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Abstract: Sensing performance is crucial for real-world applications of the embedded piezoelec-
tric lead zirconate titanate (PZT) sensors in concrete structures. Based on the electromechanical
impedances (EMIs) obtained numerically and experimentally from the embedded PZT sensors, ef-
fects of installation orientation and interfacial roughness were investigated on their sensitivity and
reliability for quantitative concrete stress monitoring. The numerical results suggest a better sensi-
tivity in the embedded 90◦ PZT sensors, with planar normal perpendicular to the loading direction,
where the conductance amplitude variation is 6.5 times of that of the 0◦ PZT sensors, with normal
parallel to load direction. Further, the improved reliability of the PZT sensors with rough interfaces
is observed experimentally, which makes them robust for concrete stress monitoring over a wider
sensing range from 0 to 20 MPa. Based on the static analyses, it is noted that the sensing performance
of the embedded sensor is significantly affected by the interfacial stiffness degradation induced by the
enhanced strain surrounding the sensor. These findings suggest that delaying the interfacial stiffness
degradation, i.e., with proper installation orientation and interfacial treatment, could improve the
sensing performance of the embedded sensors for quantitative concrete stress monitoring.

Keywords: interfacial effect; embedded PZT sensor; electromechanical impedance; concrete
stress monitoring

1. Introduction

Structural health monitoring is crucial for existing infrastructures against catastrophic
structural damages. For the non-destructive evaluation of concrete structures, PZT-based
sensors are widely used for their good sensitivity and practicality [1–4]. The direct and
converse piezoelectric properties in a PZT patch render it an actuator for producing high-
frequency vibration, as well as a sensor for measuring the impedance signals. When a PZT
sensor was surface bonded to or embedded into a host structure, the electromechanical
coupling correlates the changes in structural properties with the changes in electrical
impedance signals measured from the PZT sensor by an impedance analyzer. Thus, the
changes in structural effective parameters such as mass, stiffness, and damping of the host
structure can be detected by analyzing the measured electromechanical impedance (EMI)
signals [5,6].

To date, this EMI technique has been widely used for structural health monitoring
in concrete structures. Many researchers have utilized PZT-based sensors for strength
gain monitoring in fresh concrete and damage identification in concrete structures [7–11].
Based on the EMI technique, both the surface-bonded and embedded PZT-based sen-
sors have been validated experimentally for strength gain monitoring quantitatively in
concrete [12–20]. Additionally, the PZT-based smart probe was proposed to predict the
dynamic elastic modulus of cementitious materials theoretically [21] and validated for
monitoring the strength and freeze/thaw process in soil experimentally [22]. Further-
more, changes in the damage states of a concrete beam during repair have been captured

Buildings 2023, 13, 560. https://doi.org/10.3390/buildings13020560 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13020560
https://doi.org/10.3390/buildings13020560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings13020560
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13020560?type=check_update&version=3


Buildings 2023, 13, 560 2 of 19

qualitatively by the changes in the EMI signatures measured by the surface-bonded PZT
sensors [23].

In real-world applications, the PZT sensors were usually installed in concrete struc-
tures serviced under harsh environments. To protect against unexpected failures due to
environmental threats, sensors were often packed with coating layers and embedded into
host structures. The installation configuration will inevitably result in two issues with
the sensitivity of the embedded PZT patches. The first issue is the indirect electrome-
chanical coupling, due to the insertion of the sensor–concrete interfacial layers, which
brings additional uncertainties to the measured EMI signals. The other is the localization
of the premature damages across the interfaces, induced by environmental loading, that
may significantly affect the overall structural impedance prediction via the measured EMI
signals. Particularly for structures under severe loading, local damages may occur near the
interfaces before the overall structural yielding occurs. The damaged interfaces will bring
some noise to the impedance signals measured from the embedded sensors, thus impairing
their ability for quantitative concrete stress monitoring and damage evaluation.

For stress monitoring in concrete structures, voltage changes in the PZT sensors have
been used to reflect the stress changes qualitatively [24–29]. However, these techniques were
not qualified for quantitative concrete stress monitoring due to their low accuracy. Based
on the EMI technique, compressive stresses in concrete have been estimated by the reso-
nance shifts of the measured conductance signatures at a precision level of ~5 MPa [3,30].
Furthermore, statistical metrics such as root mean square deviation (RMSD) and correlation
coefficient (CC) have been utilized to indicate the changes in the conductance signatures
that are closely related to the compressive stresses in concrete [18,31–36]. Additionally,
machine learning algorithms have been incorporated into the EMI technique for quantita-
tive stress monitoring and structural damage detection [20]. With the advances of these
approaches in recent years, the accuracy of stress monitoring has been improved remark-
ably. Zhao et al. [36] observed a nonlinear relationship between the damage volume ratio
(DVR) and the RMSD index of the EMI signatures based on numerical and experimental
investigations, and they found that the numerically obtained DVR grows linearly before
the compressive stresses reaching 0.31 fc (the compressive strength). Pan and Guan [37]
established a linear relationship between the stress and the RMSD of the measured con-
ductances in concrete under low stresses below 0.3 fc using the embedded PZT sensors.
However, quantitative stress monitoring via PZT sensors is still a challenge in concrete
structures. Particularly for the embedded sensor, although the importance of the interfacial
effect between the sensor and concrete is known, how to utilize the effect to achieve better
sensing performance is still unclear.

This work aims to study the interfacial effects on the sensing performance of the
embedded PZT sensors for concrete stress monitoring. By using the EMI technique, the
sensitivity and reliability of the PZT sensors were investigated numerically and experi-
mentally at different installation orientations and interfacial roughnesses. The mechanism
underlying the interfacial effects was discussed for the improvement in the sensitivity and
reliability of the embedded sensors. The results of the current study validated that the
installation orientation relative to the loading direction played a dominant role in determin-
ing the sensing performance of the PZT sensors. This work suggests a practical method, via
interfacial enhancement, to improve the reliability and sensitivity of the embedded sensors.

2. Experiments and Numerical Simulations
2.1. Theoretical Model of the Piezoelectric Impedance

According to the theory proposed by Liang et al. [6] for a one-dimension ideal model,
the electrical admittance measured by the PZT sensor coupled with the host structure can
be calculated by the following:

Y(ω) = iω
lAwA

hA

[
εσ

33 − d2
31YE

33 +
ZA(ω)d2

31YE
33

ZS(ω) + ZA(ω)

tan(klA)

klA

]
(1)
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where i is the imaginary unit, ω is the angular excitation frequency, ZA(ω) and ZS(ω) are
the mechanical impedances of the PZT sensor and the host structure, respectively.

ZA(ω) =
YE

33wAhA
ωlAi

klA
tan klA

(2)

ZS(ω) =
σAP
iωx

(3)

where lA, wA, and hA are the length, width, and thickness of the PZT patch, respectively;
εσ33= εσ33(1 − δi) is the complex dielectric constant of PZT; δ is the dielectric loss factor;

YE
33= YE

33(1 + ηi) is the complex elastic modulus of PZT; η is the mechanical loss factor;
d31 is the piezoelectric strain coefficient; k is the vibration factor; σ is the magnitude of the
periodic stress applied on the host structure from PZT surfaces; AP is the surface area of
PZT; x is the magnitude of the lateral displacement of PZT.

However, for the model with an embedded PZT sensor, the interfacial interaction be-
tween the PZT sensor and the host structure should be considered. To take the contribution
from the sensor–concrete interfaces into account, the electrical admittance measured by the
PZT sensor can be modified as follows [38]:

Y(ω) = iω
lAwA

hA

[
εσ

33 − d2
31YE

33 +
ZA(ω)d2

31YE
33

ξZS(ω) + ZA(ω)

tan(klA)

klA

]
(4)

where ξ is the modification coefficient of the structural mechanical impedance that considers
the interfaces an additional part of the host structure. According to the measured EMI
signatures obtained by Equation (4), the mechanical impedance of the host structure can be
predicted more accurately if the contribution of the interfaces can be significantly reduced.

2.2. Numerical Models for PZT Sensors

The electromechanical behaviors of the PZT sensors and concrete cubes were simulated
by using the finite element (FE) program ABAQUS [32,39,40]. In the FE models of typical
PZT sensors, as shown in Figure 1a, PZT patches (colored in red) were encased with thin
epoxy layers with a thickness of 0.1 mm (colored in blue). The dimensions of each PZT
sensor were 10 mm × 10 mm × 0.5 mm. In the 3-D model, the PZT patch was modeled
using the 8-node linear piezoelectric brick element (C3D8E) with a typical mesh size of
1 mm. With an identical mesh size, the epoxy layer was modeled using the reduced 8-node
linear brick element (C3D8R).
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Figure 1. Typical FE model (a) for the fabricated PZT sensors (b).

In this study, all PZT patches were first packed with epoxy for waterproofing, and then
polished or sprinkled with fine sand to create flat or rough surfaces before the complete
hardening of epoxy packing layers. In this way, two types of sensors were fabricated
with either flat or rough interfaces. With distinct interfacial roughness, the bonding effect
between the sensor and concrete can be easily considered in experiments. Figure 1b shows
the PZT sensors fabricated with flat and rough surfaces. In the rough PZT sensor, the
sand with a particle size of 1 mm were half embedded into the epoxy layer during curing.
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Both the PZT patch and the epoxy are assumed to be isotropic in FE models with physical
properties listed in Table 1.

Table 1. Physical properties of PZT and epoxy.

Physical Property PZT Epoxy

Density ρ (kg/m3) 7600 1650
Elastic modulus E (GPa) 67 3.2

Poisson’s ratio ν 0.32 0.34
Piezoelectric strain coefficient

d31/d32/d33/d24/d15 (10−10 m/V) −3.6/−3.6/5.0/5.8/5.8

Dielectric constant
εσ11/εσ22/εσ33 (10−8 F/m) 1.75/1.75/2.12

To perform electromechanical analysis, a sine alternate excitation with voltage 1 V was
applied to the PZT sensor along the thickness direction. Lateral displacements (x) of the PZT
patch and periodic stresses acting on the host structure were recorded simultaneously over
the sweeping frequencies and then input into Equation (3) to obtain a conductance signature.
As acknowledged, the conductance is more stable than the susceptance which is sensitive
to ambient temperature [41]. Thus, to reduce the temperature-induced uncertainties,
only conductance signatures were utilized during electromechanical analyses throughout
this work.

To verify the feasibility of the FE model, typical electrical conductance signatures were
simulated and compared with that measured from the PZT sensor experimentally. Figure 2
shows the conductance signatures of a free PZT sensor obtained from both experiments
and simulations. It was observed that both signatures agreed with each other satisfactorily.
Compared with the numerical signature, the experimental one shows many more small
peaks apart from the predominant one, reflecting the uncertainties induced by fabrication
errors. Over the interested frequency range, the predominant resonance obtained numer-
ically coincided with the experimental counterparts. This verifies the feasibility of the
numerical model for capturing the electromechanical properties of the PZT sensor.
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Figure 2. Experimental and numerical conductance signatures of a free PZT sensor over the sweeping
frequency range 0~500 kHz.

2.3. Numerical Models for Concrete Cubes

The typical model of concrete is a 3-D cube with a dimension of 100 mm embedded
with a PZT sensor at the center, as shown in Figure 3a. Figure 3b presents the detailed
dimensions of the model. In this model, the C3D8R elements are built for concrete sur-
rounding the PZT sensor with a typical mesh size of 1 mm and for other concrete with a
mesh size of 10 mm. To save computational cost, the concrete elements are directly tied
with the epoxy layer during the electromechanical analyses. While in the static analyses, an
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additional contact interaction, instead of tie interaction, is introduced between the epoxy
layers and their surrounding concrete. The contact interaction is set to be hard along the
normal direction and frictional along the tangential direction with a friction coefficient
of 0.5.
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Figure 3. (a) The typical FE model for concrete specimens and (b) the detailed dimensions of the
embedded PZT sensor.

To verify the mechanical behavior of the FE model, static analyses were conducted
numerically on concrete cubes under uniaxial compression. With the bottom surface fixed
to the ground, a compressive displacement was applied to the cube’s top surface at a very
slow velocity. The concrete damaged plasticity (CDP) model, proposed by Lublinear et al.
(1989) [42] and developed by Lee et al. (1998) [43], was usually adopted for the static
analysis of concrete when plastic deformation and stiffness degradation were considered.
Herein, the CDP constitutive model was utilized to describe the damage behavior of
concrete beyond yielding.

In this study, the damage parameters (dc and dt) were introduced to describe the
inelastic behavior of concrete. It was suggested by Chinese code (GB 50010-2010) that
the stress–strain relationships of concrete under uniaxial compression and tension can be
expressed as follows:

σc = (1 − dc)Eoεc (5)

σt = (1 − dt)Eoεt (6)

where dc and dt are the damage evaluation parameters of concrete under uniaxial compres-
sion and tension, respectively; Eo is the elastic modulus; εc and εt denote the engineering
strain under compression and tension, respectively. From Equations (5) and (6), the nominal
stresses and plastic damage parameters versus the engineering strain of a typical concrete
cube under compression and tension can be obtained, as shown in Figure 4a,b, respectively.
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Based on the aforementioned CDP model, the compressive stress of the concrete cube
under loading can be calculated. As shown in Figure 5, the compressive stress increases
linearly with the compressive displacement below 0.07 mm. As the displacement increases
beyond 0.07 mm, the slope of the stress-displacement curve starts decreasing and the
peak point, 31.5 MPa, is reached at the displacement of 0.175 mm. After the peak point,
the compressive stress decreases monotonously until the cube is crushed at the ultimate
displacement of 0.35 mm. This numerically obtained curve is found to be consistent with
the experimentally measured results [44].
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2.4. Experimental Setup and Specimens

All specimens were fabricated following the mix proportions of the C40 concrete
suggested by Chinese specifications, as listed in Table 2. Fly ashes with a certain dosage
were added as admixtures for achieving better workability of concrete paste. To reduce
uncertainties during the fabrication, crushed stones with sizes ranging from 5 mm to
20 mm are used as coarse aggregates, and all specimens were cured in the same controlled
environment (temperature = 25 ◦C, moisture = 95%) and tested following the same loading
procedure. In each specimen, a fabricated PZT sensor was positioned in the cube center
with a specific installation angle, 90◦or 0◦, between the normal direction of the PZT and the
loading direction. For each installation orientation, three specimens were cast to take the
fabrication uncertainties into account.

Table 2. Mix proportions of the test C40 concrete. (unit: kg/m3).

Crushed Stone
(kg/m3)

River Sand
(kg/m3)

Cement
(kg/m3)

Fly Ash
(kg/m3)

Limestone Powder
(kg/m3)

Water
(kg/m3)

Water Reducer
(kg/m3)

784.0 756.9 419.1 77.6 21.7 191.5 5.2

After preparation, uniaxial compressive loadings were applied on test cubes by using
a servo-hydraulic machine (YAS-5000) with the repeated 12 loading steps. For each step,
the compressive force was increased progressively at a rate of 2.5 kN/s for 5 s and then
held constant for another 60 s. The conductance signatures of the embedded PZT sensors
were recorded using an impedance analyzer (TH-2839) every 25 kN. Under the small
loadings, the test cubes deformed elastically. Table 3 lists the mechanical properties of the
concrete specimens. According to the Chinese code for the design of concrete structures (GB
50010-2010), the cube compressive strength of C40 concrete (fcu,k) is 40 MPa. The standard
cylinder compressive strength (fck) and tensile strength (ftk) for the tested C40 concrete can
thus be calculated to be 26.75 MPa and 2.41 MPa, respectively.
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Table 3. Mechanical properties of concrete.

Density, ρ
(Kg/m3)

Elastic Modulus
(GPa)

Poisson’s
Ratio, ν

Uniaxial Compressive
Strength,
fck (MPa)

Uniaxial Tensile
Strength,
ftk (MPa)

Concrete 2400 32.5 0.2 26.75 2.41
Sand 2400 32.0 0.2 26.75 2.41

As the compressive loadings increased beyond 150 kN, minor cracks nucleated from
lateral surfaces, propagated dramatically under the ultimate loading of ~390 kN (with nom-
inal stress at ~39.0 MPa) until the specimen was eventually crushed. Figure 6a illustrates
the simulated damage parameters (SDEGs) of the test cube at the failure point. The damage
behaviors obtained numerically are consistent with the failure behaviors (spalling and
crushing) in experiments, as shown in Figure 6b. This verifies the ability of the FE model to
capture the inelastic mechanical behaviors of the test cubes under compressive loading.
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3. Results and Discussion
3.1. Effect of Installation Orientation on the Sensitivity of Embedded Sensors

In this work, the electromechanical coupling of the PZT sensor was transversely
isotropic along the thickness (the ‘3’ direction in Voigt notation), implying that the d31
equals the d32. By applying the alternate voltages across the thickness, the planar exten-
sion vibration will be actuated along the other two directions with identical amplitude.
Simultaneously, the vibration along the PZT thickness direction will also be actuated if
the piezoelectric strain coefficient d33 is not zero [45,46]. Considering that the d31 is much
larger than the d33, the planar vibration dominates, and thus the installation configuration
may remarkably affect the stress sensitivity of the PZT sensors [47,48]. According to the
relative angles between the loading direction (the z-z direction in Cartesian coordinates)
and normal of the PZT vibration plane (the ‘3-3’ direction), two typical positions of the PZT
patches were considered herein, i.e., 0◦ and 90◦, as illustrated in Figure 7a,b, respectively.

Figure 8a,b shows the conductance signatures numerically obtained from specimens
embedded with the 0◦ and 90◦ flat PZT sensors, respectively. For comparison, Figure 8c,d
shows the signatures from specimens with the 0◦ and 90◦ rough PZT sensors, respectively.
As the compressive displacement increases from 0 to 0.06 mm, all specimens deform
elastically. During the elastic deformation, only a single conductance peak is observed
in each signature over the narrow frequency range from 220 kHz to 270 kHz, and the
frequency shift of the conductance peaks can be negligible. However, it can be noted that
the conductance peak amplitude for the 0◦ PZT sensor increases with loading, while the
peak for the 90◦ PZT sensor decreases with loading. The opposite changing trends due to
installation orientation can be attributed to Poisson’s effect on concrete. With Poisson’s ratio
of 0.2 in concrete, the compressive strain in concrete cubes along the z-z loading direction
is relatively larger than that of the extension strains along the x-x and y-y directions.
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Figure 8. Numerical conductance signatures for the (a) 0◦ flat, (b) 90◦ flat, (c) 0◦ rough, and (d) 90◦

rough PZT sensors embedded in concrete cubes under elastic deformation.

For cubes with 0◦ PZT sensors, the PZT extension plan coincides with the x-y center
slide. As shown in Figure 9a, the compressive stresses on PZT edges are around 1.0 MPa,
which are much less than that (~13.5 MPa) normal to the PZT extension plan, as shown in
Figure 9b. The small stresses on the edges in the x-y center slide will not limit the extension
vibration of the PZT patch effectively, leading to the increasing conductance peak with
loading displacement, as illustrated in Figure 8a.
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Figure 9. Stress distributions of the center slides involving the 0◦ and 90◦ PZT sensors embedded in
concrete cubes under the compressive displacement of 0.04 mm.

Whereas for the cube with a 90◦ PZT sensor, the compressive stresses on the top and
bottom PZT edges in the x-z center slide are around 20 MPa, as shown in Figure 9d, which
are much larger than that (~0.5 MPa) on the left and right PZT edges in the x-y center slide,
as shown in Figure 9c. The large compressive stresses on the top and bottom edges can limit
the planar vibration of the PZT patch along the loading direction, and thereby decrease the
conductance peak with loading displacement, as shown in Figure 8b. It is also noted that the
decrement of conductance peaks in the 90◦ PZT case is about 6.5 fold that of the increment
of conductance peaks in the 0◦ PZT case. This means that the sensitivity of the 90◦ sensor is
preferred for concrete stress monitoring in specimens under elastic deformation.

Figure 10a,b shows the typical conductance signatures numerically obtained from
specimens embedded with the 0◦ and 90◦ flat PZT sensors, respectively. For comparison,
Figure 10c,d shows the signatures from specimens with the 0◦ and 90◦ rough PZT sensors,
respectively. For all specimens, similar upward and leftward peak shifts can be observed in
conductance signatures as their loading displacements increase from 0.1 mm to 0.3 mm.
For each specimen under the inelastic deformation, peak frequencies shift leftward at
around 5 kHz, and conductance amplitudes increase around 0.002 s. This indicates that
the sensitivity of the PZT sensors is almost independent of the installation orientation
for concrete damage assessment. This insensitivity of the embedded PZT sensor to the
installation orientation can be explained by the damage parameters of surrounding concrete
around the PZT sensors.
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Figure 10. Numerical conductance signatures of the (a) 0° flat, (b) 90° flat, (c) 0° rough, and (d) 90° 
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Figure 11. SDEG contours of the x-y and y-z center slides with 0° and 90° PZT sensors embedded in 
concrete cubes under the inelastic deformation of 0.2 mm. 

3.2. Effect of Interfacial Roughness on the Reliability of Embedded Sensors 

Figure 10. Numerical conductance signatures of the (a) 0◦ flat, (b) 90◦ flat, (c) 0◦ rough, and (d) 90◦

rough PZT sensors embedded in concrete cubes under inelastic deformation.

Figure 11 shows the SDEG contours of the x-y and x-z center slides of concrete cubes
under the inelastic deformation of 0.2 mm along the z direction. For both the 0◦ and
90◦ PZT sensors, even regardless of the interfacial roughness, similar SDEG distributions
are observed in the corresponding x-y and x-z center slides. This further confirms the
insensitivity of the PZT sensor to the installation orientation, demonstrated by the nearly
identical conductance peak shifts observed in Figure 10.
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3.2. Effect of Interfacial Roughness on the Reliability of Embedded Sensors

Figure 12a–c shows the conductance signatures measured from the 90◦ flat sensors em-
bedded in three independent specimens. In each test, the conductance signature obtained
at the initial stress-free state is taken as the baseline. When the applied stresses are less than
15 MPa, changes in the conductance signatures with increasing stresses cannot be visually
observable, corresponding to the low sensitivity of the sensors for stress monitoring in
specimens under elastic deformation. This is consistent with the numerical results shown
in Figure 8. However, when the applied stresses are larger than 15 MPa, changes in the con-
ductance signatures with increasing stresses become remarkable, corresponding to the high
sensitivity of the sensors for damage assessment in specimens under inelastic deformation.
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90◦ flat PZT sensors.

Although similar upward and leftward trends of the predominant peaks with increas-
ing loading are observed in experiments as numerical results, it is difficult to quantify the
shifts of the peaks over a similar frequency range like that in Figure 10a,b. Some previous
experiments have validated that the shifts of predominant peaks are closely related to the
changes in the mechanical impedances of the sensor and host structure (ZA(ω) and ZS(ω)),
as presented in Equation (1), and the dynamic interaction between the sensor and host
structure [6,30,49]. However, the contribution of the interfacial interaction is still unclear.

Figure 13a–c shows the conductance signatures measured from the 90◦ rough sensors
embedded in three independent specimens. Similar to that in flat tests, changes in the
conductance signatures with increasing stresses are very small when the applied stresses
are less than 15 MPa, indicating the low sensitivity of sensors in specimens under elastic
deformation. As the loading stress increases beyond 15 MPa, changes in the predominant
peaks increase but are still less significant than that of the flat sensors. It is also noted that,
even for specimens under high stresses, the predominant peak frequencies still stay at
around 200 kHz. This indicates a stable interfacial stiffness between the rough sensor and
concrete, which is more reliable than that in tests with flat sensors where the predominant
peak frequencies show an observable leftward shifting, indicating a discernable stiffness
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degradation between the flat sensor and concrete. To quantify the changes in the measured
signatures with increasing stresses, the statistical metric (RMSD) can be utilized to indicate
the changes in electromechanical impedances of the embedded PZT sensors [50]. The
RMSD can be calculated based on the following equation:

RMSD =

√√√√∑N
i=1
(
Gr

i − G0
i
)2

∑N
i=1
(
G0

i
)2 (7)

where G0
i is the i-th conductance of the baseline signature measured at the initial stress-free

state, Gr
i is the i-th conductance of the signature measured under the increased stresses.
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RMSD indices increase monotonously with loading stresses. As the loading stresses in-
crease from 2.5 MPa to a threshold value (say 12.5 MPa for flat sensor cases and 20 MPa 
for rough sensor cases), a nearly linear correlation can be constructed between the RMSD 
index and loading stress. For specimens with flat sensors, as shown in Figure 14a, three 
RMSD curves increase linearly from 2.5 MPa to 12.5 MPa at a slope of 0.21% per MPa with 
the Pearson coefficient of 91%; while for specimens with rough sensors, as shown in Fig-
ure 14b, three RMSD curves increase linearly from 2.5 MPa to 20 MPa at a slope of 0.2% 
per MPa with the Pearson coefficient of 94%. This indicates that the rough sensors have a 
similar sensitivity but superior sensing range (better reliability) than the flat sensors for 
concrete stress monitoring. When the loading stresses on specimens increase beyond their 
corresponding threshold stresses, the RMSD curves for all tests show a nonlinear increas-

Figure 13. Conductance signatures obtained from the experimental tests in concrete cubes with the
90◦ rough PZT sensors.

Figure 14a,b presents the RMSD indices calculated from the conductance signatures
measured from specimens with the flat and rough sensors, respectively. Generally, the
RMSD indices increase monotonously with loading stresses. As the loading stresses increase
from 2.5 MPa to a threshold value (say 12.5 MPa for flat sensor cases and 20 MPa for rough
sensor cases), a nearly linear correlation can be constructed between the RMSD index and
loading stress. For specimens with flat sensors, as shown in Figure 14a, three RMSD curves
increase linearly from 2.5 MPa to 12.5 MPa at a slope of 0.21% per MPa with the Pearson
coefficient of 91%; while for specimens with rough sensors, as shown in Figure 14b, three
RMSD curves increase linearly from 2.5 MPa to 20 MPa at a slope of 0.2% per MPa with the
Pearson coefficient of 94%. This indicates that the rough sensors have a similar sensitivity
but superior sensing range (better reliability) than the flat sensors for concrete stress
monitoring. When the loading stresses on specimens increase beyond their corresponding
threshold stresses, the RMSD curves for all tests show a nonlinear increasing trend with a
remarkable dispersion. This indicates that the interfacial stiffness degradation in specimens
with flat sensors contributes much more than that in specimens with rough sensors.
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Figure 14. RMSD indices calculated from the conductance signatures for the PZT sensors with (a) flat
and (b) rough interfaces.

3.3. Mechanism Underlying the Interfacial Effect in Embedded PZT Sensors

To further explore the interfacial effect on the sensing performance of the embedded
PZT sensors, the interfaces between the thin epoxy coating layers and the host concrete were
modeled explicitly. Figure 15 shows a typical 1/8 symmetrical FE model containing a PZT
sensor with either flat or rough interfaces. In each FE model, the outer surfaces of the epoxy
layers are assumed to connect with their neighboring concrete via contact interactions, and
the inner surfaces can be considered to be tied with the PZT patch. Particularly for models
with rough sensors, uniformly distributed cubic sands with a dimension of 0.1 mm are half
embedded into epoxy layers for modeling the rough interfaces between the sensor’s outer
surfaces and concrete.

In practice, the epoxy coating layers were hardened before concrete curing, so the
epoxy–concrete interfaces are more likely to be damaged. According to the assumed
mechanical behaviors of the epoxy–concrete interfaces, the hard contact interaction was
defined to only transmit shear and normal forces across interfaces. For simplicity, the
shear frictional coefficient was specified to be 0.5 and no contact damping was considered
herein [51]. With this assumption, the epoxy–concrete contact model can describe interfacial
deformation more practically in specimens under large loadings than the epoxy–concrete
tie model.
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Under small compressive loading, both epoxy and its neighboring concrete in the
contact model deform elastically but with different strains due to the mismatch in elastic
modulus. The strain difference, shear strain along the epoxy–concrete interfaces, increases
with the compressive loading increase. According to our experiments, no visible cracks were
observed at the PZT–epoxy–concrete interfaces in the fractured debris of the embedded
sensors. This means that the epoxy–concrete interfaces can accommodate the shear strains
throughout the whole loading process. Accordingly, the increasing shear strains along the
interfaces can be indicated by the interfacial stiffness degradation that correlates with the
variation of the electromechanical impedances [52].

Figure 16a,b presents two sets of simulated snapshots of the sensors’ nearby regions,
representing the strains along the z direction around the 90◦ flat and rough sensors, re-
spectively. Generally, strain distributions in the flat sensor model are quite different from
those exhibited in the rough sensor model. For both models under a small compressive
displacement, such as 0.05 mm, the strains along the z direction firstly concentrate at the top
and bottom edges of the PZT sensor. In this snapshot, the concrete and PZT patch deform
uniformly, and two enhanced strain zones commence at the top and bottom epoxy layers,
indicating the localized stiffness degradation at these spots. As the loading displacement
increases, the concrete strains near the epoxy–concrete interfaces increase progressively.
For the model with a flat sensor, the concrete strains along the lateral interfaces increase
uniformly and yield at strain beyond 0.0007 as the loading displacement reaches 0.07 mm.
While for the model with a rough sensor, the concrete strains along the lateral interfaces
are partially retarded by the bulged sands. With the increase of loading displacement,
some enhanced strain zones are distributed discontinuously along the interfaces due to the
interlocking between epoxy and concrete. This retardation further delays the yielding of
concrete along the rough interfaces until the loading displacement reaches beyond 0.11 mm.
As illustrated in Figure 16b, no evident strain mismatch boundary exists between epoxy and
concrete, meaning a retarded stiffness degradation in concrete along the lateral interfaces.
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This also demonstrates how the act of interlocking leads to a retarded stiffness degradation
along the interfaces in the rough sensor cases.
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Figure 17a,b presents two sets of strain distributions along the z direction in y-z center
slide surrounding the 0◦ flat and rough sensors, respectively. In both cases under the z
displacement of 0.05 mm, almost uniform elastic strains with different values occur in the
concrete, epoxy layers, and PZT patch elements. With the loading displacement increasing,
the plastic strains commence in the concrete surrounding the sensor edges and propagate
along a slip band, acting like a strain shield for preventing the inelastic shear along the
epoxy–concrete interfaces. As the loading displacement reaches 0.09 mm, the inelastic
shear strains start developing in the concrete adjacent to the interfaces. During this loading
process, different strain distributions are observed along the interfaces. In the flat sensor
case, inelastic strains in concrete propagate from the ends to the center along the sensor’s
interfaces; while in the rough sensor case, inelastic strains are distributed discontinuously
along the interfaces.
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However, this strain pattern difference diminishes as the loading displacement is
increased to 0.11 mm. Under the increased loading condition, both cases exhibit similar
strain mismatch patterns along the epoxy–concrete interfaces. The pattern similarity
indicates that, compared with the effect of the installation orientation, the effect of interfacial
roughness plays a less dominant role in determining the structural impedance around the
sensors. In the snapshots of the 0◦ sensors case, the strain pattern difference due to the
interfacial roughness can only be observed in models under the loading displacements
from 0.07 mm to 0.09 mm. Whereas in the snapshots of the 90◦ sensors case, the pattern
difference can be observed in models under the loading displacements from 0.07 mm to
beyond 0.11 mm.

It was acknowledged that the localized large deformation could lead to the structural
stiffness reduction in materials [53]. According to Equation (4), the change in the mechanical
impedances measured by the sensors reflects the variation in the equivalent structural
parameters, primarily stiffness, of host structural and interfaces. Thus, to capture the
mechanical impedance of the host structure more accurately and reliably, the interfacial
stiffness degradation should be linearly delayed over a stress range as wide as possible.
Particularly for concrete stress monitoring that needs a higher accuracy, the interfacial
stiffness degradation should be controlled more precisely by using properly designed
interfaces. As illustrated in Figure 16b, an intermittent strain mismatch pattern can still
be observed in the case with the 90◦ rough sensor even when the loading displacement
reaches 0.11 mm, which corresponds to the compressive stresses at 0.48 fc. This suggests
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that a delayed interfacial stiffness degradation can be obtained with proper installation
orientation and interfacial roughness for an embedded sensor under loading.

4. Conclusions

This work investigated the interfacial effects of the PZT sensors embedded in con-
crete, due to the installation orientation and interfacial roughness, on quantitative stress
monitoring using FE simulations and EMI tests. The following conclusions can be drawn:

1. From FE simulations, it is found that the sensitivity of the embedded PZT sensors for
concrete stress monitoring depends on their installation orientation. Particularly, the
90◦ sensor performs better than the 0◦ sensor for concrete stress monitoring in models
under compressive loadings.

2. Based on experiments, a linear relationship between the loading stress and the RMSD
index calculated from the conductance signatures is established for the specimens with
rough sensors. The linear correlation range for concrete stress monitoring in rough
sensor cases reaches 0.48 fc (the compressive strength), which is much larger than
the flat sensor cases and other previous studies. The results validated an enhanced
reliability of the rough PZT sensor for quantitative concrete stress monitoring.

3. FE static analyses demonstrate that the interfacial effect on the sensing performance is
closely related to the strain distribution pattern in regions surrounding the embedded
PZT sensor. Installation orientation plays a more dominant role than the interfacial
roughness on the strain pattern that determines the interfacial stiffness degradation
and thereby the structural impedance around the sensor.

It should be noted that the sensing performance of the PZT sensors upon the interfacial
effect was obtained from the concrete cubes with small-size coarse aggregates and subjected
to compressive loadings. For real-world applications, the influences of defects, geometries,
and loading configurations in the host structures should be considered to obtain a more
practical sensing performance. Nevertheless, the findings in this study confirmed the
remarkable contribution of interfacial effect to the sensitivity and reliability of the embed-
ded PZT sensor for quantitative stress monitoring. More approaches towards interfacial
enhancement need to be exploited in the future to improve the sensing performance of the
embedded sensors for more practical applications.
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