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Abstract: This article presents a Lyapunov precise integral-based analysis method for seismic struc-
tures with added viscous fluid dampers. This study uses the full stress algorithm as the optimization
method, considering the mean square of interstory drifts as the optimization objective, the position of
the damper as the optimization object, and the random vibration analysis method as the calculation
method to optimize seismic frame structures with viscous dampers. A precise integral solution is
derived for the Lyapunov equation based on the general expression of the Lyapunov differential
equation for the damping system under the excitation of a nonstationary stochastic process using two
types of modulation functions: g(t) = 1 and g(t) =

√
t. Finally, the optimal damping arrangement is

achieved using this method with a six-layer non-eccentric planar frame. In addition, the optimization
results of this study are verified with those in the literature using time-history analysis, which verifies
the feasibility and effectiveness of the proposed method. This study provides a method for the opti-
mal configuration of dampers for seismic response of structures, which is beneficial for engineering
applications and the protection of seismic structures.

Keywords: energy dissipation optimization; Lyapunov equation; Kanai–Tajimi spectrum; full stress;
nonstationary process

1. Introduction

Since the 20th century, energy dissipation and seismic reduction technologies have
played an important role in passive seismic reduction control. In recent years, earthquake
disasters have become frequent, and traditional seismic technology can hardly satisfy
people’s requirements for structural safety and comfort. In this context, damping and
isolation technologies have become the primary option for many important buildings to
reduce seismic damage. Many studies have been conducted in the field of seismic design,
particularly in the placement of dampers. These have focused on determining an efficient
and effective method of damper arrangement based on numerous methods for optimizing
damper schemes proposed in previous studies.

Energy dissipation technology is commonly used to reduce earthquake damage to
building structures [1]. When energy dissipation design is optimized, a better dissipa-
tion effect can be achieved by installing a few energy dissipaters at key positions in
structures [2–7]. The optimization of viscous fluid dampers in the design of energy dissipa-
tion is based on the interstory drifts, story shear, and transfer function of the response as
the optimization targets; and the structural member dimensions, number of viscous fluid
dampers, parameters, and positions as the optimization objects. Subsequently, optimiza-
tion is performed using control algorithms, such as sequential search analysis (SSA), the
gradient method, and the genetic algorithm.
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Zhang [1] proposed the use of SSA to optimize the location and number of viscoelastic
dampers. SSA takes the mean square value of the structural interstory displacement
obtained from the solution of random vibration theory as the optimization target, analyzes
the original structure without additional dampers to calculate the mean square value of
interstory displacement, arranges the first damper on the floor with the largest mean square
value of interstory displacement, modifies the structural stiffness matrix and damping
matrix after the additional dampers, and then completes the arrangement of all dampers
sequentially through iteration. This method was explored in subsequent studies [2–7].
However, SSA probes potential positions for the dampers of a structure; therefore, the
search time is proportional to the minimum number of dampers, and the number of
dampers required to achieve the best damping effect is affected by the range of the dampers.
Therefore, for the optimal placement of a damper in a three-dimensional structure, the
search time increases rapidly with the number of layers and frames of the structure, and it
easily falls into the dilemma of local optimal solutions.

In addition to SSA, genetic algorithms are often used for damper optimization. Genetic
algorithms are employed to encode each possible solution of a problem as a separate
individual, i.e., the “chromosome” of the genetic problem. The first step of the computation
requires that we evaluate the randomly generated individuals—the initial solution—against
the selected optimization objective and obtain a fitness value from the evaluation. The
second step is to use this fitness value as the basis for selecting a chromosome that can be
used to create the next generation by following the law of superiority and inferiority. Finally,
the chromosomes selected in the second step are randomly combined using crossover and
variation operators to obtain new individuals having a better performance than the previous
generation [8]. Furuya [9] proposed the optimization of damper parameters, type, and
damper position using a genetic algorithm by determining the objective function as a
weighted value of the pair of the maximum interstory displacement and acceleration.
The interstory displacement and acceleration were obtained by analyzing the structure
using finite element software. In the same year, Xu proposed a mathematical model
that can optimize the parameters of frictional energy dissipation bracing under seismic
excitation using genetic algorithms to achieve the desired seismic reduction with minimal
energy dissipation bracing stiffness [10]. Zhou simplified the mean square value of the
interlayer displacement by introducing a real code genetic algorithm with a robust critical
excitation method to minimize the total additional damping by optimizing the damper
distribution [11]. Although the genetic algorithm can achieve the global optimal control
effect, its optimization process is more complicated and the computation time is longer.

Whether SSA, the genetic algorithm, or the full stress algorithm in this study is used,
the structural response must still be computed and analyzed. Therefore, in addition to
the iterative process, most optimization calculations are performed using time-history and
response-spectrum analyses. The time-history method has a relatively simple calculation
process, but it is computationally intensive and extremely dependent on the selected span
of time histories. Studies have shown that the responses obtained from the time-history
analysis of several seismic curves recorded at several stations that are not far apart under
the same earthquake may differ several times [12,13]; furthermore, it is not a good option
for optimizing the viscous damper scheme to use a fixed seismic wave for the response
calculation. Although the response-spectrum method is an approximate method based on
random vibration theory [14], it cannot fully consider the probabilistic statistical properties
of earthquake occurrence. Therefore, this study uses a modulated stochastic process as the
excitation load.

Several researchers have created optimal seismic designs of passive vibration control
devices by applying the random vibration theory. The virtual excitation method for the
problem of random vibration was first proposed by Lin, who transformed the analysis of
random vibrations into a deterministic dynamics problem of the structure by assuming
virtual excitation [15]. Subsequently, Lin extensively studied the random response problem
under the excitation of a nonsmooth random process. Because the virtual excitation
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method requires solving the response power spectrum of the structure at a series of discrete
frequency points, the response power spectrum density of the structure is integrated over
the entire frequency domain to obtain the variance of the response [16]. This process
requires numerous dynamic response calculations, and only approximate solutions can be
obtained. To address this, Zhong proposed a fine-integration algorithm that can efficiently
and accurately calculate the dynamic response of a linear structure under a specific load
excitation [17,18]. Accordingly, numerous studies have been conducted. Wu and Li deduced
equations of motion for single-story eccentric structures with different forms of eccentricity
under different viscous damper distribution schemes. They solved the variance matrix of
the response using the Lyapunov equation in the random vibration and optimal control
theories, built the target function according to the variances of translation and torsional
displacement in the matrix, solved the minimum value to determine the optimal eccentric
position of viscous dampers, and numerically calculated typical examples using this theory
to verify the importance of the method to aseismic design [19]. Gomez used Lyapunov
differential equations for the optimal design of nonlinear energy sink devices in structures
under nonsmooth stochastic excitation [20]. Xu studied a multiobjective optimization
problem for nonlinear structures subject to stochastic dynamic excitation [21–23]. In other
scenarios, more advanced methodologies [24] have been adopted.

In this paper, a new optimization scheme is proposed for arranging dampers in a
vibration-damping structure using viscous dampers. The scheme is based on the equations
of motion, considering the nonsmooth stochastic excitation process, and achieves a full
stress design with the mean square value of interstory displacement as the optimization
objective through iteration. In this process, the state-space equation of the damping
structure was first established based on the equation of motion, in which the damping
matrix considered the effect of additional damping of the damper, and the excitation
load was the random vibration load reduced from the state equation to the Lyapunov
differential equation with an unknown quantity as the mean square value of the interstory
displacement. Finally, the equation was solved using the fine-integration method to obtain
the mean square value of the interstory displacement. With the determined total additional
damping case, the initial case was iterated using the full stress algorithm, such that the
mean square value of the displacement between the layers was smoothed, and the damping
distribution at this time was very effective in controlling the story drift of the added
damping structure. Finally, taking the six-layer shear frame used by Takewaki [25] as a
numerical example, the damping optimization results were first obtained by redistributing
the damping using the method proposed in this study with the modulated Kanai–Tajimi
spectrum as the excitation. The optimization results of this study were validated using
time-history analysis.

2. Lyapunov Equation of White Noise for Dissipation Structures
2.1. State-Space Expression for the Equations of Motion of the Damping Structure

In earthquake engineering applications, the equation of motion for linear multiple-
degree-of-freedom (MDOF) structures with viscous fluid dampers is set as follows [26]:

M
..
x(t) + [C + Cd]

.
x(t) + Kx(t) = F(t)

F(t) = −M · e · ag(t)
x(0) = x0;

.
x(0) =

.
x0

(1)

where x is the displacement component in global coordinates, M is the mass matrix, C is
the damping matrix, Cd is the additional damping vector, K is the elastic stiffness matrix of
the structures, e is the excitation matrix with an input of 0 or 1, ag(t) is the ground motion
acceleration vector, and the dot on top represents the derivative with respect to time.

The optimization of viscous dampers involves optimizing the additional damping
vector Cd The optimized arrangement of dampers exists in two cases: planar and vertical
optimized arrangements, and the optimization process requires the use of the floor response
of the structure. Therefore, a conversion relationship should be established between the
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structural floor response and the response of each damper. Equation (2) can then be used to
convert the damping of individual dampers to additional damping in global coordinates.

Because the additional dampers may be arranged anywhere in the plane or three-
dimensional frame, a transformation matrix is required to represent the additional damping
in global coordinates:

Cd(cd) = TT ·


cd,1 0
0 cd,2

0 0
0 0

0 0
0 0

. . . 0
0 cd,nd

 · T (2)

In Equation (2), Cd ,i denotes the equivalent linear damping of each damper, nd is the
total number of dampers, and T is the transformation matrix that converts the displacement
from the original global coordinates to the local coordinates of the additional dampers; T
includes both planar and vertical transformations.

For the structural plane shown in Figure 1, let x and y be the global coordinates of
the plane, and let Cd ,i be the damper number. To achieve the interconversion between the
overall displacement of the plane and the displacement of each damper, we use the plane
conversion matrix Ts (Equation (3)).

Ts =


0 1
0 1

−a
a

1 0
1 0

b
−b

 (3)
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The rows Ts in the matrix represent the positions of the dampers numbered
Cd ,1 ∼ Cd ,4, and the columns represent the displacements in the x, y, and θ directions, and
three DOFs in the damper arrangement. For example, if a unit displacement is applied
in the x-direction, the dampers numbered Cd ,1 and Cd ,2 will not produce a displacement,
and the dampers numbered Cd,3 and Cd,4 will produce a unit displacement. Thus, the first

column of the transformation matrix is
[
0 0 1 1

]T. The second and third columns of

the transformation matrix are
[
1 1 0 0

]T and
[
−a a b −b

]T, respectively.
For the vertical arrangement of the dampers, the conversion of the overall structural

displacement to the horizontal displacement under individual dampers can be represented
by the vertical conversion matrix Tp.

Tp =


1
−1 1

0

. . .
0

. . .
−1 1

 (4)
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Column i in matrix Tp is the unit displacement applied at layer i of the structure,
resulting in the displacement of the dampers in each layer.

The conversion matrix T of the multistory structure must consider both the planar Ts
and vertical Tp conversion matrices. First, the overall displacement of the structural plane
must be converted into the displacement of the in-plane dampers by the plane conversion
matrix Ts, followed by the conversion of the displacement of the structure to the horizontal
displacement of the individual dampers by the vertical conversion matrix Tp. Therefore,
the elements in the plane conversion matrix Ts are multiplied by the vertical conversion
matrix Tp to obtain the chunking matrix T(ki, kj), which constitutes the conversion matrix
T of the multilayer structure.

Therefore, the displacement d(t) of the local coordinates at the damper position can be
calculated using Equation (5) [26].

d(t) = Tx(t) (5)

Equation (1) is a second-order differential equation that describes the equations of
motion in terms of a system of first-order differential equations composed of state variables
by introducing the concepts of state vectors and spaces.

The state of the structure at any time can be represented by the velocity and displace-
ment at that time. Thus, the state variable Z(t) is introduced, and Equation (1) is expressed
in the form of Equation (6):

.
Z(t) = AZ(t) + Hag(t)

Z(0) = Z0; d(t) = DZ(t)
(6)

where Z(t) =
{

x(t) v(t)
}T , and the matrixes A, H, and D are calculated using

A =

[
0 I

−M−1K −M−1[C + Cd(cd)]

]
H =

[
0
−e

]
D =

[
T 0

] (7)

2.2. Lyapunov’s Equation in White Noise

Currently, the methods for solving the dynamic response of structures under random
vibrations include time-domain analysis and frequency-domain analysis, in which the
correlation function of the excitation is integrated in the time domain or the spectral density
function of the excitation is integrated in the frequency domain to obtain the correlation
function of the response. The time difference of the random process is τ, and τ = 0
is the variance of the response under the smooth process. The Lyapunov equation can
be used to solve the variance of the response of the vibration system easily and quickly,
without integrating the correlation function or power spectral density. Compared with
deterministic seismic response analysis, the advantage of using the Lyapunov equation
for seismic response analysis of seismic control structures is that the seismic excitation is
a stochastic process, and the optimization scheme is not affected by individual seismic
waves.

For the ideal white noise excitation, because its mean square value is infinite (Figure 2),
which is physically impossible, and its probability density function can hardly be discussed,
the white noise can be considered as the limiting case of colored noise. While Y(t) is
assumed to be the stationary colored noise, its correlation function and power spectral
density are defined in Equation (8):

RYY(τ) = πS0exp(−ρ|τ|)
SYY(ω) = S0ρ2

ρ2+ω2
(8)
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As shown in Figure 2, during |ρ| → ∞ , the colored noise Y(t) becomes the ideal white
noise, which is represented by W(t). The correlation function and power spectral density (9)
of W(t) are obtained by calculating the limits using Equation (8):

RWW(τ) = 2πS0δ(τ)
SWW(ω) = S0

(9)

If the excitation acting on the MDOF system is the white noise vector W(t)W(t), its
mean value is zero, and the variance matrix is represented by Equation (10).

E[W(t1)WT(t2)] = 2πS0δ(t2 − t1) (10)

where S0 is the power spectrum matrix of the excitation; the diagonal elements si,j in the
matrix are the self-power spectral densities of each white noise; and the nondiagonal
elements are the mutual power spectral densities.

The state-space equations structured according to Equations (6) and (10) can be ex-
pressed in the form of Equation (11) with the same variable A as in Equation (7) and the
variable G =

[
0 I

]T .
.
Z = AZ + GW (11)

Solving Equation (11), and when GW is zero, the general solution of the chi-square
differential equation in Equation (11) takes the form of Equation (12).

Φ(t, t0) = Φ(t− t0) = eA(t−t0) (12)

Subsequently, the full solution of Equation (11) when H is not zero is

Z(t) = Φ(t, t0)Z0 +
∫ t

t0

Φ(t, s)f (s)ds (13)

Z0 in Equation (12) is the initial condition at t = t0. Often, the initial condition is
independent of the excitation; therefore, the average value of the response can be obtained
based on Equation (13) as in Equation (14):

E[Z(t)] = Φ(t, t0)E[Z0] +
∫ t

t0

Φ(t, s)E[f (s)]ds (14)

The correlation function matrix of the response is calculated using Equation (15).

RZZ(t1, t2) = E[Z(t1)ZT(t2)]

= Φ(t1, t0)RZZ(t0, t0)Φ
T(t2, t0) +

∫ t1
t0

ds1
∫ t2

t0
Φ(t1, s1)E[f (s1)f T(s2)Φ

T(t2, s2)ds2

= Φ(t1, t0)RZZ(t0, t0)Φ
T(t2, t0)

+
∫ t1

t0
ds1
∫ t2

t0
Φ(t1, s1)G(s1)E[W(s1)WT(s2)]GT(s2)Φ

T(t2, s2)ds2

(15)
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where W(t) is the smooth white noise, its intensity function is D, and its autocorrelation
function is calculated using Equation (16).

RWW(s1, s2) = E[W(s1)WT(s2)] = 2πS0δ(s2 − s1) = Dδ(s2 − s1) (16)

Subsequently, Equation (15) becomes

RZZ(t1, t2) = Φ(t1, t0)RZZ(t0, t0)Φ
T(t2, t0)

+
∫ t1

t0
ds1
∫ t2

t0
Φ(t1, s1)G(s1)Dδ(s2 − s1)GT(s2)Φ

T(t2, s2)ds2
(17)

In Equation (17), by making t1 = t2 = t, the variance matrix of the response can be
obtained using

Q = E[Z(t)ZT(t)] = Φ(t, t0)RZZ(t0, t0)Φ
T(t, t0)

+
∫ t

t0
Φ(t, s)G(s)DGT(s)ΦT(t, s)ds

(18)

Taking the derivative with respect to t, it becomes

.
Q = E[

.
Z(t)ZT(t)] + E[Z(t)

.
Z

T
(t)]

=
.

Φ(t, t0)RZZ(t0, t0)Φ
T(t, t0) + Φ(t, t0)RZZ(t0, t0)

.
Φ

T
(t, t0)

+
∫ t

t0

.
Φ(t, s)G(s)DGT(s)ΦT(t, s)ds +

∫ t
t0

Φ(t, s)G(s)DGT(s)
.

Φ
T
(t, s)ds

+Φ(t, t)G(t)DGT(t)ΦT(t, t)

(19)

Because
.

Φ(t, t0) = AΦ(t, t0), Φ(t, t) = I, the Lyapunov differential equation satisfied
by the variance matrix Q is

.
Q =

.
Φ(t, t0)RZZ(t0, t0)Φ

T(t, t0) +
∫ t

t0

.
Φ(t, s)G(s)DGT(s)ΦT(t, s)ds

+Φ(t, t0)RZZ(t0, t0)
.

Φ
T
(t, t0) +

∫ t
t0

Φ(t, s)G(s)DGT(s)
.

Φ
T
(t, s)ds

+Φ(t, t)G(t)DGT(t)ΦT(t, t)
= AQ + QAT + GDGT

(20)

Equation (20) is called the Lyapunov equation. It reflects the nature of the variance
EZ(t) of the response Z. When the input excitation is white noise and the structural response
is smooth, the variance is not affected by time. Therefore, the equation can be solved under
white noise excitation. In this study, we primarily consider the computational analysis
under nonsmooth excitation and use the fine-integration method to solve it based on
Equation (20) for further derivation.

3. Stochastic Optimization Analysis of Dissipation Structures
3.1. Optimization Method for Dissipation Structures Based on Random Response

The actual ground motion is a nonstationary process. The stationary random process
excitation can be preliminarily analyzed for ground motions with long durations of strong
components.

In 1993, Inaudi first designed a passive vibration control of plane frame structures
using the Lyapunov equation [27]. During the design process, a friction damper was used to
optimize the damper, with the maximum mean square value of the interstory displacement
as the goal. Because the Lyapunov equation adopts white noise excitation, the bandwidth
of the actual ground motion input affected the optimization of dampers. For the same total
additional damping, the positions at which dampers are optimized under narrowband and
broadband excitations are different [28]. Thus, it is not appropriate to take the white noise
process as the approximate value of ground motion, but this scenario will not occur in the
optimization design based on the Lyapunov equation and time history. However, in some
cases, filtered white noise can also be used as an input for structures. At this point, matrices
A, H, and D in Equation (7) must be further modified.
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The steady-state response variance of the controlled interstory displacement can be
obtained using the following equation [26]:

P(t) = DQ(t)DT (21)

The elements on the diagonal of matrix P in Equation (21) are the mean square values
of the interstory displacement. In Equation (21), Q(t) is obtained by solving differential
Equation (20).

When the distribution of dampers is appropriate, the total damping required to satisfy
the damping requirements is smaller. Therefore, this section aims to determine the best
damping distribution scheme under white noise excitation to minimize the total damping
required for the structure while ensuring that the mean square value of the interstory
displacement of all floors of the frame is not larger than the given allowable value.

3.2. FSD Optimization

The FSD algorithm [29] is widely used to optimize the design of structures under dead
loads. FSD means that the stress in the member reaches the allowable stress of the material
such that the carrying capacity of the material is fully utilized. Generally, FSD is solved
using iterative methods. First, the member whose section area is known is analyzed to
obtain the maximum internal force. Second, the new section area of the member is solved
according to the design specification and allowable stress. The full stress of the member
under the most unfavorable load can be obtained using the above iterative process.

Similarly, to fully understand the role of dampers, we introduce the concept of the
full stress of members to the optimization of damping and its distribution to realize the
“full stress” of the mean square value of the interstory displacement of structures. During
the iterative process, the Lyapunov equation is used to calculate the mean square value of
the interstory displacement of the given additional damping structure, and the recursive
relation is used to redesign the additional damping of the structure. The above steps are
repeated until the full stress of the mean square value of the displacement is reached, as
shown in Equations (22) and (23):

c(k+1)
di = c(k)di

(
pi(k)i

) 1
q (22)

pii =
pi,i

pall
i,i

(23)

where cdi
(k) is the ith component of the damping vector in the kth iteration, q is the con-

vergence parameter, pii(k) is the ith component of the performance index (with cd
(k) as the

damping vector) in the ith iteration (see Equation (2) for the definition), pi,I is the component
in the ith column and ith row of the matrix P, and pall

i,i is the prescribed limiting value. cdi
(k)

and pii(k) are values at the same position, namely the same story. Meanwhile, the selection
of the convergence parameter q will affect the calculation efficiency of this method. When
the q value is large, this method is more stable and converges more easily, but at a slow rate.
For linear problems, the q value can be 0.5; for nonlinear problems, a q value of 5 is more
appropriate [30].

3.3. Kanai–Tajimi Spectrum Excitation

The Kanai–Tajimi model, whose frequency is distributed unevenly, can better reflect
the frequency characteristics of actual ground motion [31]. The Kanai–Tajimi model as-
sumes that the power spectral density function of a bedrock earthquake is S0, which is ideal
white noise with a mean value of zero. The upper soil layer of the bedrock is simplified as
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a linear single degree of freedom (SDOF), which filters the bedrock white noise. The power
spectral density function of this noise model can be represented by Equation (24) [32].

S(ω) =
ω4

g + 4ξ2
gω2

gω2(
ω2 −ω2

g

)2
+ 4ξ2

gω2
gω2

S0, ω ∈ (−∞,+∞) (24)

From [33], the relationship between spectral intensity S0 and seismic intensity I can be
expressed as in Equation (25).

S0 =
2ξg

(1 + 4ξ2
g)πωg

(0.4× 2I−6) (25)

In Equation (25), S0 is the power spectral density of the bedrock white noise, which
reflects the intensity of seismic excitation; ωg and ξg are the characteristic frequency and
characteristic damping ratio, respectively, of the site, which are related to the hardness of
the site. The suggested values of ωg and ξg are listed in Table 1 [34].

Table 1. Parameters of the Kanai–Tajimi spectrum.

Site Type Hard Soil Moderately Hard Soil Soft Soil

ωg 16.9 16.5 10.9
ξg 0.94 0.8 0.96

The Kanai–Tajimi spectrum, which considers that the spectrum characteristics of
ground motion are affected by the characteristics of the top soil layer and are close to those
of actual ground motion, is currently widely used. The Kanai–Tajimi spectrum reflects
the overall changing trend of the power spectral density function of ground motion [32].
When ω is zero, the power spectral density function S(ω) approaches the power spectral
density of white noise; however, the actual power spectrum should approach zero in this
case. Therefore, this model overestimates the low-frequency energy of the ground motion.
Thus, the results of the Kanai–Tajimi spectrum analysis of low-frequency structures are
unreasonable, and the model is only suitable for random seismic response analysis of
structures with middle and high natural frequencies.

The power spectral density function of the Kanai–Tajimi spectrum is essentially a filter
process of white noise, in which the bedrock layer covered by it is simplified to a linear
SDOF filter. The filtration equation is{

ag(t) =
..
ug(t

)
+

..
ur(t

)
..
ug + 2ξgωg

.
ug + ω2

gug = − ..
ur(t

) (26)

In Equation (26), ag(t
)

is the absolute acceleration of the ground,
..
ug(t

)
is the relative

acceleration with respect to the bedrock, and
..
ur(t

)
is the acceleration of the bedrock, which

is assumed to be a zero-mean white noise process.

3.4. Lyapunov Differential Equation for Dissipation Structures under Nonstationary Excitation

Equation (20) is the Lyapunov equation under white noise excitation. Let
f (t) = g(t)W(t), f (t) be the uniform modulation evolving random excitation, and g(t)

be the slow-varying uniform modulation function with smooth Gaussian white noise.
Equation (27) is the Lyapunov differential equation that is satisfied by the variance

matrix Q of the structural response, and the variance matrix of the response can be obtained
by solving this differential equation.

.
Q = AQ + QAT + GDGT (27)
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To solve this equation, we first set the constant term GDGT of the Lyapunov differential
equation to zero, and then the chi-square Lyapunov differential equation can be obtained.

.
Q = AQ + QAT (28)

Taking the derivative of both sides with respect to t, Qs(t) is the particular solution
of Equation (27). Let J(s) = G(s)DG(s); therefore, when the initial value is not zero, the
solution of Equation (27) is

Q(t) = Qh(t) + Qs(t) = Φ(t)Q0Φ(t)T +
∫ t

t0

Φ(t− z)J(z)Φ(t− z)Tdz (29)

When considering only the scenario in which Q0 = 0 and when the initial value is not
zero, the equation can be solved separately and the superposition principle can be applied.
As the initial value is zero,

Q(t) =
∫ t

0
Φ(t− z)J(z)Φ(t− z)Tdz (30)

Because Φ(t) = eA(t), Φ(t1 + t2) = Φ(t1)Φ(t2); therefore, at t + τ,

Q(t + τ) =
∫ t

0 Φ(t + τ − z)J(z)Φ(t + τ − z)Tdz +
∫ t+τ

t Φ(t + τ − z)J(z)Φ(t + τ − z)Tdz
= Φ(τ)

∫ t
0 Φ(t− z)J(z)Φ(t− z)TdzΦ(τ)T

+
∫ τ

0 Φ(τ − z′)J(t + z′)Φ(τ − z′)Tdz′

= Φ(τ)Q(t)Φ(τ)T +
∫ τ

0 Φ(τ − z′)J(t + z′)Φ(τ − z′)Tdz′

(31)

Similarly, the equation for the double step at 2t can be expressed as follows:

Q(2t) = Φ(t)Q(t)Φ(t)T +
∫ t

0
Φ(t− z′)J(t + z′)Φ(t− z′)Tdz′ (32)

When deriving the specific equation for time variance, the modulation functions
g(t) = 1 and g(t) =

√
t should be considered. Assuming t < 0, g(t) = 0, the variance of the

response at t = τ, 2τ, 3τ · · · .
(1) The modulation function is a constant 1.

When g(t) = 1, G(t) and J(t) are constants, assuming J(t) = J0, when tk = kτ, Equation (30)
is transformed into

Q(0)(tk) =
∫ tk

0
Φ(tk − z)J0Φ(tk − z)Tdz (33)

Subsequently, when tk+1 = kτ + τ,

Q(0)(tk+1) =
∫ tk+τ

0 Φ(tk + τ − z)J0Φ(tk + τ − z)Tdz
=
∫ tk

0 Φ(tk + τ − z)J0Φ(tk + τ − z)Tdz +
∫ tk+τ

tk
Φ(tk + τ − z)J0Φ(tk + τ − z)Tdz

= Φ(τ)
∫ tk

0 Φ(tk − z)J0Φ(tk − z)TdzΦ(τ)T +
∫ τ

0 Φ(τ − z′)J0Φ(τ − z′)
T

dz′

= Φ(τ)Q(0)(tk)Φ(τ)T + Q(0)(τ)

(34)

Similarly, the equation for the double step at 2t is as follows:

Q(0)(2tk) = Φ(tk)Q(0)(tk)Φ(tk)
T + Q(0)(tk) (35)

(2) The modulation function is time-dependent.

When g(t) =
√

t, J(t) = J0t, then at tk, Equation (30) is transformed into

Q(1)(tk) =
∫ tk

0
Φ(tk − z)J0sΦ(tk − z)Tdz (36)
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Subsequently, the integration equation for the equal step at tk + τ is

Q(1)(tk+1) =
∫ tk+τ

0 Φ(tk + τ − z)J0sΦ(tk + τ − z)Tdz
= Φ(τ)Q(1)(tk)Φ(τ)T +

∫ τ
0 Φ(τ − z′)J0(tk + z′)Φ(τ − z′)Tdz′

= Φ(τ)Q(1)(tk)Φ(τ)T + tkQ(0)(τ) + Q(1)(τ)

(37)

Subsequently, the corresponding equation for the double step is

Q(1)(2tk) = Φ(tk)Q(1)(tk)Φ(tk)
T + tkQ(0)(tk) + Q(1)(tk) (38)

The above are calculation equations for the response variance when the modulation
functions are one and

√
t; corresponding calculation equations can also be established for

other simple modulation functions to solve the variance matrix Q of the structural response.

4. Results and Discussion

In 1997, Takewaki [25] applied the minimum transfer function to optimize the energy
dissipation of a six-story plane shear frame (see Figure 3). All stories of the shear frame had
the same mass (m1 = m2 = . . . m6 = 0.8× 105 kg); the stiffness was evenly distributed in each
story (k1 = k2 = . . . k6 = 4.0 × 107 N/m); the structure’s damping ratio ξs = 2% for the first
six orders. To elaborate on the precise integral solution process of the Lyapunov differential
equation and confirm its feasibility, this frame was considered to have filtered white noise
suddenly applied on it. The Kanai–Tajimi spectrum and the Lyapunov differential equation
satisfied by the structural response variance matrix were precisely integrated to obtain the
variance matrix of the response.

Buildings 2023, 13, x FOR PEER REVIEW 12 of 21 
 

differential equation and confirm its feasibility, this frame was considered to have filtered 

white noise suddenly applied on it. The Kanai–Tajimi spectrum and the Lyapunov 

differential equation satisfied by the structural response variance matrix were precisely 

integrated to obtain the variance matrix of the response. 

 

Figure 3. Six-story plane frame. 

After treatment using the static condensation method, the mass and stiffness matrices 

of the structure were expressed as follows: 

4 7

8 0 0 0 0 0 8 4 0 0 0 0

0 8 0 0 0 0 4 8 4 0 0 0

0 0 8 0 0 0 0 4 8 4 0 0
= 10 = 10 /

0 0 0 8 0 0 0 0 4 8 4 0

0 0 0 0 8 0 0 0 0 4 8 4

0 0 0 0 0 8 0 0 0 0 4 4

M kg K N m

   
   
   
   

    
   




  
   
  





 

 

 

 

  

Using the mass matrix M and stiffness matrix K, we calculated the vibration pattern 

and frequency of each order of the structure. Given a structural damping ratio ξs = 2%, the 

Caughey damping coefficient were calculated. Finally, the damping matrix C of the six-

story frame was obtained as follows: 

4

9.72 2.78 0.47 0.18 0.10 0.07

2.78 9.25 2.96 0.57 0.25 0.17

0.47 2.96 9.15 3.03 0.64 0.35
= 10

0.18 0.57 3.03 9.08 3.13 0.82

0.10 0.25 0.64 3.13 8.90 3.60

0.07 0.17 0.35 0.82 3.60 6.12

C N

     
 
    
 
     

  
     
     
 
     

/s m   

Figure 3. Six-story plane frame.

After treatment using the static condensation method, the mass and stiffness matrices
of the structure were expressed as follows:
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M =



8 0
0 8

0 0
0 0

0 0
0 0

0 0
0 0

8 0
0 8

0 0
0 0

0 0
0 0

0 0
0 0

8 0
0 8

× 104 kg K =



8 −4
−4 8

0 0
−4 0

0 0
0 0

0 −4
0 0

8 −4
−4 8

0 0
−4 0

0 0
0 0

0 −4
0 0

8 −4
−4 4

× 107 N/m

Using the mass matrix M and stiffness matrix K, we calculated the vibration pattern
and frequency of each order of the structure. Given a structural damping ratio ξs = 2%,
the Caughey damping coefficient were calculated. Finally, the damping matrix C of the
six-story frame was obtained as follows:

C =



9.72 −2.78
−2.78 9.25

−0.47 −0.18
−2.96 −0.57

−0.10 −0.07
−0.25 −0.17

−0.47 −2.96
−0.18 −0.57

9.15 −3.03
−3.03 9.08

−0.64 −0.35
−3.13 −0.82

−0.10 −0.25
−0.07 −0.17

−0.64 −3.13
−0.35 −0.82

8.90 −3.60
−3.60 6.12

× 104 N · s/m

If only the lateral horizontal displacement of the frame is considered, the excitation
matrix in the equation of motion is e =

[
1 1 1 1 1 1

]T , and the displacement
transformation matrix is

T =



1 0
−1 1

0 0
0 0

0 0
0 0

0 −1
0 0

1 0
−1 1

0 0
0 0

0 0
0 0

0 −1
0 0

1 0
−1 1


If the structure is excited using the Sugakinai Kiyoshi model, and the modulation

function g(t) = 1 when t ≥ 0, then

f (t) =



f1
f2
f3
f4
f5
f6

= 8× 104



1
1
1
1
1
1

g(t)¸K−T(t)

where the power spectral density function of ξK−T is given by Equation (21).
Assuming that the site is a hard-soil site, the characteristic frequency and characteristic

damping ratio were set as ωg= 15.6 rad/s and ξg= 0.64, respectively. The peak acceleration
of ground motion input in the original example was 0.1 g, and the corresponding seismic
intensity in the scale of seismic intensity was degree 7; thus, I = 7 and S0= 0.007919 were
obtained using Equation (25). To achieve the accuracy of the calculation, the time step τ
was set to 0.02 s. With a total of 400 steps, the total duration time for the calculation was 8 s.

First, the integration step τ was equally divided into 2N parts, with N = 20 in general;
that is, 220 parts and η = τ/2N = 0.02/220 and t = η.

The initial value of the integral is the Φ(η), Q(η) at η = 0.02/220. Because the value
of η is small, the first few terms of the Taylor expansion ensure sufficient accuracy. The
Taylor expansion is calculated as follows:

Φ(η) ≈ In + Ta (39)
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Ta = Aη+(Aη)2(In + (Aη)/3 + (Aη)2/12)/2 (40)

where A is the same as in Equation (7), and In is the 12-order unit matrix. Subsequently, the
initial value of Q(η) is obtained using Equation (33).

Q(0)(η) ≈ J0η + (AJ0 + J0 AT
)

η2/2 + (A2J0 + 2AJ0 AT + J0 A2T)η3/6

+(A3J0 + 3A2J0 AT + 3AJ0 A2T + J0 A3T)η4/24
(41)

Using Equation (35) for the double step and the initial value of the variance matrix
Q(0) = Q(0)(η), we obtain

Q(0) = Q(0) + (In + Ta)Q(0)(In + Ta)
T

Ta = Ta × 2 + Ta × Ta, t = 2× t
(42)

After iterating the above equation 20 times, the variance matrix Q of the response
at τ = 0.02 can be obtained. To avoid numerical ill-conditioning, we iterate the above
equation 10 times; (In + Ta) is replaced by Φn in the last 10 iterations, and the iterative
Ta = Ta × 2 + Ta × Ta is changed to Φn = Φn ×Φn, thus obtaining the final Q(0)(0.02).

This is the integration process for calculating the variance matrix of the response at
τ. Subsequently, the response variance matrix at 2τ, 3τ, . . . (until 400τ) was calculated
using (34) to obtain the variance matrix of displacement at t = 8 s. For k = 1, 2, 3 . . . 399, the
following iterative equation was executed:

Qk+1
(0) = Q(0)(τ) + Φk(τ)Qk

(0)Φk(τ) (43)

where the initial value is Q1
(0) = Q(0)(0.02), and the response variance matrix of the

structure is calculated as Q400
(0).

The time-dependent displacement variance curve obtained during the calculation
process is shown in Figure 4. The figure shows that the displacement variance of each layer
tends to be stationary at t = 8 s. Here, the displacement variance value of each layer is{

0.0063 0.0219 0.0426 0.0642 0.0829 0.0944
}T.
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The displacement variance tends to be stationary at t = 8 s; therefore, the mean square
value of the controlled interstory displacement at this time is used as the target function
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of optimization. The variance matrix is substituted into Equation (21) to calculate the
steady-state covariance of the controlled interstory displacement:

P =



0.0063 0.0052 0.0041
0.0052 0.0052 0.0041
0.0041 0.0041 0.0042

0.0030 0.0020 0.0010
0.0031 0.0020 0.0010
0.0031 0.0021 0.0010

0.0030 0.0031 0.0031
0.0020 0.0020 0.0021
0.0010 0.0010 0.0010

0.0032 0.0021 0.0011
0.0021 0.0022 0.0011
0.0011 0.0011 0.0011


where the elements on the diagonal of matrix P are the mean square values of the controlled
interstory displacement. The mean square value of the displacement is expressed as follows:

p1,1
p2,2
p3,3
p4,4
p5,5
p6,6


=



0.0063
0.0052
0.0042
0.0032
0.0022
0.0011


The additional damping matrix in the next iteration derived using

Equations (22) and (23) is:

c(2)d =
[
2.5516 2.1133 1.6987 1.2927 0.8839 0.4598

]T × 106 N · s/m.

The final optimization results are shown in Figures 5 and 6. Comparing the mean
square values of the interstory displacements before and after the additional damping
optimization, we observe that before optimization, the mean square values of the displace-
ments of each layer of the structure vary significantly. After optimization, the mean square
value of displacement of each layer of the structure is significantly reduced, and the mean
square value curve of interstory displacement tends to be uniform. Therefore, the full stress
design of the mean square value of interstory displacement of each layer can be achieved
when the total additional damping is certain.

After dissipation optimization using precise integration based on the Lyapunov dif-
ferential equation, the curve of the mean square values of the interstory displacement
in Figure 6 is perpendicular to the coordinate axis, which perfectly achieves the fully
stressed design of the mean square value of the interstory displacement, and the results are
compared with the methods in other studies.

The basic data of the model and optimized additional damping ratio are used to
build a finite element model, and the model is subjected to time-history analysis to extract
calculated results, such as acceleration and displacement angles. By comparing the obtained
interlayer drift ratios (Figure 7) and floor accelerations (Figure 8) of the uncontrolled
and damped frame under different response calculation methods, we observe that the
optimization based on the Lyapunov differential equation and the optimization based on
the method in [25] are the same in structure and excitation. Only the calculation method of
the response variance matrix is different, and the optimized interstory drift ratios almost
completely overlap, which verifies the correctness and feasibility of the precise integration
of differential equations when calculating the response variance matrix.
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The above consideration is the optimization of the structure under smooth-colored-
noise excitation at g(t) = 1. The model used in the calculation is always in an elastic
state, and for elastic models, the effect of considering the descent phase in the modulation
function on the calculation results is relatively small. If the modulation function is replaced
with g(t) =

√
t, the response variance matrix of the structure under a nonsmooth process

can be calculated using the fine integration of the Lyapunov differential equation, and the
structure is optimized for damping.
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The initial value of the integral Φ(η) is calculated using Equations (39) and (40), and
Q(η) can be obtained using Equation (36).

Q(1)(η) ≈ J0η2/2 + (AJ0 + J0AT
)

η3/6 + (A2J0 + 2AJ0AT
+ J0A2T

)η4/24 (44)

Subsequently, using Equation (38) for the double step of the modulation function
g(t) =

√
t, we obtain

Q(1) = Q(1) + (In + Ta)Q(1)(In + Ta)
T + t×Q(0)

Ta = Ta × 2 + Ta × Ta, t = 2× t
(45)

where Q(0) is the response variance matrix at g(t) = 1. To avoid numerical ill conditioning,
we can iterate the above equation 10 times; (In +Ta) in the above equation is replaced by Φn
in the last 10 iterations, and the iterative Ta = Ta× 2+Ta×Ta is changed to Φn = Φn×Φn,
thus obtaining the final Q(0)(0.02).

The response variance matrix at 2τ, 3τ, . . . (until 400τ) is calculated using the equal
step integration Equation (37) to obtain the variance matrix of displacement at t = 8 s. For
k = 1, 2, 3 . . . 399, the iterative equation below is executed.

The calculation results are shown in Figure 9. When t ≥ 1, the response variance
increases rapidly and is strongly nonstationary. Therefore, time t for the response variance
matrix affects the final optimization of the damping. The optimization results for different
values of t are shown in Table 2.
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Table 2. Optimization of additional damping.

Time (s)
Ca (106 N·s/m)

Fl F2 F3 F4 F5 F6

8 4.1674 2.7957 1.1702 0.5070 0.2856 0.0741
16 4.1848 2.8171 1.1666 0.4948 0.2734 0.0632
20 4.1881 2.8212 1.1659 0.4925 0.2711 0.0611
30 4.1925 2.8266 1.1649 0.4895 0.2681 0.0584
50 4.1959 2.8308 1.1642 0.4871 0.2658 0.0562
100 4.1984 2.8339 1.1636 0.4853 0.2641 0.0546
500 4.2004 2.8364 1.1631 0.4840 0.2628 0.0533

1000 4.2007 2.8367 1.1630 0.4838 0.2626 0.0532
2000 4.2008 2.8369 1.1630 0.4837 0.2625 0.0531
4000 4.2009 2.8369 1.1630 0.4836 0.2625 0.0531
5000 4.2009 2.8369 1.1630 0.4836 0.2625 0.0531
8000 4.2009 2.8370 1.1630 0.4836 0.2625 0.0531

10,000 4.2009 2.8370 1.1630 0.4836 0.2625 0.0530

The calculation results are shown in Figure 10. Owing to the nonstationary excitations,
the optimization results are affected by time. Nevertheless, the distribution of the additional
damping changes slightly and tends to be stable over time.
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5. Conclusions

In this paper, a structural state-space equation satisfying Lyapunov’s equation under
white noise excitation is derived. Subsequently, the equation is combined with the full stress
algorithm to derive a damper optimization process for a damping structure under stochastic
excitation. Thereafter, the Kanai–Tajimi spectrum excitation is introduced, and the process
for the Lyapunov differential equation of the stochastic excitation under the modulation
function g(t) = 1 and g(t) =

√
t is derived. Finally, the results of the optimal damping

assignment under the two modulation functions are calculated using a numerical example.
(1) The equation of motion for dissipation structures is rewritten as the state equation,

and the Lyapunov equation used to solve the random seismic response under white noise
excitation is deduced; subsequently, the stochastic optimization of damper positions is
achieved using the “full stress” of the mean square value of the displacement as the
optimization objective.

(2) Based on the filter equation of the Kanai–Tajimi spectrum, the corresponding
Lyapunov equation is established, with its autocorrelation function as the known quantity,
achieving the response solution of the dissipation system under colored-noise excitation, the
random response solution of dissipation structures under Kanai–Tajimi spectrum excitation,
and the stochastic optimization of damper positions.

(3) The extended order vector is introduced to establish the Lyapunov differential
equation under evenly modulated random excitation, providing a basis for subsequent
optimization design. The precise integration process of the Lyapunov differential equation
is deduced, and the Lyapunov differential equation satisfies the random response variance
matrix, which is directly solved using precise integration for modulation functions g(t) = 1
and g(t) =

√
t. Taking a six-story non-eccentric plane frame as an example, the calculated

results are compared with those reported in the literature to verify the feasibility and
effectiveness of the proposed method.

This study focused on the optimization method of the energy dissipation structure
considering random excitation. Nevertheless, the case model in this study is a simple
two-dimensional frame that considers only the shear stiffness of the structure and neglects
the bending stiffness. Further research on models that consider bending stiffness is required.
Furthermore, this study used a relatively simple modulation function, which is only suitable
for elastic structures. To obtain optimized results for plastic structures, a more complex
modulation function that considers the descent phase should be used for analysis. These
are the significant limitations of this model.
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