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Abstract: The reliability of concrete structures is closely related to the durability of the concrete
materials stable under external environmental conditions. The present study is aimed at analysing
the effect of a prospective hardening additive containing calcium alumoferrites and calcium sulfate
(AFCS) as a substitute (5–15%) for Portland cement. The hardened cement pastes were characterized
by water absorption, shrinkage, strength and corrosion resistance. It was shown that replacing a
part of Portland cement with the AFCS additive results in an increase in the strength of fine-grained
concrete and in the water resistance grade of concrete. The use of the AFCS additive in the mixed
cements reduces the shrinkage of cement stone, resulting in shrinkage-free fine-grained concretes.
The increased corrosion resistance of the hardened cement paste is caused by a chemical (saturation)
equilibrium between corrosive medium and a cement stone. Penetration of sulphate ions from
corrosive solution into the hardened cement paste is much lower, unlike Portland cement. Following
saturation of the hardened cement paste with sulphate ions, their further penetration into the cement
stone does not occur. Based on the results of the study, recommendations were developed for the use
of the hardening alumoferrite-gypsum additive to Portland cement, which allows to improve the
mechanical and corrosion characteristics of concrete.

Keywords: optimized cement paste; combined additive; alumoferrite; gypsum; dense structure;
shrinkage; corrosion resistance

1. Introduction

The modern development of the building industry is associated with the widespread
use of concrete. The mostly used construction material is reinforced concrete with the steel
reinforcement. Although concrete is an ideal material to protect the steel reinforcement from
corrosion damage, the durability of the constructions is also related to the durability of the
cementitious materials of which they consist [1–5]. The main chemical causes of concrete
destruction are alkali-silica and alkali-carbonate reactions, carbonation, sulfate and chloride
exposure, and steel corrosion as well [6–10]. A combination of the mentioned processes
leads to substantial deterioration of concrete structures. In addition to the above, acting
singly or in combination, a number of factors, such as high structural stresses, thermal
stresses, shrinkage, poor material quality and inadequate maintenance can exacerbate the
situation [11].

At present, much attention is paid to the problem of corrosion damage of concrete.
Researchers are searching for possibilities to increase the resistance of cement compositions
using corrosion-resistant binders, aggregates and additives [12–17]. The problem of resis-
tance of concrete materials against the external impacts is especially important when using
multicomponent cements [18–22]. Extensive data have been accumulated on the behavior
of various cements in corrosive media [6,23]. From the physical point of view, the corrosion
process occurs when water or other corrosive medium penetrates into the pores of concrete
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causing the material erosion. The resulting effect depends on a material porosity and
duration of exposure to corrosive medium [14–16]. From the chemical point of view, the
hydration processes occurring when cementitious materials come into contact with water
lead to the formation of a number of hydrate compounds [24]. Those compounds, when
subjected to the influence of an aggressive medium, undergo transformations which lead
to their decomposition, and as a consequence, to the strength and durability reduction of
the cement stone [25–30]. Therefore, in order to protect a concrete material from corrosion,
it is necessary to choose a binder with components that produce substances stable to the
destructive impact of the corrosive medium.

One of the corrosion-resistant cements are those containing sulfate components, there
are known studies on corrosion resistance of hardened cement pastes with sulfated cement
additives [25,29–33]. To obtain expanding and straining cements, the expanding additives
based on sulfated clinkers, produced on the basis of various iron-containing technogenic
materials, have recently attracted the special interest of researchers. Sulfoferrite and
sulfoaluminoferrite clinkers can be used as components of mixtures with Portland cement
(up to 15%) [31,32]. The hydration properties of sulfated clinkers and the composition
of hydrated minerals make it possible to create a whole range of cements with specified
properties—from expanding to high-strength ones. Moreover, a special role in the formation
of the structure of cement stone using such clinkers belongs to ettringite. It is an important
component of cement stone, largely determining its strength and deformation properties.

It is known [24] that the sulfate corrosion of concretes is characterized by processes
that occur when they are accompanied by the accumulation of poorly soluble reaction
products in the pores of concrete. Such substances are capable of increasing the volume
of the solid phase in the pores of concrete during phase transitions or polymerization. As
a consequence, internal stresses are created in the concrete destroying its structure. The
shrinkage deformations arising from corrosion can lead to the formation of cracks and other
defects in the structure of building materials, reducing the service life of these materials [34].
Therefore, in order to increase the durability of concrete, a number of additives that reduce
or affect shrinkage are introduced into the composition of concrete [34–37].

The sulfate aggression is the most common since sulfate ions are present in almost all
types of natural and wastewaters. In the process of the sulfate corrosion of cement stone,
gypsum and ettringite are formed according to the following schemes:

Ca(OH)2 + Na2SO4 + 2H2O→ CaSO4·2H2O + 2NaOH

CaSO4·2H2O + 3CaO·A12O3·6H2O + 24H2O→ 3CaO·Al2O3 3CaSO4·32H2O

The volume occupied by ettringite is 2.27 times larger than the volume of the initial
hydration products. At the initial stage of corrosion, the resulting products seal and
strengthen the concrete, but then excessive accumulation of reaction products leads to the
formation of cracks and to a decrease in the strength of concrete. Despite the fact that the
sulfate corrosion of concrete has been the subject of extensive research, some aspects of this
complex process are still not clear.

Therefore, studies on the improvement of the corrosion resistance of hardened cement
pastes will enrich the scientific knowledge on the formation of the structure of hardened
cement paste and will be useful in optimizing the structure of corrosion resistant and
durable concretes.

The purpose of the present study was to optimize the composition and structure of the
hardened cement pastes using additives of alumoferrites and gypsum in order to increase
the resistance against sulphate corrosion.

2. Materials and Methods
2.1. Materials

In the present work, an ordinary Portland cement (OPC) CEM I 42.5 H, in accordance
with GOST 31108, was used. The hardening additive (Table 1), consisting of calcium
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alumoferrites and calcium sulfate (AFCS), was used to replace a definite share (5, 10 and
15%) of the Portland cement in the pastes to optimize their structure. The characteristics of
the additive and cement are presented in Table 1. The samples made of cement without
additive served as the control ones. The samples were prepared by the conventional mixing
method consisting in introducing a weighed amount of AFCS into the cement and aggregate
mixture. A polyfractional sand was used as an aggregate. The mineralogical composition
of the materials is presented in Table 2.

Table 1. Characteristics of the hardening alumoferrite-gypsum additive and cement.

AFCS OPC

SiO2, % 14.40 22.03

Al2O3, % 8.70 5.15

Fe2O3, % 16.20 4.86

CaO, % 51.90 65.41

MgO, % 1.17 1.20

SO3, % 4.60 0.34

Loss of ignition, % 0.01 0.21

Density, m3/kg 2.90 3.16

Blaine grinding fineness cm2/g 4230 3190

Table 2. Mineralogical composition of the hardening additive and cement.

AFCS OPC

Alite 10 67

Belite 25 15

Tricalcium aluminate - 5

Tetracalcium alumoferrite 65 13

In this work, the sulfate solutions 5% Na2SO4 and 1% MgSO4 were used as
corrosive media.

2.2. Experimental Procedure
2.2.1. Mixture Proportioning

The cement samples studied were prepared by mixing the weighed amounts of com-
ponents shown in Table 3. The sample compositions are labeled in “X-Y” format, where X is
the OPC content and Y is the AFCS content (%). The water-cement ratio was 0.5 according
to EN 196.1.

Table 3. Compositions of the mixed cements (mass, g).

Material
The Designation of the Composition “X-Y”

100-0 95-5 90-10 85-15

OPC 450 427.5 405 382.5

AFCS - 22.5 45 67.5

Water 225 225 225 225

Polyfractional sand 1350 1350 1350 1350



Buildings 2023, 13, 565 4 of 16

2.2.2. Cement Mixing

The cement mixtures were produced using an automatic programmable mixer CON-
TROLS 65-L0006/AM with planetary rotation of the working body (Figure 1) in two speed
modes: slow speed—blade rotation 140 ± 5 rpm, fast speed—blade rotation 285 ± 10 rpm.
The sequence of the mixing operations are shown in Table 4. The components were mixed
in a plastic drum with rubber balls. The mixing procedure was performed as follows.
The sand was poured into the metering device of the mixer. Water was poured into the
mixer bowl previously wiped with a damp cloth, and then the pre-mixed cement was
added. Following this, the mixer was turned on at low speed and mixed the components.
Following this stage of mixing, sand was added and the mixing continued at low speed,
after which the cement mortar was additionally mixed.
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Table 4. Parameters of the preparation of the cement mixtures.

№ Description of the Procedure Procedure Duration,
min Mixer Speed Mode

1 Mixing of the components 1.0 Slow

2 Adding water, mixing 1.5 Slow

3 Pause, manual stirring 1.0 -

4 Mixing 2.0 Rapid

5 Mixing 1.5 Slow

Total mixing time, min 7.0

2.3. Test Procedure
2.3.1. Strength Test

To determine the strength characteristics, the 40 × 40 × 160 mm cement beam samples
were prepared using a steel mold. The samples were cured in a normal curing chamber for
the first day, and then they were immersed in distilled water for 28 days at 22 ◦C. Following
this period, the samples were removed from the water and further stored under ambient
laboratory conditions.

At day 28, the samples were tested on bending and compression in accordance with
GOST 30744. The bending test was carried out using a PM-A-70AB press (Figure 2a). The
bending strength Rstr was calculated by Formula (1):

Rstr =
1.5Fl

b3 (1)
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where
Fstr is the breaking load, N;
b is the size of the side of the square cross-section of the beam sample, mm;
l is the distance between the axes of supports, mm.
The arithmetic mean value of the test results of three samples was taken as the bending

strength. The calculation result is rounded to 0.1 MPa.
The compression test was performed on a CONTROLS MCC8 50-C8422 press at a

speed of 2.5 MPa/s (Figure 2b). The compressive strength (Rcom, MPa) was calculated using
Formula (2):

Rcom =
Fcom

S
(2)

where
Fcom is the breaking load, N;
S is the cross-sectional area, mm2.
The arithmetic mean value of the results of six tests was taken as the compressive

strength of a series of samples.
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2.3.2. Water Absorption Test

The water absorption was determined by testing samples in the state of natural
humidity according to GOST 12730.3. The three samples for each composition studied were
weighed every 24 h of water absorption on hydrostatic scales with an error of no more than
0.1%.

The water absorption for each sample (Wm, wt. %) was calculated with an error of
0.1% by Formula (3):

Wm =
mv −mc

mc
·100% (3)

where
mv is the mass of a wet sample, g;
mc is the mass of a dry sample, g.

2.3.3. Water Permeability Test

Determination of the water permeability was performed in accordance with GOST
12730.5 using the filtration coefficient. The water pressure increase was achieved with
0.2 MPa steps for 1–5 min after 1 h exposure at each step to the pressure, at which the water
filtration in the form of individual drops was observed. The values of the filtrate mass and
volume were measured every 30 min, six times for each sample. The filtrate volume of an
individual sample (Q) is taken as the arithmetic average of the four largest values. The
water permeability of concrete was determined by testing a series of six samples.
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The filtration coefficient (Kf, cm/s) of an individual sample was determined by
Formula (4):

K f =
η·Q·δ
S·τ·p (4)

where
η is the water viscosity coefficient (η = 1.00 at 20 ◦C);
Q is the volume of a filtrate, cm3;
δ is the thickness of a cement sample, cm;
S is a cement sample area, cm2;
τ is the test time, s;
p is the pressure in the setup, cm of the water column.

2.3.4. Expansion and Shrinkage Tests

Deformation of the hardened cement mortars was evaluated by testing the
40× 40× 160 mm beam specimens. One day after molding, a brass adhesive rod was glued
to the center of each end face of the beam sample. A quickly polymerizing non-expanding
glue (epoxy resin 80 g, polyethylene polyamine 3 g, dibutyl phthalate 1 g) was used to
fasten the adhesive. Prior to testing, an indicator-type device (Figure 3) was adjusted to
the samples to measure the strain. Once the length of the samples was measured, they
were stored in water. To determine the deformative properties, three beam samples of each
composition were made.
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Deformation of hardened cement specimens was evaluated using Formula (5):

ε0 =
∆L
L
·100 (5)

where
ε0 is the total shrinkage, %;
∆L is the difference between the final and initial references of the indicator, mm;
L is the length of the sample, mm.

2.3.5. Corrosion Resistance Testing

Following the curing of the samples in water for 28 days, some of them were immersed
in an aggressive medium for 90, 180 and 360 days; a part of the samples was placed in
pure water. Samples cured both in water and in aggressive solutions were tested for
residual strength, and their structure was studied as well. The durability coefficient (Kc)
was calculated using Formula (6):

Kc =
Ram

Rsc
(6)

where
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Ram is the ultimate strength of the samples cured in a corrosive medium, MPa;
Rsc is the ultimate strength of the samples cured under standard conditions, MPa.

2.3.6. Physical Structure and Chemical Analysis

The physical structure of the hardened cement paste was studied by determining the
porosity by an inert liquid saturation and by a low pressure mercury porosimeter, and
using scanning electron microscopy (SEM, JEOL JSM-7500F) as well.

Absorption of sulfate ions from the corrosive solution by the solidified samples was
determined by a chemical method of analysis according to GOST 5382.

3. Results and Discussion
3.1. The Physical Essence of Optimizing the Structure of Hardened Cement Paste

The physical essence of optimizing the structure of hardened cement paste is based
on the controlled formation of a dense structure. A dense structure of the stone is formed
due to mutual sprouting of the crystal framework formed by crystalline hydrates of the
hardening additive (AFCS) and by the low-crystallized calcium hydrosilicates during the
hydration of Portland cement.

Formation of the crystal structure in the studied samples occurs as a result of hydration
of the AFCS additive, which contains an increased amount (65%) of calcium alumoferrite.
The empirical composition of calcium aluminoferrite can be represented by the formula
C2A1−xFx, where x = 0.5 (the formula can be rewritten as C2A0.5F0.5). Increasing the
element ratio Al/Fe up to unity, one can obtain C4AF. (Here and further in all formulas, the
following designations are used: C—CaO; A—Al2O3; F—Fe2O3).

The hydration of C4AF in the presence of calcium hydroxide occurs according to
reaction (7):

C4AF + Ca(OH)2 + 14H2O→ C2AH8 + C3FH6 (7)

This reaction results in the crystallization of hexagonal crystal hydrates of calcium
hydroaluminates of composition C2AH8 and of cubic calcium hydroferrites of composition
C3FH6.

In the presence of calcium sulfate (CaSO4), calcium hydroaluminates C2AH8 form
ettringite crystals by reaction (8):

C2AH8 + 3CaSO4 + Ca(OH)2 + 23H2O→ 3CaO·Al2O3·3CaSO4·32H2O (8)

The presence of calcium hydroxide (Ca(OH)2) is necessary for the reactions (7) and
(8) to proceed, resulting in the formation of the crystalline hydrates. Calcium hydroxide
is formed in large quantities during the hydration of Portland cement, mainly due to
hydrolysis of tricalcium silicate C3S. It follows from the given reactions that the hardening
additive plays a role of a calcium hydroxide binder. Thus, due to the combination of
hydrolytic and sulfate consumption processes, formation of a dense structure within the
hardened cement samples occurs when a part of Portland cement is substituted by the
AFAS additive.

The SEM-images of the obtained hardened structures are shown in Figure 4.
According to the electron microscopy data (Figure 4a), the OPC structure can be charac-

terized as a block-rhythmic structure. Such a structure is formed during the crystallization
of Ca(OH)2 in the form of portlandite blocks. The rhythmic structure is caused by the
somatic transport of the gel-like mass of calcium hydrosilicates C-S-H to the surface of
these blocks. The structure of the hardened samples of mixed cements, as compared to
the previous one, has a monotonic character (Figure 4b–d). No large portlandite blocks
can be observed because Ca(OH)2 takes part in the formation of the AFt phases. The AFt
phases are germinated with calcium hydrosilicates. The formed crystalline hydrates of
the AFt phases have a fine-fiber structure, and fill the small pores of the stone. Due to the
crystallization of the AFt phases in the pore space, not only the pores are formed as a result
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of water binding, but also the air pores (Figure 4c,d). As a result, the cement stone has
a lower porosity by 15–23%, both during storage under normal conditions or in various
aggressive media. The results of the porosity analysis are shown in Figures 5–7.
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Optimizing the structure of the hardened cement paste by replacing a part of the
Portland cement leads to an increase in the density of the samples. The values of the
density of the samples of different composition are shown in Figure 8. As can be seen from
the presented results, the higher the AFCS additive content, the lower the porosity of the
samples, and the higher the density. Such a density structure with reduced porosity is
observed in samples with higher strength and with lower water absorption. The strength
of the mixed cement samples cured under normal conditions is presented in Table 5.
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Table 5. Results of the strength tests of the cement samples at different periods of hardening (days).

Sample
Flexural Strength, MPa Compressive Strength, MPa

28 60 90 180 360 28 60 90 180 360

100-0 6.8 8.8 9.8 11.1 12.3 49.4 54.2 56.9 58.7 59.2

95-5 6.1 8.6 10.0 11.4 12.5 47.3 53.8 58.1 60.4 62.6

90-10 5.9 9.3 11.2 12.4 13.1 46.5 53.2 58.8 61.7 63.6

85-15 5.3 8.8 10.6 12.0 12.6 45.2 51.8 57.1 60.1 62.0

As can be seen from Table 5, the compressive and tensile strength of the fine-grained
concrete samples decreases as the AFCS content increases at the early stages (7 and 28 days).
At the same time, expansion of the specimens also takes place. Later, after three months,
the highest compressive strength is achieved for the 10% AFCS samples without their
shrinkage. The increased amount of formed AFt phase crystallohydrates (Figure 4) leads
to the expansion of the hardening structure, which is accompanied by a decrease in the
compressive strength of the samples by 4.25–8.50% (after 28 days). By 360 days, the strength
of the samples, on the contrary, increases by 4.7–7.4%. The observed effects can be explained
by the accumulation of calcium hydrosilicate submicrocrystals in the intercrystalline space
of the crystal framework of AFt phases.

The results of the determination of water absorption are presented in Table 6. The
increased strength and density of the cement matrix when replacing a part of Portland
cement with the AFCS additive makes it possible to obtain a hardened cement paste with
a reduced filtration coefficient by 2.6–2.1 times for compositions 95-5 and 85-15, and by
4.6 times for compositions 90-10, as compared to the Portland cement sample. Thus, using
the alumoferrite-gypsum additive allows to increase the strength of fine-grained concrete
as well as the grade of concrete for water resistance (from W8 to W14).

The results of the determination of the mixed cement samples expansion (shrinkage)
are shown in Figure 9. As can be seen from the data obtained, the Portland cement samples
undergo shrinkage. The mixed cement samples show no shrinkage, but expansion occurs
during the first 14 days of hardening. Such an effect can be explained by the formation of a
crystalline structure in the hardening cement paste. When the crystallization is completed,
the caged structure fills in with fine crystals of calcium hydrosilicates. During this period,
the expansion process is stabilized, and the strength (density) of the samples increases.
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Table 6. Permeability of the mixed cement samples.

Sample
Filtration

Coefficient, Kf
cm/s

Water Absorption,
wt. %

Water Resistance
Grade

100-0 5.5·10−10 4.1 W8

95-5 2.6·10−10 3.5 W12

90-10 1.2·10−10 2.9 W14

85-15 2.1·10−10 3.2 W14
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The analysis of the data presented above allows us to conclude that the substitution
of a part of Portland cement with the AFCS additive makes it possible to optimize the
structure of the hardened cement paste. Optimization of the structure is based on the
controlled formation of a dense strong structure. This leads to an increase in the strength of
fine-grained concrete and to an increase in the water resistance grade of concrete. Moreover,
the AFCS additive makes it possible to control the expansion (shrinkage) of the samples.

3.2. Chemical Essence of the Increased Corrosion Resistance of Hardened Cement Paste

The chemical essence of the increased corrosion resistance of the hardened cement
paste consists in the affinity of the chemical and mineral structures of the components of
the AFCS additive to Portland cement.

Formation of a tough dense structure of the hardened cement paste causes an increase
in its corrosion resistance. The kinetics of a change in the resistance coefficients for the
mixed cement samples is shown in Figures 10 and 11. The resistance coefficient of the
mixed cements exceeds the unity which indicates an increase in their strength during
hardening in aggressive media, in contrast to OPC, in which the resistance coefficient
gradually decreases. The higher corrosion resistance is achieved by establishing a chemical
equilibrium between the corrosive medium and the hardened cement paste: the hardened
cement paste contains crystalline hydrates with ions identical to those of the corrosive
medium. The AFCS additive also contains sulfate ions (Table 1).
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Figure 10. The coefficients of corrosion resistance of the mixed cement samples during different
periods (days) of hardening in 5% Na2SO4 solution.
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Figure 11. The coefficients of corrosion resistance of the mixed cement samples during different
periods (days) of hardening in 1% MgSO4 solution.

The results of absorption measurements (Figures 12 and 13) show that the hardened
cement paste does not absorb sulphate ions from the solutions during the first 14 days, in
contrast to Portland cement. A slightly increased absorption of sulphate ions by the mixed
cements is observed only by day 28 of hardening, and further substantial penetration of
sulphate ions into the cement stone does not occur. Such a resistance to the sulphate attack
can be explained by establishing a saturation equilibrium between the corrosive medium
and the cement stone.
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solution.

In turn, the achieved equilibrium at substantially lower absorbed sulphate contents
is determined by the dense structure of the hardened cement paste formed by crystalline
hydrates of AFt phases densified with a gel-like mass of calcium hydrosilicates C-S-H. The
hardened cement paste consists of hydrate phases which contain sulphate ions identical
to ions in the corrosive media. This results in the absence of the concentration gradient
between solid and liquid phases, and therefore, in lower corrosion damage by sulphate
solutions. It is also necessary to note that the structure of the hardened cement paste must
be formed with AFt phases and must exclude AFm phases which are the most sensitive
to the sulphate corrosion. Exposure to the corrosive sulphate solutions leads to complete
decomposition of AFm phases within the stone structure followed by crystallization of
AFt phases. This transformation is accompanied with calcium leaching from the structural
components of the hardened cement paste and results in its destruction.
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4. Conclusions

1. The physical essence of optimizing the structure of the hardened cement paste is
based on the controlled formation of a dense structure. The hydrated OPC structure is
characterized by block-periodic structure and is formed by Ca(OH)2 blocks and by non-
hydrated grains covered with a gel-like mass of calcium hydrosilicates C-S-H. The OPC
stone has an open porosity of about 23% after 90 days of curing in water. During storage
in sulphate solutions, porosity increases due to dissolution and leaching of Ca(OH)2. At
the same time, the coefficient of corrosion resistance of the OPC stone in the corrosive
environments decreases;

2. The structure of the mixed cements, containing the hardening alumoferrite-gypsum
(AFCS) additive and cured in water, is formed by AFt crystalline hydrates with a gel-like
mass of calcium hydrosilicates C-S-H. The samples are characterized by an open-type
porosity of 16% after 90 days. When stored in sulphate solutions, porosity decreases due
to crystallization of AFt faces resistant to subsequent dissolution. In such cements, not
only pores formed as a result of water binding, but also air pores become overgrown. As a
result, the cement stone had a 15–23% lower porosity, both during storage under normal
conditions as well as in various corrosive solutions. Replacing a part of the Portland cement
with the AFCS additive results in an increase in the strength of fine-grained concrete and in
an increase in the water resistance grade of concrete. The use of the AFCS additive in mixed
cements reduces the shrinkage of cement stone, resulting in shrinkage-free fine-grained
concretes. At the early stages (7 and 28 days), the compressive and tensile strength of the
cured cement paste decreases as the AFCS content increases;

3. The chemical essence of increased corrosion resistance of the hardened cement
paste consists in the formation of affinity structures, and the chemical and mineralogical
nature is analogous for the both AFCS additive and Portland cement. From the chemical
point of view, the increased corrosion resistance of the hardened cement paste is caused
by a chemical (saturation) equilibrium between the corrosive medium and a cement stone.
The hydrate phases in the hardened cement contain sulphate ions identical to those in
the corrosive solutions. Penetration of sulfate ions from the corrosive solution into the
hardened cement paste is much lower unlike Portland cement. Following saturation of the
hardened cement paste with sulphate ions, their further penetration into the cement stone
does not occur;

4. The structure of the hardened cement paste should be formed with the participation
of AFt phases which are stable against the sulphate corrosion. Exposure of AFm phases to
sulphate containing media leads to the complete decomposition of the stone structure with
subsequent crystallization of the AFt phases. This transformation is accompanied with
calcium leaching from the hardened cement paste and leads to its destruction;

5. The practical use of the alumoferrite-gypsum additive can be effective in replacing
sulfoaluminate cement. The Portland cement mixtures with the additive have normal
setting times, provide good rheological properties of cement mortars and high corrosion
resistance. The hardened cement compositions can be used to obtain the waterproof high-
strength concrete with compensated shrinkage for hydraulic engineering constructions.

5. Possible Directions for Future Studies

To optimize the structure and properties of the hardened cement paste containing
alumoferrite-gypsum additive, it is necessary to continue research to establish the effect of
various surfactants on the morphology of the resulting crystallohydrates.
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