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Abstract: From a stakeholder perspective, the personal growth of industrial personnel is important
for the promotion of the sustainable development of the construction industry. As an important
part of knowledge management, training is a common way to improve the personal knowledge
and skills of construction practitioners. Group role assignment with a training plan is thought to
optimize group performance and the assignment of personnel with collaborative behaviors. However,
existing mathematical models or approaches have mainly considered the loss of downtime caused
by training while ignoring the different costs of training programs and personal capabilities, which
affect the overall benefits. Hence, to solve the training-related role assignment problem, the intention
of this study is to formulate a new model that integrates comprehensive training costs with various
personal capabilities. After training, all roles need to be reassigned to maximize the overall benefit.
Four experiments were conducted. The results show that training strategies can increase the total
benefit, but also weaken it when the training costs are too high. Training strategies have a cumulative
effect, i.e., training performance is positively related to the knowledge and skill levels of construction
practitioners. Finally, training performance varies with the industrial role.

Keywords: sustainable development; collaborative behavior; group role assignment; GRATP;
training cost

1. Introduction

The completion of a construction project requires the collaboration of multiple prac-
titioners, such as decision makers, surveyors, program designers, construction workers,
acceptance personnel, and maintenance operators. The professional competence of each
practitioner has an impact on the quality of a project, as well as on the sustainable devel-
opment of individual practitioners, i.e., on the improvement of practitioners’ professional
skills and knowledge [1]. As an important part of knowledge management, training is an
important path toward enhancing the sustainable development of construction practitioners.
Moreover, training can improve teams’ benefits [2–4] and decision making [5,6]. In order to
better promote the sustainable development of individuals, this paper focuses on the impact
of training strategies on multi-role collaboration among construction practitioners.

In the existing research on collaboration, role-based collaboration (RBC) has been
introduced as a new problem-solving paradigm that uses the E-CARGO model to facilitate
modeling [7–11]. RBC includes three main tasks: role negotiation, role assignment, and
role implementation [12]. Role assignment is an important component of RBC research,
and it is accomplished by assigning personnel to roles according to their qualification
values [13,14]. The qualification values represent the performance of personnel in their
corresponding roles [15,16]. In order to obtain the optimal role assignment scheme, group
role assignment (GRA) has been proposed [17]. The ultimate goal of GRA is to maximize
the total performance or benefit of a team. The total performance is defined as the sum of
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the qualification values of all personnel, and the total benefit is defined as the cumulative
group performance of the final team [18,19]. The definition of this total performance is
positively related to the overall ability of a group, i.e., the total performance can reflect the
quality of different role assignment plans in order to find the optimal role assignment plan
for the group. Choosing different optimization indicators according to different problems
can lead to the effective solution of practical collaboration problems. The cost of training
has received little attention, despite the fact that starting times, durations, and training
plans have all been studied [20]. Among the various practical problems, training cost is
also an important factor that affects the total benefit of a team [21–23]. For different training
projects, the training costs are generally different [24–26]. Therefore, it is necessary to
consider the training cost when formulating training plans to solve collaboration problems.

Considering the influence of the training cost, this paper studies the problem of GRA
with a training plan (GRATP) and with a training cost (GRATPC) in the construction
industry. An algorithm for obtaining the optimal training plan is proposed according to this
problem. Here, the training cost refers to the cost that a company needs to pay to training
institutions for different training programs. In this article, the cost of each training project
is measured in days. For different projects, the cost of training and the effects of capacity
improvement are different. According to the RBC and E-CARGO models, this problem
can be abstracted as an optimization problem. The cost of training varies according to
the role. This paper comprehensively considers the influences of the training cost and the
final improvement in the abilities of personnel on the team’s total benefit, and the optimal
training duration and training scheme are found to maximize the team’s total benefit. The
initial role assignment before training is determined by the personnel’s ability to play a
role. After training, the abilities of the personnel are differently improved because different
personnel have different training projects. At this time, the initial training plan may not be
optimal, so roles are reassigned after training to achieve the goal of maximizing the team’s
benefits. Finally, the effectiveness of the algorithm is verified with experiments.

The rest of this paper is organized as follows. Section 2 presents papers with related
work. Section 3 describes the specific definitions for constructing the relevant E-CARGO
models. Section 4 describes the experiments that were conducted and analyzes the ex-
perimental results. Finally, the conclusions and directions for further research are given
in Section 5.

2. Related Work
2.1. Sustainable Development of the Individual

Contemporary buildings are created and managed through the use of large amounts
of energy and materials, and the construction process has a negative impact on human
health and the natural environment [27]. Sustainability in the construction industry is often
understood to mean that the construction activity itself should meet the requirements of
sustainable development [28]. Specifically, the construction materials, program selection,
construction technology, and construction waste disposal involved in construction activities
during the entire life cycle should meet the requirements of protecting the environment and
reducing energy consumption to achieve sustainable development [29]. Shurrab et al. [30]
identified seven green building factors from data collected from 120 respondents and
showed through their findings that the adoption of green building factors by construction
companies can improve sustainability performance. Carlo et al. [31] argued that life cycle
assessments (LCAs) of the energy efficiency and environmental performance of buildings
are essential for addressing sustainability issues.

In addition to this, sustainable development in the construction industry also has
another layer of meaning, namely, the continuous and stable development of the industry
itself. In an open economy, the sustainable development of employees is considered essen-
tial in order to help achieve sustainable corporate growth, which includes employee quality,
employee competencies, etc. [32]. Loosemore and Malouf [33] demonstrated that employee
training can improve the overall quality and competence of construction companies and
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address the shortage of workers in the Australian construction industry. Demirkesen and
Arditi [34] believed that formal, well-organized, and effective safety training is effective in
reducing the frequency and severity of safety incidents. With the advent of the Industry 4.0
era, the construction industry is transforming toward informationization, digitalization,
and intelligence [35], and new technologies and techniques are being applied more and
more, making construction more and more difficult [36]. Therefore, it is necessary to ensure
the sustainable development of the construction industry by providing continuous training
for practitioners according to the requirements of projects.

2.2. RBC Theory and the GRATP Model

Collaboration and training come with certain losses, which are related to financial
knowledge, and RBC and E-CARGO models can be used as emerging methods for studying
such problems. For example, Zhu [37] put forward a new requirement for adapting the
RBC model to the creation of sustainable groups; they explained the problem of an agent
training plan for a sustainable group for the first time and proposed an efficient algorithm.
Setting matching threshold values for each position and deciding whether to train an agent
for that position based on that value will allow for future progress.

Huang et al. [38] discussed the last-mile assignment problem (LMAP) for fresh agricul-
tural products. To formalize the problem, they used the group role allocation framework.
In addition, they proposed a role awareness method by using adaptive clustering based on
task granularity to solve the problem.

Liu et al. [39] proposed a method associated with the method of “one clause at a time”,
which is related to the factors that decision makers consider when making decisions. The
method was proposed to solve the problem of group role allocation and balance.

Zhang et al. [40] suggested task assignment when using a human and robot in an intuitive
fuzzy environment, which broadened the scope of the GRA theory and its specific applications.

Zhang et al. [41] formalized the high-order set assignment problem (HOTP) by using
group role assignment (GRA), and they proposed a role negotiation method by using the
hierarchical clustering and analytic hierarchy process (AHP) algorithms based on GRA.

The aforementioned studies demonstrated the significance of RBC in various role
assignment problems. In particular, the GRATP model aims to solve a GRA problem with a
training plan. Table 1 shows the development of GRATP. Zhang et al. [2] first studied how
training can affect character competence. They studied the group role assignment problem
according to redundant agents to avoid a situation in which no one would replace an agent
after the agent left. Guo et al. [3] proposed the GRATP problem for the first time. They
investigated the GRATP problem and introduced the training start time into the training
plan. Zhang et al. [20] considered the correlations between roles, and they proposed a
GRATP (RCCS-GRATP) algorithm based on role correlation and the current state to solve
the adaptive GRATP (RCA_GRATP) problem based on role correlation.

Table 1. The development of the GRATP.

Paper Name Innovation

Group role assignment with a training Plan [2] GRA + training program
(Redundant agent)

Adaptive collaboration with a training plan [3] GRATP + training program
+ training start time

Adaptive collaboration with a training plan
considering role correlation [20]

GRATP + role correlation

This paper GRATP + training program
+ training start time + training cost

There are many areas in which the RBC theory has been used. Liu et al. [42] de-
veloped and solve the problem of UAV deployment for signal relays via the RBC theory.
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Ma et al. [43] utilized RBC to formalize and solve the problem of cloud service composition
for data-intensive applications. Jiang et al. [44] formalized the refugee resettlement problem
by using the E-CARGO model, and they designed a new solution for refugee resettling (RS)
by extending the RBC theory.

3. The Proposed Model
3.1. Basic Assumptions

Several logical assumptions are proposed for the formulation of the cooperation
problem in question. These assumptions are the premise of the model. They follow the
existing literature, a continuation of the literature, or observations in the real world.

Assumption 1 ([37]). The qualification value is used to represent the ability of an agent to play
the corresponding role.

Assumption 2. In the entire collaborative process, there are no redundant personnel, and the
number of agents just meets the requirements for the normal progress of the project, which means
that the project will stop when the training starts. Additionally, training takes place during working
hours, and the project’s end time cannot be later than the end of the training. This is because if the
end time of the training is later than the project’s end time, even if agents’ abilities are improved,
they will not make any contributions to the project.

Assumption 3 ([2,3]). The training plans are different, but all personnel are trained at the same
time. The personnel will experience comparable capacity enhancements after the training.

Assumption 4. A certain loss is incurred during training. Training costs and lost work costs are
calculated in days. In the real world, there are examples of targeted skill training that is charged by
day. For example, in the e-commerce industry, some companies charge for anchor training by day.
In order to facilitate the calculation of comprehensive training costs, we also calculate the downtime
loss by day.

Assumption 5 ([45]). We assume that the functional ability of the personnel in a role is as follows:

q(t) = α sin(ωt + θ) + β, (1)

where the initial value of the ability is based on the parameters α, θ, and β, and ω represents the
fluctuation speed. Their ranges of values will be discussed in the next section.

Assumption 6 ([2,3]). The abilities of agents are increased after training. The improved ability ∆q
is calculated as follows:

∆q = (1− q0)× k0 × q0 × (1− |α| − β)× (1− e−k1t), (2)

where q0(0 ≤ q0 ≤ 1) is the qualification of the personnel at time t, and k0(0 ≤ k0 ≤ 4) and
k1(k1 ≥ 0) are constants. When t = +∞, ∆q reaches its maximum, which indicates the maximum
increase in capacity of the personnel in the entire training process. So, ∆qmax is calculated as follows:

∆qmax = (1− q0)× k0 × q0 × (1− |α| − β), (3)

where k0 controls the degree of capacity growth. For convenience,

r(t) = 1− e−k1t, (4)

where k1 is the learning rate. Based on Equations (1)–(3), ∆q = ∆qmax × r(t).

Assumption 7 ([2,3]). The agents’ qualification values vary when the agents are on duty, but they
remain the same when they are not working.
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3.2. The Basic Definition of GRATP

According to the assumptions in Section 3.1, this paper proposes several definitions
for formalizing the problem. In the existing RBC theory, some basic definitions of the
E-CARGO model have been extensively used and familiarized. The contribution matrix
λ, the role range vector L, the contribution vector w, and the assignment matrix T can be
easily obtained according to the available comprehensive literature [46–48].

Definition 1. We assume that the qualification function of agent i (0 ≤ i < m) for role j
(0 ≤ j < n) is the following sine function:

Q[i, j](t) = αij sin(ωijt + θij) + βij(0 ≤ t ≤ td), (5)

where the meanings of parameters αij, βij, ωij, and θij are the same as those in in Assumption 5.

Definition 2. The group performance at time t is defined as σ(t)=
m−1
∑

i=0

n−1
∑

j=0
Q[i, j](t)× T[i, j]×

λ[i, j]. Thus, the total benefit during [0, t] is represented as:

σ =
∫ t

0
σ(t)dt=

m−1

∑
i=0

n−1

∑
j=0

∫ t

0
T[i, j]×Q[i, j](t)× λ[i, j]dt. (6)

Definition 3. Given Q(0), the best role assignment matrix before training Tbe f ore can be obtained
based on GRA:

max
m−1

∑
i=0

n−1

∑
j=0

{
Q[i, j](0)× Tbe f ore[i, j]× λ[i, j]

}
s.t.

Tbe f ore[i, j] ∈ {0, 1}(0 ≤ i < m, 0 ≤ j < n), (7)
m−1

∑
i=0

Tbe f ore[i, j] = L[j](0 ≤ j < n), (8)

m−1

∑
j=0

Tbe f ore[i, j] ≤ 1(0 ≤ i < m). (9)

where expression (7) means that an element of Tbe f ore can only be 0 or 1; (8) guarantees that the
group is workable; (9) represents that each agent can be assigned at most one role.

Definition 4. Based on Equation (4), the function of the capabilities of the personnel after training
is expressed as

q1 = q0 + ∆q = q0 + ∆qmax × r(tduration), (10)

where q0 (0 ≤ q0 ≤ 1) is the qualification of the personnel before training, i.e., at time tstart, q1
(0 ≤ q1 ≤ 1) is the qualification of the personnel after training, ∆qmax denotes the maximum value
of the capability improvement, and r(tduration) is the proportion of growth. Their expressions are
shown below.

∆qmax = (1− q0)× k0q0 × (1− |α| − β), (11)

r(t) = 1− e−k1tduration , (12)

where k0 (0 ≤ k0 ≤ 4) and k1 (k1 ≥ 0) are constants.
To illustrate the change in the abilities of multiple personnel during, the function is revised

as follows:
Q′[i, j](tend) = Q[i, j](tstart) + (1−Q[i, j](tstart))
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×k0Q[i, j](tstart)× (1− e−k1tduration)× Ttrain[i, j]. (13)

s.t.

tend=tstart + tduration, (14)

where tend denotes the end time of training.
Since the capabilities of agents in a group will vary over time, it is necessary to draft an

appropriate training plan P to maximize the total benefits; this plan contains the start time of
training tstart, the end time of training tduration, and the training assignment matrix Ttrain.

Definition 5. The total benefit before training, i.e., the total benefit in [0, tstart], is expressed as

σ0=
m−1

∑
i=0

n−1

∑
j=0

∫ tstart

0
Tbe f ore[i, j](t)×Q[i, j]× λ[i, j]dt. (15)

Definition 6. Ta f ter is the role reassignment matrix after training.
Note that Ta f ter is equal to Ttrain when they are both optimal. This is because if one member of

the personnel trains and is reassigned to different roles, the training will be wasteful, i.e., the result
will not be optimal.

Definition 7. Given tstart, tduration, and Q(tstart), the training matrix Ttrain and re-assignment
matrix after training Ta f ter can be calculated as follows:

max
m−1

∑
i=0

n−1

∑
j=0

Q′[i, j](tend)× Ta f ter[i, j]× λ[i, j]. (16)

s.t. (13) and (14) and

Ta f ter[i, j] ∈ {0, 1}(0 ≤ i < m, 0 ≤ j < n), (17)
m−1

∑
i=0

Ta f ter[i, j] = L[j](0 ≤ j < n), (18)

m−1

∑
j=0

Ta f ter[i, j] ≤ 1(0 ≤ i < m), (19)

m−1

∑
j=0

Ttrain[i, j] ≤ 1(0 ≤ i < m), (20)

Ta f ter = Ttrain, (21)

where expressions (17)–(19) are the same as (7)–(9), respectively; (20) expresses that each person
can only be trained in at most one role, and (21) is explained in Definition 6.

Definition 8. The total benefit in [tstart + tduration, td] is denoted as:

σ1 =
m−1

∑
i=0

n−1

∑
j=0

∫ td

tend

Q′(tend)[i, j]× Ta f ter[i, j]× λ[i, j]dt. (22)

Definition 9. The total benefit σ′ is defined as the sum of the overall project performance (0 ∼ td):

σ′ = σ0 + σ1. (23)
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Definition 10. The cost of the role-training vector h is an n-dimensional vector, and h[j] denotes
the cost of training agents in role j for one day.

Definition 11. The cost of the role-training vector H is an m× n matrix representing the cost of
the training program.

Definition 12. The cost function of training is defined as:

Cost=tduration ×
m−1

∑
i=0

n−1

∑
j=0

Ttrain[i, j]× H[i, j]. (24)

Definition 13. During the training, the losses caused by the suspension of the project are
calculated as

Loss=
m−1

∑
i=0

n−1

∑
j=0

∫ tend

tstart
Q[i, j](t)× Tbe f ore[i, j]× λ[i, j]dt. (25)

Definition 14. The total cost of training is defined as:

Cost_all = Cost + Loss. (26)

Definition 15. Given a group expressed by Q(t), L, Tbe f ore, and H, the GRATPC problem is that
of obtaining the optimal training plan P (tstart, tduration, and Ttrain) to maximize the total benefit
σ∗, i.e., obtaining

σ∗ = max(σ′ − Cost_all). (27)

s.t. (7)–(9), (17)–(19), (24)–(26), and

σ0=
m−1

∑
i=0

n−1

∑
j=0

∫ tstart

0
Q[i, j](t)× Tbe f ore[i, j]× λ[i, j]dt, (28)

σ1 =
m−1

∑
i=0

n−1

∑
j=0

∫ td

tend

Q′(tend)[i, j]× Ta f ter[i, j]× λ[i, j]dt, (29)

0 ≤ tstart < td, tstart ∈ N , (30)

0 ≤ tduration ≤ td − tstart, tduration ∈ N , (31)

where expressions (30) and (31) represent training that must take place during the project.

The whole algorithm has been presented in Algorithm 1.

3.3. Description of the Experiments

To verify the effectiveness and reliability of the model, four simulated experiments
were conducted. The parameters α, β, ω, and θ in the experiments were randomly gen-
erated. On the one hand, from the perspective of the group, Experiment 1 compared the
difference in the total benefits under the three algorithms of reassignment, noreassignment,
and notraining. The average value, maximum value, and minimum value were obtained in
repeated experiments to verify the universality of the model. In addition, changes in the
parameters could affect the experimental results. Experiment 2 considered the influence of
k0 and k1 on the total benefits under the condition of equal-step-size growth. Experiment 3
studied the impact of increasing the training cost. On the other hand, from the perspective
of roles, Experiment 4 considered the influence of changes in the roles of k0 and k1 on the
total benefit.
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Algorithm 1 The algorithm for the GRATPC problem

Require:
Q(t), T, λ, H.

Ensure:
The training program matrix T∗train, the total benefit σ∗, the training start time t∗start, and
the training duration t∗duration.

1: σ∗ ← 0;
2: for tstart ∈ [0, td] do
3: for tduration ∈ [0, td − tstart] do
4: Calculate Q(t)′ with Definition 10;
5: Calculate Ttrain and Ta f ter with Definition 13;
6: Cost_all = Cost + Loss, Cost, and Loss are calculated with Equations (24) and (25),

respectively;
7: σ′ = σ0 + σ1, σ0, and σ1 are calculated with Equations (28) and (29), respectively;
8: Calculate σ = σ′ − Cost_all;
9: if σ∗ < σ then

10: σ∗ ← σ, T∗train ← Ttrain, t∗start ← tstart, t∗duration ← tduration;
11: end if
12: end for
13: end for

4. Results

In this section, to verify the effectiveness and reliability of the model, we describe
the four simulated experiments that were conducted. The parameters and experimental
settings are illustrated, and the model was tested for its correctness and effectiveness
according to multiple experimental results.

4.1. Preparation of the Experiments

According to the Code of Construction Organization and Design, the construction pro-
cedures for general construction projects in China, such as highway projects, large bridge
projects, and water conservancy projects, can be summarized into four stages: the invest-
ment decision stage, survey and design stage, project construction stage, and completion
acceptance and operation stage. For general construction projects, many practitioners are
involved in the four stages; these include decision makers, surveyors, program designers,
construction workers, acceptance personnel, and maintenance operators. The contributions
of the required positions and staffing are shown in Table 2.

Table 2. Required positions and their contributions.

Positions
Decision

Maker Surveyor
Program
Designer

Construction
Worker

Acceptance
Personnel Operator Maintainer

Required
Number

1 2 1 3 1 1 1

Contribution
Rate

20% 11% 12% 30% 8% 9% 10%

Different roles have different training priorities. For decision makers, training should
focus on market insight, organizational and coordination skills, interpersonal and com-
munication skills, and decisive ability. For construction workers, training should focus
on enterprise regulations, job responsibility education, learning basic skills, and safe and
civilized production. For other practitioners, the training should focus on understanding
the development of the industry and learning the latest research results in the profession,
such as those concerning new technologies, new equipment, and new materials. Taking
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into account that training can expedite a project’s progress, this paper set a training budget.
Since the costs of training are different for different roles, this paper lists the initial prices
of training positions based on experience, as shown in Table 3. This paper also takes
into account that the abilities of the personnel may change over time. To maximize the
effectiveness of the budget, this paper is intended to obtain the best training plan P (tstart,
tduration, and Ttrain).

Table 3. Initial training cost list.

Position
Decision

Maker Surveyor
Program
Designer

Construction
Worker

Acceptance
Personnel Operator Maintainer

cost 10 20 30 13 11 14 20

The cost is calculated in units of one hundred dollars.

In the next experiments, the parameters α, β, ω, and θ in the equation were randomly
generated. It was reasonable to set k1 = 0.8 and k0 = 4. According to Assumption 2, the
training could only be carried out on working days, that is, the project stopped during the
training period and did not produce any benefits. This can be regarded as the loss caused
by the training. Different training programs require different costs. In consideration of the
real situation, the remaining period of the project was set to 130 working days.

4.2. Experiment 1

In the experiment, we used the E-CARGO model to first calculate the redistribution
scheme and then infer the training plan. In order to prove that our conclusion is reliable,
we have shown the results of the three strategies in Figures 1–3. In these figures, tstart
indicates the training start time, tduration indicates the training duration, and the total benefit
indicates the total benefit. Taking Figure 1 as an example, (4, 14, 264.342) indicates that the
training starts on the fourth day and lasts for 14 days, and the final total benefit is 264.342.
According to the results in the three figures, training and redistribution can significantly
improve the total benefit, and the optimal total benefit of our method is 8.19% and 28.06%
higher than that of the the new allocation and no-training strategies, respectively. Although
costs would be incurred in the training process, we can see from the results that the total
benefit can be increased as long as reasonable training and redistribution are carried out. At
the same time, the experimental results show that after training, the total benefit increases,
and the training redistribution causes the gap to be further widened.

Figure 1. The results of the reassignment algorithm.
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Figure 2. The results of the noreassignment algorithm.
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Figure 3. The results of the notraining algorithm.

To further demonstrate the generality of the model, we ran multiple experiments while
using the randomly generated parameters α, β, ω, and θ. The average, maximum, and
minimum values of each of the 20 experiments are included in Table 4. From the table,
we can see that our theoretical derivation is correct, that is, training and redistribution are
obviously better than the two cases of no training and no distribution.

Table 4. The result matrix.

Total Benefit
Method Reassignment Noreassignment Notraining

Average 260.15 238.71 212.55

Max 271.44 259.25 231.99

Min 246.66 215.84 189.44

4.3. Experiment 2

In this subsection, the impacts of k0 and k1 on the proposed model are explored.
Without loss of generality, the values of k0 and k1 were set to be different for each role.

The original values of the two parameters were set to: K1 = [0.3, 0.5, 0.2, 0.12, 0.33, 0.21, 0.34],
K0 = [3, 5, 2, 2, 3, 1, 4]. Then, k0 and k1 were incremented by 0.05 at each step. For generality,
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the experiments were randomly repeated 10 times. The results for k0 and k1 are shown in
Figures 4 and 5, respectively.
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Figure 4. The changes in the total benefit with the increase in ∆k0 (a step of 0.05).
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Figure 5. The changes in the total benefit with the increase in ∆k1 (a step of 0.05).

As shown in Figure 4, as ∆k0 increases, the improvement in capability brought about
by the training becomes larger, thus leading to an increase in the total benefit. As shown in
Figure 5, the total benefit becomes larger because the improvement brought about by the
training becomes larger as ∆k1 increases.

4.4. Experiment 3

In this part of the experiment, we discuss the influence of ∆cost on the total benefit.
The change in cost affects the total benefit. We set the cost to increase by 10 each time.
In order to make the experiment general, we made the parameters of each experiment
change randomly. The results of three experiments for ∆cost are shown in Table 5. It can
be concluded from the experimental results that the total benefit decreases when the cost
increases with the same step size. The results also show that companies in the construction
industry need to harmonize the conditions related to cost on the basis of training in order
to maximize the total benefits.

Table 5. ∆cost and total benefit.

Benefit
∆Cost 0 10 20 30 40 50 60 70 80 90

time 1 219.45 219.34 219.23 219.12 219.01 218.90 218.79 218.68 218.57 218.46

time 2 230.99 230.89 230.79 230.69 230.59 230.49 230.39 230.29 230.19 230.09

time 3 243.77 243.68 243.59 243.50 243.41 243.31 243.22 243.13 243.04 242.96
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4.5. Experiment 4

The previous experiments were based on the perspective of the group, and this experi-
ment was based on the perspective of the role. In order to avoid the influences of other fac-
tors, some elements were ignored, i.e., the values of W and the cost were the same for each
role. That is to say, W = [ 1

7 , 1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7 ] and cost = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01].
Moreover, for the original vector, K0 = [1, 2, 3, 4, 5, 6, 7]. In Figure 6, k0 = 1 means that the
element with a value of 1 in K0 is set to 0, i.e., K0 = [0, 2, 3, 4, 5, 6, 7]. In the experimental
scenario, this indicates a low quality of training for decision makers. Like K0, K1 = 0.2
mean that K1 = [0.1, 0, 0.3, 0.4, 0.5, 0.6, 0.7]. In the experimental scenario, this indicates a
low ability to understand training for decision makers. As shown in Figure 6, if k0 or k1
is larger, the total benefit further decreases after it is set to zero. The specific values and
corresponding positions are shown in Table 6.
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Figure 6. The impact of changes in k0 and k1 for a single role on the model.

Table 6. The impact of changes in k0 and K1 for a single role on the model.

Position
Decision

Maker Surveyor
Program
Designer

Construction
Worker

Acceptance
Personnel Operator Maintainer

k0

total benefit 552.33 541.84 539.836 543.01 549.32 557.49 566.75

decreasing
rate 4.22% 6.04% 6.38% 5.83% 4.74% 3.32% 1.72%

k1

total benefit 212.31 204.18 208.42 190.557 206.67 206.20 205.88

decreasing
rate 1.61% 5.38% 3.41% 11.69% 4.22% 4.44% 4.59%

5. Discussion and Conclusions

To explore the effects of training strategies on group performance and optimal person-
nel assignment for collaborative behavior in the construction industry, this paper explored
GRATP in dynamic scenarios under the premise of considering the training cost. We
investigated the impact of the training cost on the GRATP problem and proposed the
GRATPC model. The correctness and validity of the inferences including all assumptions
were confirmed and verified through the four experiments. The GRATP model is a highly
abstract model, and it still requires more modelling and abstraction in practical applications.
The main innovation of this paper was the description and modelling of the problem of
collaboration in the construction industry from the perspective of RBC and the extension of
the GRATP model.

The contributions of this paper include two aspects. First, to the best of our knowledge,
this is the only model to consider the training cost with diverse personnel capabilities when
studying GRATP, unlike in related studies [3,20], which only took the benefit generated by
the group as the optimization target. Second, the proposed model extended the application
of RBC and the E-CARGO model from three perspectives.
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(a) By combining Experiment 1 and Experiment 3 (aligning with the proposed As-
sumptions 1, 2, 3 and 4), we found that training strategies could increase the total benefit,
but also weaken it when the training cost was too high. This finding corroborates those of
other research. For example, Clements and Josiam [49] showed that system training can be
economically beneficial and that trainees can reach full production faster. Wang et al. [50]
surveyed 93 training directors and construction managers from the U.S. construction in-
dustry and estimated that the benefit-to-cost ratio of training for industrial projects ranged
from 1.5:1 to 3.0:1. These results contribute to the growing body of evidence showing
that investment in practitioner training is essential to the sustainability of the construction
industry. It is worth noting that excessive training costs can undermine the benefits of train-
ing. Lombardo [51] believed that training departments should use cost–benefit analysis
when planning the long-term goals of training programs and use it as a way to improve
organizational productivity and achieve training goals.

(b) Experiment 3 (aligning with the proposed Assumptions 5, 6 and 7) revealed that
training strategies have a cumulative effect, i.e., training performance is positively re-
lated to the knowledge and skill levels of construction practitioners. Wang et al. [50]
explained that in a community model where multiple companies participate in training
programs, employers can still reap better training benefits, even when workers move from
one company to another. For the construction industry, providing ongoing training for
practitioners is beneficial to the sustainability of the industry. The Ministry of Housing and
Urban–Rural Development of the People’s Republic of China issued the “Essentials of Con-
struction Education Reform and Development” and “Opinions on Vigorous Development
of Construction Vocational Education”, which pointed out the importance of training in the
construction industry, as well as specific training requirements and training objectives.

(c) Experiment 4 (aligning with the proposed Assumptions 5, 6 and 7) clarified that
training performance varies by industrial role, and among the seven types of construction
practitioners, training targeting construction workers has a greater impact on the overall
benefit. Recent studies have shown that shortages of labor and an unqualified workforce
are the two most serious reasons for delays in large construction projects [52]. In addition,
shortages of skilled workers are one of the most significant challenges facing the construc-
tion industry worldwide [53]. To address this issue, Johari and Jha [54] expressed that a
constant supply of skilled workers can allow high productivity and quality in construc-
tion work to be achieved. This, in part, suggests that training construction workers has a
significant impact on improving the performance of the construction industry.

However, there are still some deficiencies that have not been taken into account. In
this study, the experimental data used were randomly generated, rather than using real
data, which made the experimental results slightly different from those in the real world.
Furthermore, the theoretical GRATP model was developed and tested via four simulated
experiments, and it has not yet been specifically applied in the industry. The actual
application and validation of the model in the practice will need to be carefully planned
according to project requirements and organizational policies. Next, future studies should
address the costs of role reassignments that vary with time, and they should consider certain
adjustments in the model through the inclusion of dynamic human factors in the learning
process. Last but not least, future studies should also consider extending the investigation
to multi-objective programming in order to maximize other benefits of various project
stakeholders, especially through interpersonal perspectives such as morale, job satisfaction,
loyalty, etc.
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