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Abstract: The construction and inspection of reinforcement rebar currently rely entirely on manual
work, which leads to problems such as high labor requirements and labor costs. Rebar image detection
using deep learning algorithms can be employed in construction quality inspection and intelligent
construction; it can check the number, spacing, and diameter of rebar on a construction site, and
guide robots to complete rebar tying. However, the application of deep learning algorithms relies
on a large number of datasets to train models, while manual data collection and annotation are
time-consuming and laborious. In contrast, using synthetic datasets can achieve a high degree of
automation of annotation. In this study, using rebar as an example, we proposed a mask annotation
methodology based on BIM software and rendering software, which can establish a large and diverse
training set for instance segmentation, without manual labeling. The Mask R-CNN trained using both
real and synthetic datasets demonstrated a better performance than the models trained using only
real datasets or synthetic datasets. This synthetic dataset generation method could be widely used
for various image segmentation tasks and provides a reference for other computer vision engineering
tasks and deep learning tasks in related fields.

Keywords: synthetic datasets; rebar instance segmentation; Mask R-CNN; BIM

1. Introduction

Rebar tying work is a highly labor-intensive job with an unfavorable working environ-
ment and may cause musculoskeletal disorders in rebar workers [1]. Therefore, the use of
robots to achieve automatic rebar tying is a necessary direction of development for on-site
construction operations. To use robots for automatic rebar tying, it is necessary to identify
the crosspoints and then carry out path planning to complete the rebar tying work [2].

The quality inspection of reinforcement construction at a large scale is also a problem.
Thousands of reinforcement bars are inspected manually to see if their quantity and spacing
meet the design parameters, and this workload is extremely difficult to manage. Therefore,
at present, construction sites are inspected randomly to check the quality of rebar, but there
is still the problem of inspection errors and omissions.

Therefore, the photographic acquisition of on-site rebar and rebar instance segmen-
tation could be carried out using deep learning algorithms, to quickly and accurately
determine the location and quantity of rebar; this can provide data support for the auto-
matic tying of rebar and realize the quality inspection of rebar construction at a large scale.
The application of computer visual technology for rebar detection on construction sites will
help to achieve a reduction in construction costs and labor expenses, which are of primary
concern to customers. Based on the concept and methodology of customer relationship
management, this will greatly benefit projects [3].

A series of computer vision-based automated rebar detection methods have been
proposed by researchers, all of which can identify the spacing or diameter of rebar. These
include vision methods based on laser rangefinders and corner detection [4], point cloud
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data processing methods based on machine learning [5], and image segmentation methods
based on deep learning [6]. However, the traditional image processing method used
in [4] made it difficult to deal with complex environments. The authors of [5] had to use
laser scanners to scan multiple stations, which incurred high equipment costs and was
tedious. In [6], although rebar counting and diameter estimation were achieved using
a convolutional neural network segmentation algorithm combined with homography,
this method was difficult to apply to the spacing and diameter detection of rebar in the
rebar mesh.

The application of deep learning algorithms in a specific field is often limited by
the size and quality of the dataset and its annotations [7]. The instance segmentation
of rebar requires a large number of annotated training set images, where each rebar in
each image needs to be annotated. At present, annotation is mainly carried out manually,
making it time-consuming and laborious, and resulting in a low annotation accuracy. Using
cell phones, cameras, drones, and other devices to shoot and collect data also has the
disadvantages of consuming more time, requiring pre-planning and coordination, and
having fewer or more-scattered target objects. Due to the large variety and weight of steel
rebar, it is difficult to collect and label datasets manually.

The efficient building of high-quality datasets has become key to the successful appli-
cation of deep learning techniques in the engineering field. Therefore, using 3D software to
generate realistic images and implement automatic annotation has become a solution to the
problem of dataset acquisition. Mohamed H. Elnabawi et al. [8] implemented a synthetic
urban local specific weather dataset for the estimation of energy demand. However, this
is not a suitable method for creating synthetic image datasets. Boyong He et al. [9] used
Unity3D to create a synthetic ship image dataset for ship object detection. NVIDIA and
Unity have released synthetic dataset generation plugins based on the Unreal Engine (UE)
and Unity3D, respectively [10,11]. The authors of [9–11] imported 3D models into Unreal
Engine and Unity3D to render realistic pictures and construct datasets. However, Unreal
Engine and Unity3D are complicated and require a certain programming process, which
entails a high learning cost. It is difficult to promote synthetic dataset generation methods
based on these software packages. Zhiyong Zhang et al. [12] proposed a methodology
for creating synthetic data for sand-like granular instance segmentation. However, this
method simply overlaps the images of the target objects, ignoring the three-dimensional
relationship and light and shadow effects, which is not sufficiently realistic. Yeji Hong
et al. [13] used building information models to create BIM images and labels, then used
generative adversarial networks (GANs) to perform translation of the BIM images into
photographs, to achieve the creation of synthetic infrastructure scene datasets.

The previous methods of synthetic image data creation and automatic annotation
involving Unity3D, UE, or GANs are not concise enough. In order to efficiently create
synthetic datasets suitable for image segmentation tasks, this paper takes the instance
segmentation task of rebar as an example and proposes a simple and fast method of
creating instance segmentation datasets. The method includes BIM modeling and using
rendering software to output realistic images and corresponding annotations. Finally, we
compared the performance of a real dataset and a synthetic dataset in network prediction,
and verified the rationality and effectiveness of using synthetic data for network training.

The method proposed in this paper can be used to easily and quickly create synthetic
rebar instance segmentation datasets for the training of rebar recognition algorithm models.
The proposed method has good generality and can be used to create semantic segmentation
or instance segmentation synthesis datasets for any type of target object and thus provides
a good technical solution for the rapid acquisition of training sets for visual recognition
tasks in engineering.

2. Process and Methodology

The processes for making a synthetic image dataset for rebar and comparing the
performance of the datasets are shown in Figure 1.
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Figure 1. Synthetic dataset production and experimental process.

In the synthetic dataset creation process, creating the rebar BIM was the first step.
Revit software was used for modeling. The second step was to import the rebar model into
the 3D rendering software, adjust the material, arrange the scene, and render the picture
and its corresponding material ID map image. The third step was to use the program to
process the material ID map image to make it an annotation image that could be used to
train the Mask R-CNN network. The fourth step was to generate the text labels required for
network training based on the annotation image in the previous step. Finally, the synthetic
dataset consisted of three parts: the rendered synthetic images, the annotation images of the
synthetic images, and the YAML-format text labels corresponding to the annotation images.

After the creation of the synthetic dataset was completed, the synthetic images were
mixed with the real rebar mesh images in different numbers, to build six training sets, and
a Mask R-CNN network was used for benchmark testing, to compare the performance of
the models trained in each training set and to illustrate the effectiveness and rationality of
using synthetic images as a training set.

3. Synthetic Image Creation Method
3.1. BIM and Virtual Scene Layout

In this step, we created a rebar model in Revit and imported it into the 3D rendering
software. Then, we adjusted the scene layout in the rendering software as accurately as
possible, so that the rendered output was as similar as possible to the real photograph.

Using Revit, parametric modeling was performed on rebar with common diameters.
Relevant specifications were established to create detailed regulations on the geometric
shape of rebar (Figure 2). Specific values are given for the inner diameter, the height of
transverse ribs, the height of longitudinal ribs, the width of transverse ribs, the width
of longitudinal ribs, the thread spacing, and the maximum distance between the ends of
the transverse ribs of the pieces of rebar of each diameter. Value ranges are given for the
oblique angles of the transverse ribs and the oblique angles of the longitudinal ribs. In this
paper, three sizes of rebar, with nominal diameters of 16, 20, and 25 mm, were selected for
modeling. After referring to the actual rebar geometry, the angle between the transverse
rib and the longitudinal axis of the rebar model was set to 60◦, and the oblique angle of the
longitudinal rib was set to 10◦. After completing the modeling of these three kinds of rebar
with different diameters, the three models were used to build four different rebar mesh
models, to enrich the information in the synthetic dataset. The specific layout is shown in
Table 1, and the rebar mesh model is shown in Figure 3.
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Figure 2. Surface and cross-sectional shape of rebar.

Table 1. Parameters of the rebar mesh model.

Mesh Model No. Transverse Model
Diameter (Number)

Longitudinal Model
Diameter (Number) Spacing (mm)

1 ϕ20 (10) ϕ20 (10) 150
2 ϕ20 (10) ϕ16 (10) 150
3 ϕ20 (8) ϕ25 (8) 200
4 ϕ20 (8) ϕ16 (8) 200

Figure 3. Rebar mesh model.

The meanings of the symbols in Figure 2 are as follows:
d1—the inner diameter; α—the oblique angles of the transverse ribs; h—the height

of the transverse ribs; β—the angle between the transverse rib and the longitudinal axis;
h1—the height of the longitudinal ribs; θ—the oblique angles of the longitudinal ribs; a—the
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longitudinal rib top width; l—the transverse rib spacing; b—the transverse rib top width;
fi—the distance between ends of the transverse ribs.

In order to increase the amount of data and increase the realism of the final synthesized
picture, each rebar in the mesh model can be randomly rotated around the longitudinal
axis by a certain angle.

The values of the rebar’s geometric parameters in the specification were accurate to
0.1 mm, but Revit cannot draw a line with a length less than 0.8 mm, which would lead to
inaccurate modeling. Therefore, when modeling, all dimensions were uniformly enlarged
10 times. Then, the model could be reduced to the original size in the rendering software.
Additionally, the size of the rebar mesh model could not be changed in the rendering
software, but other models used for the scene layout could be enlarged to a suitable size.

After the rebar model was completed, it was imported into the rendering software for
virtual scene layout. The purpose of this was to make the synthetic picture look as similar
as possible to the real photograph, so as to contain more complex information. The scene
layout was adjusted according to the actual scene, to make it as similar as possible.

To describe the image rendering steps, let us take the Lumion 11 software as an
example. First, create a blank scene, import the rebar mesh model into the scene, and
adjust it to the appropriate position and size. In order to make the scene of the rendered
picture as similar as possible to the real picture, a ground similar to that in the real picture
is set in the virtual scene. Figure 4 shows a specific synthetic scene layout that is similar to
our laboratory scene. To capture the context of the laboratory, it is appropriate to adjust
the synthetic scene to appear similar to the real scene. There are white lines and yellow-
black warning line on the ground. The bottom frame of the rebar support frame, made of
aluminum alloy, is also placed. These are all elements that exist in the real scene.

Figure 4. Virtual scene layout.

In order to ensure the authenticity and diversity of the synthesized data, for rebar
material mapping, we used a built-in rebar map made in Revit and four maps made from
real rebar photographs (Figure 5), which were randomly assigned to each rebar. In Figure 5,
except the first texture map from Revit, all of the maps were clipped from different real
rebar photographs and edited in image processing software. In the image processing
software, we adjusted the proportion of the rust pattern and the highlight pattern to ensure
the diversity of the texture map.
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Figure 5. Rebar texture map.

3.2. Image Rendering

The rendering method of the synthesized image is shown in Figure 6 and works
as follows: First, point the camera lens vertically downward, so that the optical axis is
perpendicular to the plane of the rebar mesh; ensure that the edge of the image is parallel
with or perpendicular to the longitudinal axis of the rebar, and that the number of rebar
pieces in the field of view is appropriate (about 10). Then, make translation animations
in six directions (front, back, left, right, up, and down), and finally output a jpg-format
image in the form of an image frame sequence, to obtain the composite images. The
rendering speed should be about 1 s per image. The specific speed should be related to the
hardware configuration. The highest rendering quality should be selected here, and the
output resolution should be 1280 × 720 pixels. In order to make the picture similar to that
seen by the human eye, adjust the focal length to 24 mm, and filters or special effects that
cause distortion should not be used. To increase data complexity, image attributes such as
shadows, light color temperature, and brightness can be appropriately adjusted.

Figure 6. Camera and rebar mesh position relationship.

The lens settings when rendering should be adjusted according to the actual situation.
The above lens movement mode was only set for the rebar recognition test in this article.

3.3. Automatic Annotation

After the scene layout arrangement, use the animation recording function in Lumion
to render the synthetic images, and the material ID map images are used as labels to realize
automatic labeling.

In the instance segmentation label images of the rebar, each instance should be covered
by a different color mask, and the background should remain black. Since each rebar has
been previously set to a different material in Revit, each rebar will be identified by a solid
area of a different color on the material ID map. At this time, if models other than that of
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the rebar are hidden, the background pixels can be guaranteed to be all black, as shown in
Figure 7.

Figure 7. Synthetic image and material ID map.

Since the corresponding color of each material in the material ID map rendered by
Lumion cannot be specified manually, the system may set the color of a certain material
in the ID map to black when there are many types of material in the scene, causing it to
have the same material ID color as the background. When this happens, it is necessary to
hide the model corresponding to this material, and then render and output the image and
material ID map.

When exporting the material ID map, first, copy the footage used for rendering the
synthetic image, set all models except the target object to another layer in edit mode, and
hide this layer (only the rebar model should be kept here; hide the rest of the models). Then,
use the same footage settings as in the previous step when exporting the synthetic image.
Check the “M” button in the additional output settings, output the png-format image, and
obtain the material ID map corresponding to each image. As the output material ID map
will be suffixed onto the file name, use the program for batch renaming, so that the name is
exactly the same as that of the corresponding synthetic image file, except for the file type
suffix. If using other 3D software to render the picture, you can find a way to output the
material ID map or manually set each rebar to a different-colored material and output it
again using the same footage.

The training set of Mask R-CNN includes three parts: RGB images, annotation im-
ages, and text labels. The text labels are in yaml format. In a yaml file, the first line is
“label_names:”, the second line is “- _background_”, and the third line is “- rebar1”, and the
subsequent lines are “- rebar2”, “- rebar3”, etc. The specific number of lines is determined
by the number of rebar pieces in the image. Thus far, we have obtained the synthetic
pictures, the corresponding annotation images, and the text labels, and placed them into
folders named “imgs”, “mask”, and “yaml”, respectively, to complete the creation of the
rebar synthetic dataset.

This article used the four rebar mesh models in Table 1, with different backgrounds,
material maps, lighting settings, and camera path animations, and rendered a total of
2500 virtual synthetic pictures of rebar mesh and their material ID maps. The material ID
map is the preliminary result of automatic labeling.

The following is the rebar synthetic dataset download path: https://github.com/
whiesty/synthetic-datasets-for-rebar/releases/download/file/synthetic.dataset.for.rebar.
zip (accessed on 13 February 2023).

3.4. Transition Color Processing of Annotation Image

Since the material ID map output by Lumion has a transition color at the edge of the
mask (Figure 8), it must be processed by the program before it can be input into the Mask
R-CNN network as an annotation image. As each color in the annotation image should
correspond to an instance target object, if the transition color already exists, the network
will mistakenly read it as an annotation of other instances.

https://github.com/whiesty/synthetic-datasets-for-rebar/releases/download/file/synthetic.dataset.for.rebar.zip
https://github.com/whiesty/synthetic-datasets-for-rebar/releases/download/file/synthetic.dataset.for.rebar.zip
https://github.com/whiesty/synthetic-datasets-for-rebar/releases/download/file/synthetic.dataset.for.rebar.zip
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Figure 8. Transition color processing.

Therefore, this section proposes an image processing method for the transition color
in the material ID map output by Lumion, programmed to achieve the following functions:
(1) change the transition color in the material ID map to the correct annotation color; (2) save
the annotation image as a P-mode single-channel png format image with the palette.

The transition color processing flow is shown in Figure 9 and includes four steps:
specifying the annotation color list, merging the transition color to the annotation color,
processing noise via mode filtering, and saving as a single-channel P-mode png format image.

Figure 9. Annotation image processing flow.
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Step 1: Specifying the annotation color list. This involves rendering the material ID
map containing all target objects (rendering a picture containing all targets or rendering
multiple pictures to cover all targets), using PS or a similar software tool to determine the
RGB value of each annotation color, and entering them into the program.

Step 2: Merging the transition color with the annotation color. First, the pixel points
whose values are neither the annotation color nor black are filtered; these are called tran-
sition color pixel points. Then, the “color distance” between the RGB color value of each
transition color pixel point (the value range of each channel is 0–255) and the color value of
each annotation color is calculated using formula (1), and the color value of the transition
color pixel point is transformed into the annotation color with the smallest color distance.

D =
i

∑
i=R,G,B

(Ti − Li)
2 (1)

In this formula, D refers to color distance, Ti is the color value of channel i of the
transition color pixel point, and Li is the color value of channel i of the annotation color.

Step 3: Mode filtering. For a specified pixel point, its color value is defined as the
color value that occurs most frequently in a square area within a given range, except black
(as shown in Figure 10, which depicts mode filtering for the center pixel). After the color
value merging in the previous step, some pixels are converted to the wrong annotation
color, resulting in a small amount of dot-shaped or linear noise in the image, which must
be eliminated using the mode filtering method. In this paper, 5 × 5 and a 3 × 3 sized
mode filters were used in turn for all transition color pixels selected in the second step, to
effectively eliminate noise, and the performance was good.

Figure 10. 5 × 5 window size mode filtering.

Step 4: Image format conversion. After completing the above three steps, the annota-
tion image is still a three-channel color image and needs to be converted to a single-channel
image, in order to meet the input requirements of the Mask R-CNN network. Additionally,
the color value of the mask region of each instance in the image should be a continuous
integer starting from 1, and the background color value should be 0. For the convenience
of personnel inspection, the image is converted to a P-mode single-channel png image
with a palette file, so that it can be presented in color. At this point, the annotation image
processing is completed.

4. Synthetic Dataset Performance Comparison Experiment

In order to verify the performance of the synthetic dataset in the instance segmentation
of rebar, this paper used different proportions of the real dataset and the synthetic dataset
to form multiple mixed datasets, and used the same Mask R-CNN network with exactly
the same training parameters to compare the datasets. The prediction performance was
evaluated on the same test set, to check whether the synthetic dataset was equally effective
compared to the real dataset.
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4.1. Real Dataset Collection

Real photographs of the rebar mesh were taken in an indoor laboratory environment
using a Cognex CAM-CIC-12MR-8-GC industrial camera with an 8 mm-focal-length lens
and a pixel resolution of 1006 × 759. Photographs were taken of rebar meshes consisting
of 16 mm rebar with 20 mm rebar, and 20 mm rebar with 25 mm rebar, with a spacing of
150 mm to 200 mm. The rebar net was placed parallel to the ground on a rebar support
frame, and the camera was installed on a motorized slider module on the rebar support
frame with its axial direction perpendicular to the rebar net. The module moved the camera
in three directions: front-to-back, left-to-right, and up-and-down. The shooting distance
was 50 to 80 cm, with about 6 to 10 rebar pieces in the field of view. A total of 1500 shots
were collected, of which 300 were taken with the light turned on. The location of the
rebar was changed randomly or the rebar was rotated along the longitudinal axis, and the
lighting conditions in the room were changed frequently by adjusting the blinds to enhance
the diversity and generalization of the dataset during the shooting process. The image
acquisition site is shown in Figure 11.

Figure 11. Real photograph of the acquisition site.

The object of the test set was a rebar mesh rebuilt with 16 mm, 20 mm, and 25 mm
rebar pieces in the same environment. The photographs were taken using a mobile phone,
with a resolution of 4608 × 3456, and the number of shots was 60. The axial direction of the
rebar pieces in the photographs was parallel with or vertical to the edge of the picture, and
the number of rebar pieces in each photograph was about 6 to 10.

4.2. Mask R-CNN Instance Segmentation Algorithm

The current deep learning algorithms for image segmentation can be divided into
two categories: convolutional neural networks (CNNs) and transformers. In CNNs, the
most commonly used networks include U-Net [14], SegNet [15], DeepLab V3+ [16], and
Mask R-CNN [17]. Among them, Mask R-CNN is an instance segmentation network, and
its applications in the civil engineering industry include rebar segmentation, road crack
detection [18], and construction site safety management [19]. Its performance has been
validated by many researchers. Therefore, Mask R-CNN was selected as the benchmark
test network in this comparative experiment.
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The sketch architecture of the Mask R-CNN network is shown in Figure 12. This
network is based on Faster R-CNN [20] with a Mask prediction branch added, and the ROI
Pooling layer of the original network was replaced with the ROI Align layer to achieve
more accurate prediction. This algorithm has the functions of both object detection and
instance segmentation. The detailed architecture of the Mask R-CNN network used in this
paper is shown in Figure 13, for which we used ResNet-101-FPN as the backbone to execute
the single classification instance segmentation task.

Figure 12. Sketch architecture of Mask R-CNN.

Figure 13. Detailed architecture of the Mask R-CNN used in this paper.

During training, the network first resizes the read-in images to 512 × 512 pixels and
obtains feature maps at different scales through the backbone feature extraction network, to
form a feature pyramid structure. Next, the region proposal net (RPN) generates proposal
boxes at different scales based on the feature map and then uses these proposal boxes to
intercept regions on the feature map at the corresponding scale. The intercepted regions
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are input into the RoI Align layer to be resized to a uniform size and then are input into the
classification branch for classification, the box regression branch to predict the boxes, and
the mask prediction branch for instance segmentation, respectively. Next, the losses are
calculated and the training is completed via backpropagation. During prediction, the result
is first output from the classifier branch and then input to the mask prediction branch for
instance segmentation.

4.3. Training Environment and Training Parameters

The computer operating system used for training was Windows 10. The graphics
cards used for training included Tesla V100, RTX 2080Ti, and GTX 1080Ti. The VRAM
was 32 GB, 11 GB, and 11 GB, respectively. The software environment was set up as fol-
lows: TensorFlow-GPU1.13.2, Keras2.1.5, CUDA10.0, cuDNN7.4.1.5, and the programming
language version was Python 3.6.

Each dataset was divided into a training dataset and a validation dataset, with propor-
tions of 0.9 and 0.1, respectively; the test set comprised 60 real photographs captured using
cell phones. Training was performed using a migration learning approach, by loading the
COCO dataset pre-trained weights [21]. Models were trained with a learning rate of 0.0001,
a batch size of 2, and a training epoch of 50 using an Adam optimizer, with a weight decay
of 0.0001. Since rebar pieces are elongated objects, the anchor aspect ratio of RPN was set
to 0.1, 5, and 10, and the sizes were set to 32, 64, 128, 256, and 512.

4.4. Model Evaluation Metrics

In order to evaluate the model and characterize the degree of matching between the
prediction result and the real label, the accuracy, precision, recall, IoU, and F1 Score were
used as the evaluation metrics. The calculation formula of each metric is as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

IoU =
TP

TP + FP + FN
(5)

F1 Score =
2

1
Precision + 1

Recall

(6)

In these formulas, TP (true positive) represents the number of pixels that are actually
rebar and predicted to be rebar; TN (true negative) represents the number of pixels that
are actually background and predicted to be background; FP (false positive) represents
the number of pixels that are actually background and predicted to be rebar; and FN
(false negative) represents the number of pixels that are actually rebar and predicted to be
the background.

The values of the above five evaluation metrics range from 0 to 1, and the closer the
value is to 1, the better the effect of the model.

Precision–recall curves were used when the positive selection threshold was IoU = 0.5,
to measure the performance of the models, which followed COCO dataset detection evalu-
ation metrics [22]. Note that the definitions of precision and recall are different between
Equations (3) and (4) and the precision–recall curves.

In addition, this study also used the rebar number recognition accuracy (Num_Accuracy)
as an evaluation metric to compare and verify the evaluation results with the above
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five metrics, to improve the credibility of the test result evaluation. This was calculated
as follows:

Num_Accuracy =
T
N

(7)

In the formula, N represents the total number of pictures in the test set, and T represents
the number of pictures for which the number of rebar pieces is correctly predicted (that
is, the number of rebar pieces predicted by the network is equal to the number of actual
marked rebar pieces).

4.5. Training Dataset Configuration

A total of six training datasets were set up in this experiment, and six Mask R-CNN
rebar instance segmentation models were trained using the same training parameters. The
composition of each training set is shown in Table 2.

Table 2. Training dataset configuration.

Model Real Photograph Number Synthetic Image Number

M-1500-0 1500 0
M-1500-750 1500 750

M-1500-1500 1500 1500
M-0-1500 0 1500

M-500-1000 500 1000
M-1000-500 1000 500

Among them, M-1500-0, M-1500-750, and M-1500-1500 were compared with each
other to check the rationality of adding synthetic data to the real data and to show whether
doing so improved the model’s prediction performance. M-1500-0, M-0-1500, M-500-1000,
and M-1000-500 were compared with each other, to change the proportion of real data and
synthetic data under the same dataset size and to study the rationality of using synthetic
data to replace real data.

5. Experimental Results and Analysis
5.1. Data Processing of Evaluation Metrics

1. For the three metrics of accuracy, IoU, and F1_score, the prediction results of the
Epoch50 weight file in the test set were used for model evaluation. Since the F1_score is the
harmonic average of accuracy and recall, accuracy and recall are no longer involved in the
calculation here, and are only used as reference metrics to more comprehensively show the
model’s prediction performance.

2. We took the harmonic average of the three metrics obtained in the above steps
to form a single index called the comprehensive metric, which is convenient for visual
observation and comparative evaluation.

The calculation method of the harmonic average Hn is as follows:

Hn =
n

∑n
i=1

1
xi

(8)

In this formula, n represents the number of items involved in the calculation, and xi
represents the value of the ith item involved in the calculation.

The purpose of the harmonic average here is to ensure that each sub-metric has the
same contribution to the comprehensive metric and to avoid the comprehensive metric
being controlled by a single metric.

5.2. Prediction Performance Comparison

Table 3 shows the metrics of each model when the network prediction confidence
was 0.7.
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Table 3. Prediction results of Epoch 50 weights.

Model Accuracy Precision Recall IoU F1_Score

M-1500-0 0.935 0.922 0.809 0.756 0.860
M-1500-750 0.945 0.996 0.782 0.780 0.876

M-1500-1500 0.945 0.992 0.788 0.784 0.878
M-0-1500 0.933 0.990 0.742 0.736 0.848

M-500-1000 0.943 0.996 0.778 0.775 0.873
M-1000-500 0.947 0.993 0.792 0.788 0.881

Figure 14 presents a bar chart that represents the data in Table 3, and shows the
prediction performance of all six models trained on different training sets with the test set.

Figure 14. Prediction performance of each model.

For the convenience of observation, we calculated the harmonic average of the accu-
racy, IoU, and F1_score in the above figure, and the comprehensive metric value was used
to represent the prediction performance of each model, as shown in Figure 15. Additionally,
the precision–recall curves of the six models are also shown in Figure 16.

Figure 15. Prediction performance of each model (comprehensive metric).
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Figure 16. Precision–recall curves.

The comparison of M-1500-0, M-1500-750, and M-1500-1500 shows that M-1500-750
and M-1500-1500 with synthetic images added to the training set had better prediction
results with the test set than M-1500-0 with only real images, indicating that adding
synthetic data to the real dataset improved the model’s prediction performance.

The comparison of M-1500-0, M-0-1500, M-500-1000, and M-1000-500 shows that with
the same total number of 1500 images in the training set, M-500-1000 and M-1000-500,
which contain both real and synthetic data in the training set, had better prediction results
than M-1500-0, which contained only real images, and M-0-1500, which contained only
synthetic images. This indicates that using synthetic images to replace some of the real
images improved the model’s prediction performance. Additionally, M-0-1500 trained with
synthetic images showed the lowest prediction performance with the test set but did not
vary much from the other models, which proved the reasonableness and effectiveness of
using synthetic images to train the model.

As can be seen in Figure 17, the recognition accuracy values of each model were
compared with each other, and the trend was basically consistent with the previous evalua-
tion metrics comparison (M-1500-750 and M-1500-1500 had better predictions results than
M-1500-0, and M-500-1000 and M-1000-500 had better predictions results than M-1500-0
and M-0-1500), reflecting the reasonableness and effectiveness of using synthetic data to
train the model.

The rebar number recognition accuracy for each model in the test set is shown in
Figure 17.
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Figure 17. Rebar number recognition accuracy.

In order to verify the stability and credibility of the test results, the abovementioned
test process was repeated twice, and the pictures in each training set were randomly selected
each time. The model was trained with the same training parameters and tested using the
same test set. The evaluation metrics of the three experiments are shown in Figure 18, and
the comprehensive metric was used for evaluation. The rebar number recognition accuracy
of the three trials is shown in Figure 19.

Figure 18. The results of three repeated experiments (comprehensive metric).
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Figure 19. The results of three repeated experiments (rebar number recognition accuracy).

Figures 18 and 19 show that the trends obtained from the three experiments were
basically the same (M-1500-750 and M-1500-1500 had a better prediction accuracy than
M-1500-0, and M-500-1000 and M-1000-500 had a better prediction accuracy than M-1500-0
and M-0-1500), reflecting the rationality and effectiveness of using synthetic data to train
the model. This also proves the stability of the test results and strengthens their credibility.
The reason for using the arithmetic mean of the results of the three repeated tests is that
the mean value of the same metric was taken at this time. Moreover, there is no significant
difference between the range of values of the same metric and the dispersion of the data in
the same model in the repeated tests, and the difference between the harmonic mean and
the arithmetic mean is small.

5.3. Analysis of Prediction Results

Taking M-1000-500 as an example, its prediction result with the test set is shown in
Figure 20. In the figure, the part of the rebar covered by a colored mask is the rebar area
identified by the Mask R-CNN network, and each rebar is marked with a different color.

It can be seen that the model had a good segmentation performance, the edge of
the rebar is well-matched, and the intersection relationship of the rebar also has a certain
recognition result. However, some rebar areas at the edge of the image and the intersections
of the rebar were correctly segmented, which led to low IoU and recall values in the model
evaluation metrics. However, the purpose of rebar segmentation is to identify the position
and number of rebar pieces. Our results show that we could clearly distinguish their
position and number, so the unrecognized image edges and rebar intersections had no
effect on the identification results.

Therefore, from the perspective of recognition performance, the use of synthetic
datasets is helpful for the accurate realization of rebar instance segmentation, and can replace
or partially replace real datasets for the training of rebar instance segmentation models.
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Figure 20. Rebar instance segmentation prediction result.

6. Discussion and Conclusions

1. This study proposes a rapid method of creating a synthetic rebar instance segmen-
tation image dataset based on BIM and rendering software, which can not only quickly
generate rebar images, but also automatically generate annotations, greatly reducing the
workload and time costs of rebar dataset creation. The rendering and generation time
of each image in the synthetic dataset is about 1 s, and the processing time of the an-
notation image is about 20 to 30 s, which is about three- to five-times faster than using
manual annotation.

2. In this paper, six training datasets consisting of different numbers of real pho-
tographs and synthetic photographs were used, and six Mask R-CNN models were trained
with the same training parameters, to compare the prediction performance for rebar in-
stance segmentation. The prediction results of each model on the test set composed of real
photographs illustrated that the synthetic dataset could effectively train the network model
to identify the corresponding real target, which is reflected in the following: (1) adding
synthetic data to the real dataset improved the model’s prediction performance; (2) the
total number of datasets remained the same, and using synthetic data to replace part
of the real data was better than using all-real or all-synthetic data. The reason for the
improved performance of the network trained on the mixed dataset may be that the in-
formation in photographs in the dataset was richer and the trained network model was
more generalizable.

3. This paper’s synthetic dataset creation method has a certain degree of versatility. It
can be directly applied to the creation of datasets for any single-class instance segmentation
task, by simply replacing the rebar model with a model of other objects, and can also be
directly applied to synthetic dataset creation for multi-objective segmentation tasks.

4. In this study, two-dimensional segmentation of the rebar regions in photographs
was achieved with the help of synthetic datasets. However, for automatic rebar tying and
construction quality inspection in rebar projects, we need to identify actual 3D information
such as the specific location, spacing, and diameter of the rebar. Further studies will be
conducted in the future to address these shortcomings.
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