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Abstract: Morphological indicators, which are important for urban planning, can be adjusted to
effectively mitigate the heat island effect and promote a more comfortable urban environment. Most
studies obtain the relationship between morphological indicators and land surface temperature (LST)
from the urban scale, and it is difficult to apply the results to urban management and construction
projects. Traditional research methods have ignored the complex and interactive relationship between
morphological indicators and LST. In this work, the feed-forward neural network (FNN) model is
utilized to model the nonlinear relationship between morphological indicators and LST at the block
scale. After validation and comparison, the FNN model achieved MAE of 0.885 and RMSE of 1.184,
indicating that the influence of morphological indicators on LST could be precisely mapped. In
addition, using cooling LST as the optimization target, the specific indicator scheme is suggested
based on the FNN model, where the percentage of green space is 17.1%, the percentage of impervious
surface is 82.9%, the percentage of water is 0, the bare soil percentage is 0, the floor area ratio is 0.814,
the building cover percentage is 32.2%, and the average building height is 7.2 m.

Keywords: urban thermal environment; morphology index; feed-forward neural network;
Kitakyushu; remote sensing

1. Introduction

Urban heat islands (UHIs) are a worldwide phenomenon in which urban areas tend
to have a higher land surface temperature (LST) or air temperature than the surrounding
rural areas [1]. The causes of the higher temperatures in urban areas include changes
in land use, such as an increasing number of artificial constructions and a decrease in
green spaces and water areas, as well as an increase in population heat emissions. As a
result, the number of uncomfortable tropical nights and the incidence of heat illnesses
have increased, and various other effects have resulted in the loss of a comfortable living
environment [2–4]. Therefore, encouraging sustainable national and urban development
requires consciously addressing these difficult problems that involve citizens’ health and
electricity use by reducing the urban heat island effect [5].

The thermal environment of the city can be controlled through surface temperature
and canopy temperature, which together make up the multilayered structure of the urban
climate [6]. The surface heat island effect is used to characterize this effect [7]. Canopy
air temperature is derived mainly from measured air temperature data collected by urban
weather stations or mobile vehicles and is widely used [8]. Given that a significant number
of studies worldwide have used air and surface temperatures to explore the spatial and
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temporal characteristics and drivers of the urban thermal environment at the horizontal
level, LST has the obvious advantage of being able to correspond well to urban space at the
whole urban spatial scale. The urban surface layer is typically described using a variety
of surface parameters, including vegetation cover, impervious area, area of water bodies,
etc. [9]. Lu, Yue, and Huang (2021) examined the impact of land use on LST while using
LST to characterize the distribution of the urban thermal environment [5]. Analyzing the
impact of land use on the LST, the LST was used to characterize the distribution of the
urban thermal environment.

Urban thermal environment research concentrates on the variations in LST distri-
bution within urban built-up areas due to differences in spatial organization, land use,
development intensity, and three-dimensional spatial structure. In order to investigate
the relationship between urban space and the thermal environment, Ref. [10] introduced
the concept of urban zoning (local climate zones). This approach forms homogeneous
units with consistent land cover, spatial structure, building materials, and human activity
patterns [11,12]. Since the suggested measures or strategies are challenging to incorporate
into actual urban planning, these studies focus on the macro level, considering individual
cities as a whole, but ignoring the internal spatial heterogeneity of their urban spaces. The
block is the smallest unit in the urban planning system where the local government uses
zoning to control land. Morphological indicators are one of the key factors in urban plan-
ning [13]; measures proposed at the block scale that would contribute to the change in the
urban thermal environment can be applied more specifically in urban planning. In order to
explore the connection between the land use situation and the urban thermal environment,
the study of land cover is more frequently conducted in terms of cities, where the entire
area is extracted or different functional areas of buildings are classified [14]. Adjusting the
block factor links for thermal environment issues is difficult and less operable, because this
ignores the scale and spatial–geographic relationships of urban blocks. It is proposed that
the control unit zoning method be used to investigate the relationship between LST and
morphological indicators [15,16].

The main methods used to study the influence of block morphological indicators on
the urban thermal environment focus on the use of linear regression [9,17] and geospatially
weighted models [15]. Moreover, the relationship between the effect of morphological
indicators on the thermal environment or thermal comfort is obtained using thermal en-
vironment simulations that control for a single variable of morphological indicators [18].
These studies have ignored the relationships between morphological indicators that affect
one another in order to investigate the effects of morphological indicators on the thermal
environment using independent linear models. The relationship between these urban mor-
phological indexes and the thermal environment is not a direct mathematical expression,
and therefore, traditional optimization methods based on functional expressions cannot be
used—instead, intelligent algorithms are preferred [19]. Artificial neural network (ANN) is
an unconventional modeling strategy that can effectively fit multivariate input and output
processes. It can infinitely approximate any nonlinear continuous function with any deter-
ministic accuracy, thanks to its powerful nonlinear simulation capability; by combining
all the indicators, it can perform a systematic and thorough evaluation. The urban envi-
ronment itself has a high level of complexity, and machine learning is better at performing
non-linear analysis than traditional regression methods [20]. ANNs have been applied in
various urban studies to solve meteorology-related problems [21,22], predict urban land
use and scale development [23,24], and predict urban air quality [25]. Feed-forward neural
networks (FNN) have begun to be used extensively in urban planning and construction as
a result of the development of big data, the Internet of Things, cloud computing, and other
related technologies [26].

This study proposes a method to analyze and optimize the thermal environment by
dividing block units. Kitakyushu was used as the research area, and multiple sources of
data were used to obtain the morphological indexes and LST distribution characteristics of
each unit. Kitakyushu is the second largest city on Kyushu Island after Fukuoka, and has
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an excellent geographical location. Since Kitakyushu has begun to adjust its urban planning
to the goal of livability, this study is useful in providing new ideas for urban planning
in Kitakyushu, as well as for similar cities in Japan. Following that, the FNN model was
utilized to model the relationship between block morphological indicators and LST, and
the distribution characteristics of the urban thermal environment and the sensitive areas
of local heat islands were identified. For a typical block, a control strategy to lessen the
indicators of the urban thermal environment was suggested. The following three aspects
are the main contributions of this study:

1. We suggest using the road network information to divide the blocks based on the
current urban built-up situation and planning in order to explore the specific measures
to control the block shape indexes that can be used to inform urban planning.

2. We empirically study the construction of block morphological indicators and land
surface temperature based on a feed-forward neural network model.

3. We provide a feed-forward neural network model application to adjust the block
morphological indicators with cooling LST as the optimization target.

2. Construction of the Feed-Forward Neural Network Model

Based on the above problems, we modeled the nonlinear relationship between mor-
phological indicators and LST from the block scale using the FNN model and performed
block indicator optimization with the validated model. The specific workflow of this study
is shown in Figure 1 and can be divided into three parts. (1) Taking Kitakyushu, Japan,
as the research area, the city was divided into 373 block-scale units using the current
scale of the urban road network. (2) The morphological indicators and LST data of each
block are calculated by combining the current building distribution and land use status
to construct the dataset. (3) The pre-processed morphological indexes and LST datasets
of each block were used to construct an FNN model to explore the nonlinear relationship
between morphological indexes and the urban thermal environment.

Buildings 2023, 13, x FOR PEER REVIEW 3 of 18 
 

data were used to obtain the morphological indexes and LST distribution characteristics 
of each unit. Kitakyushu is the second largest city on Kyushu Island after Fukuoka, and 
has an excellent geographical location. Since Kitakyushu has begun to adjust its urban 
planning to the goal of livability, this study is useful in providing new ideas for urban 
planning in Kitakyushu, as well as for similar cities in Japan. Following that, the FNN 
model was utilized to model the relationship between block morphological indicators and 
LST, and the distribution characteristics of the urban thermal environment and the sensi-
tive areas of local heat islands were identified. For a typical block, a control strategy to 
lessen the indicators of the urban thermal environment was suggested. The following 
three aspects are the main contributions of this study: 
1. We suggest using the road network information to divide the blocks based on the 

current urban built-up situation and planning in order to explore the specific 
measures to control the block shape indexes that can be used to inform urban plan-
ning. 

2. We empirically study the construction of block morphological indicators and land 
surface temperature based on a feed-forward neural network model. 

3. We provide a feed-forward neural network model application to adjust the block 
morphological indicators with cooling LST as the optimization target. 

2. Construction of the Feed-Forward Neural Network Model 
Based on the above problems, we modeled the nonlinear relationship between mor-

phological indicators and LST from the block scale using the FNN model and performed 
block indicator optimization with the validated model. The specific workflow of this 
study is shown in Figure 1 and can be divided into three parts. (1) Taking Kitakyushu, 
Japan, as the research area, the city was divided into 373 block-scale units using the cur-
rent scale of the urban road network. (2) The morphological indicators and LST data of 
each block are calculated by combining the current building distribution and land use 
status to construct the dataset. (3) The pre-processed morphological indexes and LST da-
tasets of each block were used to construct an FNN model to explore the nonlinear rela-
tionship between morphological indexes and the urban thermal environment. 

Landsat 8 data

Land surface 
temperature (LST)

Ministry of Land, Infrastructure, and 
Transport (MLIT) Data

Land cover type data and 
buildings distribution data

Road network data

Seven morphological indexes of each 
blockLST of each block

Results

Block units

Input 

Output 

Discussion

FNN Model

 
Figure 1. The flow chart of study. 

2.1. Study Area and Data 
Kitakyushu belongs to Fukuoka Ken, Japan, 130°52′ E, 33°53′ N, with an area of 486.81 

km2, located in the Kanmon Strait at the northernmost point of Kyushu Island. Fukuoka–
Kitakyushu metropolitan area is the fourth largest metropolitan area after Tokyo, Osaka, 

Figure 1. The flow chart of study.

2.1. Study Area and Data

Kitakyushu belongs to Fukuoka Ken, Japan, 130◦52′ E, 33◦53′ N, with an area of
486.81 km2, located in the Kanmon Strait at the northernmost point of Kyushu Island.
Fukuoka–Kitakyushu metropolitan area is the fourth largest metropolitan area after Tokyo,
Osaka, and Nagoya [27]. It is separated from Honshu Island and opposite to Shimonoseki
City, which is a major port city in Japan. With a population of about 970,000, Kitakyushu
is the second largest city in Fukuoka Ken and Kyushu Island after Fukuoka. It is one of
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the twenty designated cities in Japan and one of the three designated cities in Kyushu. Ki-
takyushu consists of seven wards: Moji, Kokurakita, Kokuraminami, Wakamatsu, Yawatan-
ishi, Yawatahigashi, and Tobata. The geographical location of the study area is shown in
Figure 2.
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Figure 2. Location of the study area.

Kitakyushu has a mild and humid climate, with mild winters and hot, humid, and
rainy summers. Like the other regions of Japan, the city is subject to the influence of
monsoonal circulation: cold northwestern currents prevail in the winter, while the summer
is affected by hot and humid air currents from the tropics. The monthly temperature
distribution for the past 30 years is shown in Figure 3. In the past century, the city shrank
due to rapid industrial development followed by a national economic downturn. The city
of Kitakyushu initiated an urban revitalization model in the 1950s with the aim of changing
the urban environment and developing Kitakyushu’s full potential by taking advantage
of the city’s location in the center of East Asia as well as its accumulated manufacturing
capacity. The rational use of the city’s green and coastal resources to create a livable living
environment was one of the main goals of the Kitakyushu Urban Master Plan. Therefore,
this study can provide strategies for urban planning in Kitakyushu to develop a more
comfortable urban environment.
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To analyze land use in Kitakyushu, the data of the National Land Numerical Infor-
mation of the Ministry of Land, Infrastructure, and Transport (MLIT) were used. The
National Land Numerical Information comprises GIS data that provide basic information
on national land, such as topography, land use, and public facilities, in order to contribute to
the promotion of national land policies such as national land formation plans and national
land use plans. The data are based on the current status survey in 2015, and the vector files
of the road network, building status, and land use were formed with the coordinate system
JGD_2000_JAPAN. There are 23 different types of land use, and four different types of land
can be created by combining other types of land: impervious land, bare land, water body,
and green land. The building status vector file includes the building height and area of the
buildings on the ground. In this study, Arc GIS was used to calculate the morphological
indicators in each block unit. According to the urban plan of Kitakyushu City, it is divided
into urbanization areas and urbanization adjustment areas (Figure 4). Urbanization areas
refer to priority and planned urbanization, and urbanization adjustment areas refer to areas
where urbanization is controlled and development and construction are prohibited, in
principle. In this study, the road network of Kitakyushu was used to divide the block units,
and the road vector data were also obtained from the MLIT. The block units of the study
area after division are shown in Figure 4. The total number of block units was 373, of which
282 units were located in urbanization areas and 91 units in urbanization adjustment areas.
These units cover the built-up area of Kitakyushu with a variety of block patterns. Among
them, the scale of units located in urbanization areas was around 500 m. The urbanization
adjustment area was a prohibited area; therefore, the development intensity was low, so
the road network was sparse, the cover matrix was more homogeneous and continuously
distributed, and the division unit formed was larger. However, its future development is
less likely to produce adjustments and its metrics will hardly change, and the data in this
region are advantageous for the FNN’s comprehensive learning of the data.
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2.2. Dataset of Block Morphology Indicators and Land Surface Temperature

The urban planner adjusts the planning by regulating the control indexes of the blocks—on
the one hand regulating the indexes of the land type to meet the urban land demand, and
on the other hand regulating the scale of the buildings in the blocks by controlling the
indexes of the building layout. Therefore, this study investigated the influence mechanism
of morphological indexes on the thermal environment for the above controllable indexes.
The block units were mainly expressed in two-dimensional space on different covers of the
ground surface after zoning, and the ground cover indicators included the percentage of
impervious surface (ISP), the percentage of green space (GNP), the percentage of water
(WP), and the percentage of bare soil (BSP), which represented the type of land cover of the
block units in the study area. In three dimensions, the distribution of buildings within a
block unit was used to quantitatively describe the morphology [28]. Floor area ratio (FAR),
building cover percentage (BCP), and average building height (ABH) were indicators used
to characterize building patterns. In this study, land cover type and building group pattern,
including seven morphological variables, were selected and used as indicators of block
morphology. The details of the seven indexes are shown in Table 1. The above data were
calculated statistically using Arc GIS 10.6 based on the current land use status vector files
provided by the MLIT of Japan.

This study used Landsat 8 OLI and TRIS data from May 2016 for LST inversions. The
data used in this study were downloaded from “https://earthexplorer.usgs.gov/ (accessed
on 2 December 2022)”. The data information is shown in Table 2.

https://earthexplorer.usgs.gov/
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Table 1. Block morphological indexes.

Indexes Description Range of Values

Land cover
Impervious Surface

Percentage (ISP) Percentage of impervious surface in each block unit 0–100

Green Percentage (GNP) Percentage of green area in each block unit 0–100
Water Percentage (WP) Percentage of water area in each block unit 0–100

Bare Soil Percentage (BSP) Percentage of bare soil land in each block unit 0–100
Building group

Floor Area Ratio (FAR) Ratio of total floor area to building site area in each block unit 0–max
Building Cover Percentage (BCP) Percentage of total buildings footprint area in each block unit 0–100
Average Building Height (ABH) Average height of total buildings in each block unit max

Table 2. Landsat 8 data information of study area.

LANDSAT_PRODUCT_ID WRS_ROW WRS_PATH DATE_
ACQUIRED

CLOUD_COVER_
LAND

LC08_L1TP_112037_20160505_20200909_02_T1 37 112 2016-05-05 0.08
LC08_L1TP_113037_20160514_20200907_02_T1 37 113 2016-05-14 2.05

Firstly, Landsat 8 data were preprocessed, which included radiometric calibration
and atmospheric correction (dark matter subtraction). It was necessary to convert the DN
in the thermal band (B10 and B11) into absolute units of the sensor’s spectral radiance,
in order to determine the study area’s LST. The digital number (DN) values were then
transformed into satellite brightness temperature (TB) [29]. Secondly, the thermal band
data were transformed from the spectral emissivity of the sensor to the effective brightness
temperature of the sensor. The pre-launch calibration constant (specifically, the thermal
conversion constants for Bands 10 or 11 provided in the Landsat-8 metadata used in this
study) was used to perform the calculations [30]. This process was followed by a correction
for spectral emissivity. The LST for emissivity correction was calculated as follows.

LST =
TB

1 + (λ× TB/ρ) ln ε
(1)

where TB is the brightness temperature of band 10 in Landsat 8; λ is the wavelength of the
emitted radiation (the central wavelength of B10 is 10.8 µm); ρ = h × c/σ(1.438 × 10−2 mk),
where σ = Boltzmann constant (1.38 × 10−23 J/K), h = Planck’s constant (6.626 × 10−34 Js),
and c = velocity of light (2.998 × 108 m/s); and ε is the land surface emissivity.

2.3. FNN Model

The feed-forward neural network (FNN) is a multilayer network trained according to
the error back propagation (BP) algorithm. The algorithm uses the gradient descent method
to determine the objective function’s minimum value, using the error square between the
desired output value and the actual output value as the objective function [31]. As shown
in a previous study [32], there is a relationship between a series of potential influences, such
as morphological characteristics and urban heat island intensity, and the indicators show an
interactive relationship. FNNs can map nonlinear relationships between independent and
dependent variables, and can learn complex relationships between independent variables
that affect each other.

We used Python to construct an FNN model containing an input layer, hidden layer,
and output layer, and the structure is shown in Figure 5. This model contained one input
layer, two hidden layers, and one output layer. The input layer was composed of seven
morphological indicators of ISP, GNP, WP, BSP, FAR, BCP, and ABH for each block obtained
in Section 2.1. Then, those input layers were weighted and transferred to the hidden layer.
The output layer was the average LST data of the block units. In this FNN model, four
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hidden layers were set to avoid underfitting due to too few hidden layers. The number
of neurons was generally 2n. Combining the number of implied layers, the first implied
layer had 64 neurons, the second implied layer had 32 neurons, the third implied layer
had 16 neurons, and the fourth implied layer had 8 neurons. To present the nonlinear
relationship between input and output using the FNN, the hyperbolic tangent function
(tanh) function was chosen as the activation function. The network’s learning rate was set
to 0.001 and it was trained up to 100 times; the other parameters were left at their default
values. Once convergence was reached, the FNN model was finished being built. The
training was not finished until the network converged automatically, at which point the
FNN model was created. The other parameters were set by default. First, the data were
normalized; second, the dataset was split into training and testing sets to speed up network
learning. The model used Adam as the optimizer and mean squared error (MSE) as the
loss function. The expression of MSE is as follows:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2

(2)

where Y is the vector of observed values of the variable being predicted, and Ŷ represents
the predicted values.
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To date, a variety of neural network models have been established, among which
the most widely used is the error backpropagation neural network, referred to as a fully
connected neural network. Mean absolute error (MAE) represents the mean of the absolute
error between the predicted and observed values. Root mean square error (RMSE) measures
the deviation between the predicted and true values and is more sensitive to outliers in the
data. The MAE and RMSE are calculated as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (3)

RMSE =

√
1
m

n

∑
i=1

(yi − ŷi)
2 (4)

where y is the vector of observed values of the variable being predicted, and ŷ represents
the predicted values.
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3. Results
3.1. LST Spatial Distribution and Spatial Autocorrelation

Figure 6a shows the spatial distribution of the LST in Kitakyushu, which ranged
from 5.06 to 45.78 ◦C during the daytime LST, with an average value of 19.083 ◦C. The
average LST was 34.99 ◦C in the urban area and 26.25 ◦C in the suburbs, indicating a strong
heat island effect in Kitakyushu. There were high central regions and lower north and
south regions that made up Kitakyushu’s overall spatial distribution of LST, indicating that
Kitakyushu is experiencing a severe urban heat island effect.
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Global Moran’s I is a measure of the overall clustering of spatial data. The values
range from −1 to 1. A value of 1 indicates complete positive spatial autocorrelation (high
or low values clustered together), −1 indicates complete negative spatial autocorrelation
(tessellation pattern), and 0 denotes complete spatial randomness [33]. The global Moran’s
I index of LST in the study area was calculated, and Moran’s I was 0.181 (Zscore of 18.213; p-
value of 0.000), indicating that the LST distribution in the study area appears to be spatially
clustered.

The local Moran’s I index was used to further determine the relationship between
the spatial distribution of aggregation categories and the functional distribution of block
areas, and the results are shown in Figure 6b. The fact that Moran’s I is a summation of
individual cross-products was exploited by the local indicators of spatial association (LISA)
to evaluate the clustering in those individual units by calculating the local Moran’s I for
each spatial unit and evaluating the statistical significance for each Ii [34], as follows:

Ii =
xi − x

n

N

∑
j=1

ωij
(

xj − x
)

(5)

where n is the number of geographic units; xi and xj are the values at locations i and j,
respectively; and ωij is the spatial weight matrix between locations i and j.

Thus, the LISA aggregation map of the LST identifies areas sensitive to heat island
effects in order to optimize the targets of the block units. The pink areas in Figure 6b are
high–high areas, and are mainly located in (1) the harbor logistics operation area and the
industrial area along the south side of Donghae Bay, (2) the high-density urban mixed
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commercial and residential areas such as the Kokura Metropolitan Center and Kurosaki
Vice Metropolitan Center, and (3) the densely populated areas around transportation hubs
such as Yahata, Wakamatsu, Tobata, Jono, and Moritsune. The aggregation of low–low
areas is mainly located in the area covered by mountain vegetation.

3.2. Distribution of Block Morphological Indexes

In this study, the indexes of each unit were calculated using Arc GIS based on the
vector data of land use and building status in Kitakyushu provided by the MLIT, and
the settlement results are shown in Figure 7. Figure 7a shows that the distribution of
this indicator of ISP is higher in the built-up area because the north and south sides are
mountainous; thus, the percentage of impervious surface is lower. As shown in Figure 7b,
because the north and south sides of Kitakyushu are mountainous and forested, the GNP
values in these two areas are also higher compared to the built-up areas. The water in
Kitakyushu is mainly concentrated in the tributaries of the western Tonoga River and the
forested area of the mountains, and there are few water bodies in the built-up area. It can
be seen that the distribution of the WP indicators in Figure 7c is limited in the built-up
area. The bare land in Kitakyushu is mainly undeveloped land and agricultural land,
mostly located in the port operation area and unused vacant land in the suburban area
(Figure 7d). The spatial distribution of land use indexes by block units shows that the ISP
is higher in built-up areas and lower in GNP and BSP, mainly because after development
and construction, the urban areas established with buildings, roads, squares, and other
installations have become the main cover. The index factors of building morphology are
shown in Figure 7e–g. From those figures, it can be seen that the areas with high values
of each index are mainly concentrated in the areas with high population density in the
Kokura Metropolitan Center and Kurosaki Subcenter.

3.3. FNN Model Performance

The feed-forward neural network (FNN) model uses block morphological indicators
and LST as input datasets for training. The FNN in this paper was based on Python and
the TensorFlow deep learning framework. The neural network topology constructed in
this study is a 7 × 64 × 32 × 16 × 8 × 1 neural network. Additionally, different FNN
model settings were tested, and the FNN model with four hidden layers demonstrated
the best accuracy and learning efficiency. After iterative learning and optimization in the
network to find the intrinsic connection between each index and the LST, the model was
used to analyze the relationship between the regional urban thermal environment and
block morphology after the training was completed.

A proportion of 75% of the input data were used as the training set and 25% were
used as validation for the FNN model. The dataset was split and selected in a random state.
The training results are shown in Figure 8. It can be seen from Figure 8 that the model
achieves convergence and minimum loss by 100 epochs. According to the loss decreasing
curve, the training set converged faster and then decreased smoothly. The validation set
converged and tended to converge to a stable state, and there was no significant increase in
the loss value after decreasing during the training process. After 100 rounds of iterative
training, the performance of the validation set became relatively stable with an MSE of
1.402, basically without significant fluctuations, and the model was stable and effective.



Buildings 2023, 13, 528 11 of 17Buildings 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 
Figure 7. Block index spatial distribution of study area: (a) ISP; (b) GNP; (c) WP; (d) BSP; (e) BCP; 
(f) ABH; (g) FAR; (h) LST. 

  

Figure 7. Block index spatial distribution of study area: (a) ISP; (b) GNP; (c) WP; (d) BSP; (e) BCP;
(f) ABH; (g) FAR; (h) LST.



Buildings 2023, 13, 528 12 of 17

Buildings 2023, 13, x FOR PEER REVIEW 12 of 18 
 

3.3. FNN Model Performance 
The feed-forward neural network (FNN) model uses block morphological indicators 

and LST as input datasets for training. The FNN in this paper was based on Python and 
the TensorFlow deep learning framework. The neural network topology constructed in 
this study is a 7 × 64 × 32 × 16 × 8 × 1 neural network. Additionally, different FNN model 
settings were tested, and the FNN model with four hidden layers demonstrated the best 
accuracy and learning efficiency. After iterative learning and optimization in the network 
to find the intrinsic connection between each index and the LST, the model was used to 
analyze the relationship between the regional urban thermal environment and block mor-
phology after the training was completed. 

A proportion of 75% of the input data were used as the training set and 25% were 
used as validation for the FNN model. The dataset was split and selected in a random 
state. The training results are shown in Figure 8. It can be seen from Figure 8 that the 
model achieves convergence and minimum loss by 100 epochs. According to the loss de-
creasing curve, the training set converged faster and then decreased smoothly. The vali-
dation set converged and tended to converge to a stable state, and there was no significant 
increase in the loss value after decreasing during the training process. After 100 rounds of 
iterative training, the performance of the validation set became relatively stable with an 
MSE of 1.402, basically without significant fluctuations, and the model was stable and 
effective. 

 
Figure 8. Loss curve of FNN model. 

FNN is a black box model, aiming to reflect the hidden relationship between mor-
phological indicators and LST. The study area’s built-up block indicators are connected to 
the LST by the FNN model. The results show that the experimental FNN model can reflect 
the complex and interactive relationship between morphological indicators and LST. Ac-
cording to the results, the hyperparameters of FNN enable the model to achieve an MSE 
of 1.402. The satisfactory precision achieved in this research can be used for LST predic-
tion. The utility of the model consists of two main parts. On the one hand, it is possible to 
quantify the LST of a block or region by predicting the average LST from the input of 
seven morphological indicators. On the other hand, the combination of seven indicators 
can be optimized by adjusting seven indicators to achieve the optimization target with a 

Figure 8. Loss curve of FNN model.

FNN is a black box model, aiming to reflect the hidden relationship between mor-
phological indicators and LST. The study area’s built-up block indicators are connected
to the LST by the FNN model. The results show that the experimental FNN model can
reflect the complex and interactive relationship between morphological indicators and
LST. According to the results, the hyperparameters of FNN enable the model to achieve
an MSE of 1.402. The satisfactory precision achieved in this research can be used for LST
prediction. The utility of the model consists of two main parts. On the one hand, it is
possible to quantify the LST of a block or region by predicting the average LST from the
input of seven morphological indicators. On the other hand, the combination of seven
indicators can be optimized by adjusting seven indicators to achieve the optimization target
with a regulation LST. In work on urban planning and renewal, the model can be used to
regulate and optimize the indicators.

4. Discussion
4.1. Model Comparison

Ordinary least squares regression (OLS) and random forest (RF) were selected as
the commonly used models for the regression of block morphological indicators and
LST, and the accuracy of the three models was compared. OLS is a traditional statistical
method for the quantitative analysis of relationships between dependent and independent
variables [35,36]. The OLS model is a type of linear least squares method for choosing the
unknown parameters in a linear regression model (with fixed level-one effects of a linear
function of a set of explanatory variables) by the principle of least squares in the input
dataset, and the output of the (linear) function of the independent variable. Random forest
(RF) is similar a method more commonly used in machine learning to analyze nonlinear
relationships between variables [37]. In recent years, it has also been used to evaluate the
impact of various variables on LST [38,39]. The RF model is based on decision trees, each
of which is built from randomly selected training samples and randomly selected predictor
variables that are combined to generate the final predicted values. The number of weak
classifiers (number of decision trees) in this model was 50, the maximum depth of the tree
was set to 30, the measure of regression effectiveness was MSE, and the test and validation
sets were randomly assigned 75% and 25% of the data, respectively. In this study, the
LST was modeled with each morphological indicator using the OLS model, the RF model,



Buildings 2023, 13, 528 13 of 17

and the FNN model. Then, the accuracy of the models was compared using performance
metrics such as R2, RMSE, and MAE, and the results are shown in Table 3.

Table 3. Results of performance metrics.

Performance Metrics OLS Model RF Model FNN Model

R2 0.730 0.657 0.781
RMSE 1.191 1.293 1.184
MAE 0.923 0.919 0.885

The results indicate that the FNN had a better fitting effect on the relationship between
the morphological indicators and the LST. The results demonstrate that the R2 value of the
FNN model was higher than that of the OLS and RF models. The FNN model improved
the fit by 6.1% over the OLS model. The RMSE and MAE results show that the FNN model
had the highest accuracy for the prediction of LST. Overall, the FNN model better reflected
the relationship between morphology indicators and LST.

4.2. Specific Application of Feed-Forward Neural Network Model

The validation and comparison results of the FNN model constructed in this study
show that FNN can more effectively and accurately respond to the influence of morpho-
logical indicators on LST. Therefore, the results of the study have important implications
for urban planning and design in the study area. We sought to predict LST of blocks by
inputting the seven morphological indexes into the FNN model, and then quantitatively
evaluating the blocks and regions based on predictive LST.

Therefore, a unit with a high LST was chosen to select indicators for adjustment.
Ref. [38] pointed out that building density has a greater influence on changes in LST. It
is difficult to change the building scale within already built-up areas. However, building
density can be shaped by the design of the scheme stage for the areas that have not been
planned yet. Ref. [16] pointed out that ISP and GNP have a strong influence on LST. Greater
urban greenery significantly reduces temperatures [18,40] within a certain range. The
cooling effect of green space is obvious, and obtaining the corresponding indexes of the
ideal cooling effect of green space is key for the region’s planning [41]. Therefore, GNP was
chosen as an example of an adjusted indicator to predict the LST distribution. It is worth
noting that as GNP increased, the ISP decreased. According to the distribution of LST, the
hotter block units were concentrated in the densely populated areas of the harbor industrial
zone. In this study, a mixed residential and business block was selected; the real-world
view is shown in Figure 9. Increasing the green space in the block unit by adding small
public green space and optimizing the layout of parking lots would increase certain green
space. The values of the seven morphological indexes of this unit are shown in Table 4.
The corresponding LSTs were calculated by the FNN model. The morphological indicators
interact with each other. An increase in green space implies a decrease in impervious
surfaces and bare ground. The ISP ranged from 98.4% to 70%, the GNP ranged from 1.6%
to 30%, and the interval was set at 1%.

After inputting the seven indicators into the FNN model, a dot distribution map with
the results of each combination was made and is displayed in Figure 10a. Numerous indi-
cator scenarios are given in Figure 10a, but a single increase in green space will inevitably
reduce impervious land. Therefore, the indicator scheme with the sum of GNP and ISP
being 100% was selected, and the LST value predicted by the FNN model is shown in
Figure 10b. With a difference of about 0.77 ◦C and a median of 33.58 ◦C, the LST determined
by the model ranged from 33.19 ◦C to 33.96 ◦C. The lowest LST scenario was one in which
the GNP fell to 30%, the ISP was simultaneously reduced to a 70% share, and the average
LST of the block was 33.19 ◦C. It can be seen that when the ISP was constant, the LST
gradually decreased as the GNP increased. Figure 10a shows that the area where the LST
cooling effect was more pronounced in the index optimization scheme is the blue area
above the black straight line at 33.58 ◦C. It can be seen that increasing the green space ratio
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can significantly reduce the thermal environment of the block. At the same time, it will
also reduce the percentage of impervious surfaces, which to a certain extent will constrain
construction and development. It is a suitable indicator for the block to increase the green
space area as little as possible while achieving a certain cooling effect.
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Table 4. Indicators of a typical unit.

Indicators Value

Impervious Surface Percentage (ISP) 98.4% to 70%
Green Percentage (GNP) 1.6% to 30%
Water Percentage (WP) 0

Bare Soil Percentage (BSP) 0
Floor Area Ratio (FAR) 0.814

Building Cover Percentage (BCP) 32.2%
Average Building Height (ABH) 7.2 m

Maintaining the existing building scale, the bare surface and part of the impervious surface in the block are
renewed as green space, and the indicators on the 2-dimensional aspect of the land cover are changed, but the
total of the indicators is still 100%.

Many indicator scenarios are given in Figure 10a, but a single increase in green space
will inevitably reduce impervious land. With the optimization target of cooling the LST to
a median value of 33.58 ◦C, the specific indicator scheme was derived from the FNN model
as GNP of 17.1%, ISP of 82.9%, WP of 0, BSP of 0, FAR of 0.814, BCP of 32.2%, and ABH
of 7.2 m. Therefore, if the block is renewed, it can achieve a certain cooling effect while
ensuring no development constraints on the building scale. The final suggested specific
indicator scheme is based on the scale of current construction and development. With
the LST serving as the control target, the method of this study was used to determine the
specific combination of seven indicators for the area when carrying out urban renewal and
urban planning work.
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4.3. Limitations

Although this study used an artificial neural network to quantitatively explore the
relationship between block morphology and LST, there are some limitations in this study.
The main target of this study was to identify adjustable indicators in planning and design,
in order to recommend strategies that can be used in urban planning and design based on
the influence of certain indicators on LST. Climate also has an influence on the urban heat
island phenomenon, but it cannot be adjusted through the deployment of planning and
design indicators.

First, the non-smooth association between canopy climate and morphological fac-
tors should be considered comprehensively. Second, data from more sources should be
introduced (e.g., meteorological monitoring data, 3D building information) for further
determination of the strong correlation between individual morphological factors and LST.
Lastly, Landsat 8 OLI and TRIS remote sensing images were the data sources for calculating
the LST of the study area. The image resolution was 30 m, and this caused inaccuracies in
the LST, especially for the small blocks. More interesting findings could be obtained and
discussed based on higher-resolution images. More accurate remote sensing images and
newer city morphological data should be updated in future studies.

5. Conclusions

Due to the numerous factors that affect its formation, growth, and evolution, the
urban thermal environment is a complex system. A more accurate explanation of the
relationship between morphological indicators and the complex interaction of land surface
temperature (LST) can improve the prediction accuracy of LST. This study used a feed-
forward neural network (FNN) model to examine the nonlinear relationship between
morphological indicators and LST at the block scale. Seven morphological indicators
and LST of Kitakyushu in Japan were collected and calculated by remote sensing and
land cover data and used as the dataset for FNN model training. The constructed FNN
model converged and reached the minimum loss at 100 epochs of training. Then, a strong
heat island effect block with mixed commercial and residential functions was used as an
example to clarify the specific application of the FNN model. Finally, with the LST serving
as the control target, the method devised in this study was used to determine the optimal
combination of seven indicators for the study area to guide urban renewal and urban
planning work. The conclusions are as follows:
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1. The spatial autocorrelation of LST indicates that the areas sensitive to the heat island
effect are mainly concentrated in the industrial area along the south side of Dong
Bay, the high-density urban mixed commercial and residential areas, and densely
populated areas around transportation hubs.

2. The constructed FNN model converged and reached the minimum loss at 100 epochs
of training. The R2, RMSE, and MAE of the FNN model were 0.781, 1.184, and 0.885,
respectively, showing better performance than ordinary least squares regression and
random forest.

3. Using cooling LST as the optimization target, the specific indicator scheme was
derived from the FNN model with a GNP of 17.1%, ISP of 82.9%, WP of 0, BSP
of 0, FAR of 0.814, BCP of 32.2%, and ABH of 7.2 m. With the LST serving as the
control target, the method developed in this study was used to determine this specific
combination of indicators for the area, which can inform urban renewal and urban
planning work.
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