 30 40 50 60 70 80 90

0

2,500

5,000

7,500

10,000

37,500

40,000

42,500

45,000

47,500





−moissanite 3C

(e)

(a)











−quartz

−quartz

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
)

2Theta(°)CuK

SCBAMH
(b)

(c) (d)

10 20 30 40 50 60 70 80 90

0

2,500

5,000

7,500

27,500

30,000

32,500

35,000

−quartz

−kaolinite

− muscovite 

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
)

2Theta(°)CuK

MK

10 20 30 40 50 60 70 80 90

0

500

1,000

1,500

2,000

2,500

3,000

3,500

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
)

2Theta(°)CuK

SF

10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000




















−quartz

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
)

2Theta(°)CuK

SCBAM



10 20 30 40 50 60 70 80 90

0

200

400

600

800

1,000

1,200

1,400

In
te

n
s
it
y
 (

a
rb

it
ra

ry
 u

n
it
)

2Theta(°)CuK

BFS



 

Figure 1. XDR spectrum of (a) SCBAMH, (b) MK, (c) SF, (d) SCBAM, and (e) BFS. 
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Figure 1. XDR spectrum of (a) SCBAMH, (b) MK, (c) SF, (d) SCBAM, and (e) BFS.

The BFS micrograph (Figure 2a) shows that the slag particles are granular and with
sharp edges. BFS also exhibits a diversity of particle size and shape; the smaller particles
cover the surface of the larger ones. In addition, the material has a compact appearance [74].
At the same time, the SF micrograph (Figure 2b) shows that the shape of the silica particle
is spherical and can form clusters when stacked together [51]. In the MK micrograph
(Figure 2c), the particles presented a granular structure; and it is possible to observe that
the smallest particles agglomerate on top of larger ones. The presence of unreacted fiber
is evident in the micrograph of SCBAM (Figure 2d). These fibers represent unburned
material consisting basically of carbon, which does not contribute to the geopolymerization
reactions. In addition, the presence of particles with different shapes can also be noticed.
Spherical particles are mainly associated with Si and O and some other minor components
such as MgO and Al2O3. Compacted and prismatic particles could also be associated with
the presence of Si and O elements [75]. The presence of powdery material over the surface
of the particles is also observed. As expected, there is no presence of fibers in the SCBAMH
micrographs (Figure 2e). This indicates that the thermal activation could eliminate the
unburned residue. The reduction of the particles could also be observed due to mechanical
activation. The remaining particles are compacted and covered with a finer material on
their surface.
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2.2.1. Acid Attack—Method

After preliminary characterizations, 1 g of each material was mixed in 100 mL of 1%
HF solution. The mixture was stirred for 6 h at ambient temperature. After this time,
the mixture was filtered in, and the residue was rinsed with deionized water until the
filter reached a pH value of 7. Subsequently, the retained material was dried for 1 h in an
oven at 100 ◦C, and its mass was recorded. After mass measurement, part of the material
was reserved for further XRD testing to determine changes in the crystalline phases of the
precursors. The other part of the material was subjected to calcination by thermogravimetric
analyzer equipment STA7000 series of the Hitachi brand, with the aluminum crucible, flow
of nitrogen gas at 60 mL/min. The sample was exposed from 25 ◦C to 600 ◦C, with an
increment rate of 40 ◦C/min to verify the chemical constitution of the retained material.

2.2.2. Structural Analysis—Method

Pastes with the studied precursors were produced: the pastes 01 were produced
exclusively with NaOH and precursor/activator ratio = 0.7, and the pastes 02 were pro-
duced with Na2SiO3 (SS) and NaOH (SH) at the SS/SH = 2.5 ratio and the same pre-
cursor/activator ratio as the paste 01. The concentration of NaOH solution used in the
two pastes was 8 mol/L and the molar ratios of the oxides constituting the activators are
shown in Table 2. After 28 days of curing, the pastes were submitted to a FTIR test in the
Shimadzu IR-Prestige 21 equipment for structural analysis.

Table 2. Pastes compositions.

Precursor (g)
Paste 01 Paste 02

H2O/Na2O H2O/Na2O SiO2/Na2O

30 10.44 11.38 1.36

3. Results
3.1. Acid Attack—Results

The analysis of materials’ mineralogical composition before and after the acid bath
(Figure 3) were performed by software Match! 3 with the Crystallography Open Database
(COD) revision no. 211633. According to Figure 3, the vitreous phases of precursors
decrease after the acid bath. This occurs since the acid attacks these phases. The sugarcane
ashes present a larger decrease of vitreous phases, which could indicate that sugarcane
ashes have a high content of vitreous phases. Besides ashes, MK presents a significant
decrease of theses phases. The crystallinity of SF and BFS did not change significantly. This
suggests that in materials that exhibit a higher vitreous phase, the acid attack reduces the
intensity of amorphous halos and maintains the material’s low crystallinity degree, as can
be seen in Figure 3a,b.

With regards to peaks intensity, as can be seen also at Figure 3, the intensity of all
peaks usually decreases after the acid bath. However, SCBAM exhibits higher peaks after
1% HF solution. This could be associated with a reduction of vitreous phases which leads
to an increase in peak intensity. Other precursors presented a reduction of the intensity of
both crystalline phases and vitreous phases.

Regarding the mineralogical composition of precursors, no intense variation was
observed after the acid bath, as expected for BFS and SF. The peaks of diffractograms
were identified using the software Match! 3 with the Crystallography Open Database
(COD) revision no. 211633 or according to literature. The diffractogram of BFS after
acid bath exhibits a peak around 45◦ that was attributed to aluminum calcium fluoride
(COD 96-100-0301) [76]. SF shows a peak around 60◦ assigned to silicon fluoride after an
acid attack [77]. SBCAM and SCBAMH XRD spectrum exhibit quartz (COD 96-901-3322)
as the main crystalline phase before and after an acid attack. MK also exhibits the same
crystalline phase, muscovite (COD 96-900-6330), and quartz, before and after the acid bath.
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According to the thermogravimetric analysis of retained material (Figure 4a–c), SF,
SCBAM, and SCBAMH exhibit similar mass loss of around 4% after an acid bath. This
can be attributed to the chemical composition not changing after a 1% HF solution.
Peaks of quartz exhibited on the diffraction spectrum of these materials which is a stable
structure could explain this behavior [78]. SCBAM shows one stage of mass loss from
25–400 ◦C assigned to the removal of physically and/or chemically adsorbed water or
organic matter [4,79]. SCBAMH also exhibits mass degradation until 450 ◦C related to free
water evaporation and volatilization of organic matter. In addition, it is possible to observe
a weight loss in around 500 ◦C attributed to the crystallization of metastable cristobalite
in SCBAMH. This crystallization occurs at lower temperatures due to the metal impuri-
ties present in the ash [78,80]. SF exhibits a mass loss up to 200 ◦C which is associated
with the release of free water, and others in the range of 400–800◦ that is attributed to the
dehydration of the silanol groups [81].
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Besides that, MK also exhibits a low mass loss value at about 6% (Figure 4d). This also
suggests that the presence of stable crystalline phases in these materials, such as quartz
and kaolinite, reduces the mass loss degree. However, MK shows a higher loss of mass
that SF, SCBAM and SCBAMH as a result of the dihydroxylation of kaolinite that occurs
around 450–600 ◦C [82,83]. At the same time, BFS exhibits weight loss of 12% in the range
of 25–300 ◦C, assigned to the release of physically or chemically adsorbed water. Usually,
the removal of hydroxyl groups depends on their chemical bonding with metal ions. Non-
coordinating hydroxyl groups or physically adsorbed water molecules are removed at a
lower temperature [84].

3.2. Structural Analysis—Results

The structural analysis in pastes was carried out by FTIR test. According to Figure 5, the
SF pastes did not exhibit a significant presence of hydrated products associated with O-H and
OH bonds, which are attributed to bands around 3400 and 1700 cm−1, respectively [85–87]. The
absence of these bands could be associated with inefficient alkali activation of this precursor. In
addition, there is a band at about 1500 cm−1 that is associated with the O-C-O bond and possible
carbonation of activated samples [86,88,89]. The intensity of the characteristic Si-O-T band is
reduced due to activation, and the wavenumber is shifted to lower values due to the silicon
bond change through alkaline solutions addition. The Si-O bond assigned to the band around
800 cm−1 also reduced the intensity through activation [90]. In addition, bands at around
600 and 400 cm−1 associated with the Si-O-Si bond also changed [91,92]. There is a reduction
of the band around 400 cm−1 and an appearance of the band near to 600 cm−1 which could
indicate a structural change in the silicon bond.
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Figure 5. FTIR of SF and SF activated pastes.

FTIR spectrum of both SF activated pastes is quite similar, except for the intensity of
the characteristic band of Si-O-T bond, which is more intense for the paste activated with
sodium silicate and sodium hydroxide. This may be associated with the major presence of
silicon oxide in this paste.
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The presence of hydrated products is related to the presence of O-H bond at around
3400 cm−1 in activated pastes, as observed for MK-pastes (Figure 6). In addition, there is
the presence of OH bond assigned to the band around 1700 cm−1 in these pastes which
is also associated with the formation of hydrated products. The intensity of these bands
could be attributed to the effective activation of the precursor. In addition, there is also
the presence of the Si-O-T bond in activated pastes, and it shifted to lower values in the
precursor. This change in wavenumber is attributed to the introduction of aluminum on
silicon bond for N-A-S-H formation which is a characteristic product of polymerization of
low calcium precursor [93,94].

Buildings 2023, 13, x FOR PEER REVIEW 12 of 20 
 

with the O-C-O bond and possible carbonation of activated samples [86,88,89]. The in-

tensity of the characteristic Si-O-T band is reduced due to activation, and the wave-

number is shifted to lower values due to the silicon bond change through alkaline solu-

tions addition. The Si-O bond assigned to the band around 800 cm−1 also reduced the in-

tensity through activation [90]. In addition, bands at around 600 and 400 cm−1 associated 

with the Si-O-Si bond also changed [91,92]. There is a reduction of the band around 400 

cm−1 and an appearance of the band near to 600 cm−1 which could indicate a structural 

change in the silicon bond.  

4000 3600 3200 2800 2400 2000 1600 1200 800 400

Si−O−Si

Si−O−Si

Si−O−T

C−O

SF + NaOH +Na
2
SiO

3

SF + NaOH

SF

HO

Wavelength(cm
−1

)

O−H

Si−O−Si

 

Figure 5. FTIR of SF and SF activated pastes. 

FTIR spectrum of both SF activated pastes is quite similar, except for the intensity of 

the characteristic band of Si-O-T bond, which is more intense for the paste activated with 

sodium silicate and sodium hydroxide. This may be associated with the major presence 

of silicon oxide in this paste. 

The presence of hydrated products is related to the presence of O-H bond at around 

3400 cm−1 in activated pastes, as observed for MK-pastes (Figure 6). In addition, there is 

the presence of OH bond assigned to the band around 1700 cm−1 in these pastes which is 

also associated with the formation of hydrated products. The intensity of these bands 

could be attributed to the effective activation of the precursor. In addition, there is also 

the presence of the Si-O-T bond in activated pastes, and it shifted to lower values in the 

precursor. This change in wavenumber is attributed to the introduction of aluminum on 

silicon bond for N-A-S-H formation which is a characteristic product of polymerization 

of low calcium precursor [93,94]. 

4000 3600 3200 2800 2400 2000 1600 1200 800 400

Si−O

Si−O−Si

Si−O−T

OH

MK + NaOH + Na
2
SiO

3

MK + NaOH

MK

Wavelength(cm
−1

)

O−H

 

Figure 6. MK and MK activated pastes. Figure 6. MK and MK activated pastes.

The band assigned to the Si-O bond, which is larger in the precursor, is attributed to
800 cm−1 wavenumber and exhibits a reduction of its intensity through alkaline activation.
This change occurs due to the dissolution of precursors and the reorganization of silicon
bonds. In addition, there is a reduction of the band near 400 cm−1 associated with the
Si-O-Si bond which could indicate structural changes in the silicon bond.

FTIR spectrum of MK activated pastes is quite similar, except by intensity and wavenum-
ber of a characteristic band of Si-O-T bond. The band is stronger for sodium hydroxide
activation and exhibits lower values for sodium silicate activated paste. The lower wavenum-
ber value is associated with the aluminum presence in paste structure which favors the
formation of many crosslink bonds on products resulting from geopolymerization.

Figure 7 shows the FTIR spectrum of SCBAM and SCBAMH activated pastes. In the
SCBAMH pastes, only the paste activated with sodium hydroxide exhibits the hydrated
products, however, the bands associated with these products are not significant. In addition,
the bands assigned to C-O-C, Si-O-T, Si-O, and Si-O-Si bonds exhibit similar behavior to
MK. However, at the FTIR spectrum of the pure precursor, it is possible to observe a
band around 700 cm−1 associated with the Al-O bond which decreases the intensity after
activation due to the precursor dissolution [95,96].
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The absorption band for BFS-pastes (Figure 8) also exhibits similar behavior to MK-
pastes. However, the characteristic band assigned to the Si-O-T bond exhibits a typical
shoulder of C-(N)-A-S-H product resulting from high calcium precursor activation. It is
also worth noting that the bands are stronger on BFS activation and there is a band at about
1500 cm−1 associated with O-C-O bonds and possible carbonation of activated samples.
Another difference between the precursors is the absence of the band around 800 cm−1

assigned to the Si-O bond, and the presence of the band around 700 cm−1 associated with
the Al-O bond in the precursor which becomes lower in the alkaline activation. This change
occurs as a result of precursor dissolution and reorganization from aluminum bonds.
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SCBAM-pastes (Figure 9) exhibits the bands assigned to hydrated products for both
types of activators. The bands assigned to C-O-C, Si-O-T, Si-O, and Si-O-Si bonds exhibit
similar behavior to MK. However, the characteristic band around 800 cm−1 associated with
the Si-O bond exhibits an increase of intensity through activation, which is only observed
for SCBAM-pastes. This band could be assigned to the formation of N-A-S-H in the paste
samples. The presence of the band related to hydrated products could indicate that alkaline
activation is effective for SCBAM.
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Table 3 summarizes the wavenumber of the most important bands analyzed in the
present work. According to the FTIR spectra (Figures 5–9), a change in wavenumber may
have occurred due to a structural change in precursors due to alkaline activation. However,
there is no significant change for SCBAMH and SF, which indicates that alkaline activation
was not effective for these precursors.

Table 3. Summary of bands in the FTIR spectrum.

Wavenumber (cm−1) Function Band Reference

3400 O-H [85–87]
1700 OH [85–87]
1500 C-O [86,88,89]
1000 Si-O-T (T = Si or Al) [93,94]
900 Si-O-T (T = Si or Al) [93,94]
800 Al-O and Si-O [90]
600 Al-O and Si-O [95,96]
500 Si-O-Al and Si-O-Si [91,92]

Although SF shows a higher vitreous phase and smaller particle size, the alkaline
activation was not effective due to the absence of aluminum in its chemical composition.
The aluminum presence is essential for N-A-S-H formation on low calcium precursors.
SCBAMH also exhibits lower aluminum content (SiO2/Al2O3 = 11.74), and higher crys-
tallinity which also impairs its activation. Whereas, SCBAM shows chemical composition
(SiO2/Al2O3 = 4.77), significant amorphous halo, and particle size (DM 17.27 µm) suit-
able for alkali activation, despite its high loss on ignition. Therefore, SCBAM is a viable
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precursor for effective alkali activation. MK and BFS are already classic precursors for
alkali activation and meet all requirements. According to stages proposed, two parame-
ters could be attributed to effective alkali-activation: (i) significant amorphous halo and
(ii) SiO2/Al2O3 proportion from 2 to 5.

4. Discussion

Lancellotti et al. [38] studied the reactivity of bottom ash. After a chemical attack
with 100 mL of 8 mol/L NaOH solution and stirred constantly for 5 h in a flask bathed
at 80 ◦C, it concluded that the ashes were not adequate to obtain a geopolymer since its
Si/Al mass ratio were below the value of 3. Kuenzel et al. [36] studied the reactivity of
metakaolin through 1% (mass) HF solution for 20 h at ambient temperature and concluded
that HF removes the amorphous phase in MK associated with the intensity background
between 20 and 30 degrees 2θ, with the remaining sample consisting of crystalline phases
present as impurities and the Si/Al mass ratio after acid attacks is equal to 2.85. Fernández-
Jimenez et al. [37] studied the reactivity of fly ashes through 100 mL of 1% HF stirred
for 6 h at ambient temperature and concluded that when the ashes are treated with 1%
HF, most of the halo associated with its glassy constituent disappears. At the same time,
these diffractograms evidence an increase in the intensity of the peaks associated with the
crystalline phases. The precursors evaluated in this studied (SF, MK, BFS, SCBAM and
SCBAMH) exhibits the same behavior of work of Fernández-Jimenez et al. [37].

Regarding the effect of reactivity of precursors in the mechanical and durability
properties of the resulting products, previous studies concluded that the reactivity of
precursors is an important parameter to a good performance of geopolymer. The higher
reactivity of precursors led to a higher geopolymerization rate resulting in development of
a dense and strong matrix explaining the high mechanical and durability performances [97].
At the same time, the surface area was not a fundamental parameter for determining the
reactivity of the precursors in this work, since all precursors have reduced particle size.
However, previous works [22,98–100] concluded that the finer particles of the precursors
exhibit a faster geopolymerization and result in more formation of activation products,
when there is a higher difference in particle size between the precursors.

5. Conclusions

Non-complex execution and easy-interpretation tests were proposed to help in the
preliminary characterization of the reactivity of SCBA, BFS, MK, and SF as precursors for
alkali-activated materials. According to these tests, the following conclusions can be drawn:

• The surface area is not relevant when the materials exhibit particles size medium
smaller than 23 µm.

• The amorphous area is only relevant if the material exhibits the optimal
chemical composition.

• The chemical composition is a crucial parameter of alkali activation.
• Potential precursors for effective alkali activation should exhibit significant amorphous

halo and SiO2/Al2O3 proportion from 2 to 5.
• Silica fume is not viable as a single-precursor for alkali-activation due to the absence

of aluminum on its chemical composition.
• Sugarcane bagasse ash mechanically and heat-treated is not a suitable precursor for

alkali-activation due to its crystalline character and lower aluminum content.
• Sugarcane bagasse ash mechanically-treated, blast furnace slag, and metakaolin are

viable precursors for alkali-activation.

Future research on determining the maximum acceptable crystallinity for viable pre-
cursors is highly recommended.
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