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Abstract: In this study, novel cross-shaped concrete-filled steel tube (CFST) and steel tube (ST)
columns were developed. CFST columns have a high load-carrying capacity and excellent perfor-
mance under seismic conditions, and the construction process is fast. In order to investigate the axial
load bearings and failure mechanisms, six specimens of CFST and ST columns were tested under
the axial load. Three different forms of CFST were employed in this study; one was an ordinary
cross-shaped CFST (OC-CFST), while the other two were executed with significant inner changes;
namely, stiffeners cross-shaped CFST (SC-CFST), and multi-cell cross-shaped CFST (MC-CFST) filled
with concrete. The other group has the same OC-ST, SC-ST, and MC-ST, but these test subjects were
without filled concrete. Through discussion of the failure mechanism, load displacement and load
strain correlations are determined. The effects of parameters on ultimate resistance, failure pattern,
and ductility index were studied. The axial load-carrying performance of the cross-shaped CFST
columns was 75–80% better than that of ST columns; and each ST column displayed cooperative
behavior. The finite element model (FEM) was simulated, and the outcomes of the experiments were
used to validate it. The load–displacement relationships were established using parametric analysis.
Existing design standards were used to calculate CFST column loading capacity. Finally, mathematical
formulas were improvised to determine the ultimate load of the cross-shaped CFST column.

Keywords: cross-shaped CFST column; multi-cell CFST column; stiffened column; steel tube column;
FEM analysis; structural application

1. Introduction

Applying specially shaped CFSTs, as the columns that protrude from walls, can in-
crease the amount of floor space accessible in structures. Special-shaped CFST columns
are widely used in industrial sites, tall buildings, bridges, substantial transmission towers,
and other structures due to their high load-bearing capacity, outstanding ductility, com-
patible construction, better construction technique and economic advantages [1]. They
are currently being used in several buildings in China, including the Fukang Home, the
Guangzhou new China Mansion, the Guangzhou Mingsheng Plaza, and the residences in
Yuzixi village [2,3]. CFST columns are currently primarily classified into groups possessing
square, rectangular, circular, and special-shaped cross-sections. Implementing specially
shaped CFST columns can improve the internal usage area of a high-rise structure sig-
nificantly [4–6]. A proper theoretical and specification system for CFSTs was created as
a result of significant laboratory experiments and theoretical study that revealed the me-
chanical characteristics of square and circular CFST columns [7–13]. Commonly, a square,
rectangular, or circular cross-section is used for the steel column in a typical residential
building. In these situations, the column can protrude out from the wall and affect the
building structure [14,15]. There are several conventional section forms. Corner columns
for architectural construction frequently use cross-sections which are T-shaped, L-shaped,
and cross-shaped.
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Researchers have previously examined the achievement of multi-cell, L-shaped CFST
columns that have been stiffened while loaded in either pure bending or axial compres-
sion conditions [3,14,16–19], and the currently available design methodologies have been
suggested. Qiguang et al. [20] presented a calculation method for CFST columns with
cross-shaped sections; it investigated how factors such as cross-section dimensions, width-
to-thickness ratio, and yield stress affected loading capacity, displacement form, and stress
formation for the steel tube. According to experimental findings, lowering the tube’s
width-to-thickness ratio decreased the overall out-of-plane displacement at the corner. As
the steel grade was raised, the ductility increased while the bearing load and deformation
decreased inversely. Increased premature load buckling and overall outward extrusion
were seen when the tube’s length-to-width ratio was increased. A CFST column that has
been exposed to axial compression can have its ultimate load-bearing capacity and lateral
displacement impact of a wide range of factors, however, it has been discovered that one
of the more effective factors, in this case, is the concrete confinement [21–26]. Multi-cell
CFST columns with axial loading were introduced by Song et al. [27]; these researchers
carried out both experimental and FEM research. The strength of the concrete and specimen
width–thickness ratio were the experiment criteria. A parametric investigation was carried
out using ABAQUS once the experimental and numerical data had been validated. China
and European standards were the most accurate in calculating the specimen’s loading ca-
pacity according to a comparison of experimental data with those produced using various
standard methodologies.

In order to create a multi-cell T-shaped CFST column, Cao et al. [28] and Xu et al. [29] in-
vented welding techniques for rectangular tubes. The proposed method improved confinement
in infilled concrete by increasing load carrying capacity and recommending design strategies
based on parametric analysis. Liu et al. [2] established a numerical model for ordinary, stiffened,
multi-cell T and L-shaped CFST columns with concentric and eccentric loads. According to
the investigation, multi-cell special-shaped CFST excelled over other types of special-shaped
CFST columns in mechanical behaviour. Earlier studies have shown that adding longitudinal
stiffeners or implementing a multi-cell cross-section can improve the mechanical behaviour of
the special-shaped CFST columns.

In comparison to previous studies’ findings on the behavior of peculiar cross-shaped
CFST and ST columns, the number of research investigations is limited and insufficient.
This research is an experimental, numerical, and analytical study of six cross-shaped CFST
and ST columns subjected to concentric axial compression. The main goal of the test system
is to concentrate on the behavior of the columns with internal changes, like MC-CFST, MC-
ST, SC-CFST, SC-ST, OC-CFST, and OC-ST. Additionally, parametric analysis is carried out
by the FEM approach using the ABAQUS software while considering different geometric
cross-sections and material properties. A mathematical formula for structural engineering
practice in the future has also been proposed, along with a discussion of the best way to
estimate how much resistance particular cross-shaped CFST columns will exprerience.

2. Experimental Research
2.1. Specimens Details

Three types of special-shaped CFST and ST columns cross-sections are made up of
steel tubes with 300 mm × 300 mm dimensions. All the study specimens had identical
overall cross sections with internal changes. In Figure 1 and Table 1, the cross-sectional
information of all specimens is presented. The six specimens were identified as MC-CFST,
SC-CFST, OC-CFST, MC-ST, SC-ST, and OC-ST by symbol codes. Concentric axial loading
was performed on all specimens. Respectively, l and b represent the length and width of
the column, t represents the thickness of the steel tube, and ξ is the confinement factor.
Montuori et al. [30] analyze the finding of a study, looking at several fundamental laws for
the confinement factor. Among them, the square section constitutive laws are shown in
Table 2.
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Figure 1. Typical specimen cross-section: (a) MC-CFST; (b) MC-ST; (c) SC-CFST; (d) SC-ST; (e) OC-
CFST; (f) OC-ST 

Table 1. The specimen’s parameters. 
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Figure 1. Typical specimen cross-section: (a) MC-CFST; (b) MC-ST; (c) SC-CFST; (d) SC-ST; (e) OC-
CFST; (f) OC-ST.

Table 1. The specimen’s parameters.

No. Specimens l (mm) b (mm) t (mm) Concrete Strength (MPa) Steel Strength (MPa) l/b ξ

1 MC-CFST 900 300 3 45.28 330 3 1.136
2 SC-CFST 900 300 3 45.28 330 3 0.936
3 OC-CFST 900 300 3 45.28 330 3 0.842
4 MC-ST 900 300 3 - 330 3 -
5 SC-ST 900 300 3 - 330 3 -
6 OC-ST 900 300 3 - 330 3 -

Table 2. Constitutive laws of Confinement.

Method Formula Reference

01 fcc = fc0 ×
[

2×
(

ρ f ·E f

fc0

)
×
(
−0.4142·E f ·10−7 + 0.0248

)
×
(

2r
d

)
+ 1
]

[30,31]

02 fcc = fcc,s + fcc,c [30,32]

03 (Used method) ξ =
As

Ac
×

fy

fck

[15]

Here, fy and fck are the steel and concrete strengths. As and Ac represent steel and
concrete cross-sectional area. The length–width ratio (l/b) is maintained at 3 mm for all
cross-shaped columns to avoid the general buckling reaction and boundary condition,
culminating in a physical column length of 900 mm.

2.2. Material Properties

During the experiment, a Q235-grade steel sheet was used. Five tensile test samples
were taken and inspected to look at the mechanical properties of a steel sheet with a
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thickness of 7.43 mm inner lengths of 111 mm and 80 mm. An electronic universal testing
machine based on (GBT228.1-2010) [33] was used to conduct the tensile test.

Figure 2 displays the typical stress–strain curve and tensile coupon sample. Table 3
shows the average results for the inspected yield strength, ultimate strength, elastic modu-
lus, and Poisson’s ratio, denoted as fy, fu, Es, and µs, respectively.
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Figure 2. Tensile test results of the Steel: (a) 111 mm length sample; (b) 80 mm length sample; (c) Steel
tensile in tested properties graph.

Table 3. Steel inspected properties.

Inner Length fu (MPa) fy (MPa) Es (MPa) νs

111 mm 587 328 201,059 0.30
80 mm 607 333 201,426 0.30

There, concrete cube samples of 150 × 150 × 150 mm were manufactured, self-made
core concrete was utilized for the concrete material property test, and the concrete was
poured into the steel tube columns. The proportions of the concrete mixtures were Ce-
ment:Sand:Stone:Water (1:1.11:2.25:0.4). To optimize the curing state of the concrete core in
the steel tube, the concrete cubes were first covered in aluminum foil and subsequently in
translucent protective plastic. According to the standard concrete cube tests, the average
cubic compressive strength (fcu) was 45.28 MPa, and the elastic modulus of concrete (Ec)
was 28023 MPa.
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2.3. Specimens’ Construction

The experiment specimen may sustain damage or develop flaws throughout the
manufacturing and processing of steel tubes due to welding and other procedures. As a
result, logically planning the manufacture and processing method, shortening the welding
method, and optimizing welding accuracy can raise the experiment specimen performance.
Cold-formed empty tubes made from the same steel sheet were created to preserve the
comparable qualities of all specimens. Two bent-over steel sheets were used to construct
each OC-CFST, OC-ST specimen, for MC-CFST, SC-CFST, MS-ST, and SC-CFST specimens
welded with the extra steel sheet in mid-portion, and they were linked by vertical welding,
as illustrated in Figure 3.
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At the bottom of the steel tube, a loading cover plate with a 20 mm thickness and
measurements of 300× 300 mm was welded, providing the framework for pouring concrete.
Before welding the loading plate, we checked the leveling to ensure that the load was
distributed accurately on the specimens, as illustrated in Figure 4. Following vertical filling,
concrete was compacted, utilizing a poker vibrator on the outside of the steel tubes and a
vibrating rod on the inside. After pouring, the top portion of the concrete in steel tubes was
covered with aluminum foil and a thin plastic sheet to prevent drying shrinkage. After that,
all specimens were left in the room for 28 days. To ensure that the concrete core and steel
tube could bear loads combinedly, another steel loading plate with a thickness (of 20 mm)
was welded at the top of the specimen. Figure 3 demonstrates several crucial steps that
must be taken before and during the concrete pouring.
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Figure 4. Specimen before and during concrete pouring: (a) Loading plate leveling; (b) Loading plate
welding with the specimen; (c) Levelling the specimen; (d) Concrete pouring.

2.4. Measuring Instrument and Timeline for Loading

Using 72 resistance strain gauges, 36 strain gauges were installed longitudinally,
and the other 36 were installed horizontally. All the strain gauges were glued to the
column’s middle, upper-middle, and lower-middle 225 mm surface to acquire the axial
load. Figure 5 illustrates the experimental configuration and the arrangement of the
measuring instruments. The CFST and ST columns were placed up in a similar manner.

Nine displacement transducers (LVSTs) were placed at different places to obtain the
vertical and lateral deformation of the specimen. The compression-controlling device
and the computer automatically measure and record axial load and vertical deformation.
Besides this, we installed LVDTs vertically under the loading plate to get the exact vertical
deformation. Each specimen had eight lateral deformation LVSTs installed on every outer
face and corner face. For OC-CFST, all lateral LVSTs were in the center, but after seeing the
actual effect on the OC-CFST column, the rest of all columns, D-2, 4, 6, and 8, were installed
from the upper-inner part to the 225 mm center.

A hydraulic machine with a 10,000 kN capacity was used to evaluate the cross-shaped
CFST and ST columns under axial compression. The compressive axial load was imposed
at the cross-shaped CFST and ST column centers. The information from the strain gauges
and LVDTs was recorded by an automatic data recorder system that was connected to
a computer.

The load was first discharged to zero and then reloaded for formal loading after
the specimen had completed its preliminary work. The formal load application stage
implements the rule of applying the load in stages regulated by force and establishes the
size of the load applied in stages.
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The force-controlled load was applied at this phase loading at a speed of 120 kN/min.
This loading motion continued until the maximum load was reached. Once the maximum
load has been attained, the force load is maintained to assure the experiment’s safety.

Now the experiment loading stage has entered the failure stage. The experiment is
considered to have failed when the load falls below 75% of the observed limit load, or if the
experiment specimen deforms excessively. The local buckling’s location was identified, and
the associated load data were recorded. The specimen failed due to the concrete crashing
and steel tubes’ outward expansion, which ended the loading procedure.

3. Discussion and Analysis
3.1. Failure Occurrence

Effective ductile behavior was displayed in every cross-shaped CFST column. The
failure system of the specimens is illustrated in Figures 6 and 7. There was no welding
failure at the initial loading stage, and the welded seams held up well while loading. During
the failure phase, most specimens made the sound. Each type was carefully inspected due
to the various failure occurrences and specimen-related modes.

3.1.1. Cross-Shaped CFST Specimen’s Failure Modes

Similar failure processes were displayed by the specimens MC-CFST, SC-CFST, and
OC-CFST when loaded concentrically. No obvious occurrence was seen during the initial
loading process on the specimen’s face. For specimen MC-CFST, the load–displacement
graph increased linearly until 3082 kN and then became nonlinear as the load increased.
Local buckling started on two faces when specimen MC-CFST’s average load declined
to 3652 kN from an ultimate load of 3805 kN. When the MC-CFST specimen reached its
maximum load, there was a crack in the joint, as seen in Figure 6a. After that, during the
load-dropping phase, significant local buckling happened randomly at adjusted faces.

However, significantly less local buckling can be detected in specimen SC-CFST,
demonstrating the cooperation and development between the core concrete and steel tube
and also the different cross sections. A reduced steel ratio is to blame for this, which
enhances the restraining effect of the infilled core concrete and the control of local buckling.
There was no bulging on the specimen’s MC-CFST and SC-CFST concave portions.
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(c) OC-ST specimen.

The specimen OC-CFST was in the initial stage during the first loading, and no
deformation was visible before the specimen reached its ultimate load. In specimen OC-
CFST, local buckling started as the load decreased from its ultimate load of 2824 kN to
roughly 2767 kN, as shown in Figure 6b. There was no sign of local buckling waves on the
faces in the zone, in contrast to the MC-CFST and SC-CFST specimens. Figure 6c shows that
subsequent local buckling in specimens OC-CFST was less pronounced than in specimens
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MC-CFST and SC-CFST due to changes in the steel confinement value and cross section
following the failure load.

3.1.2. Cross-Shaped ST Specimen’s Failure Modes

During the initial stage of the experiments, the performance of the specimen’s MC-ST,
SC-ST, and OC-ST, loaded concentrically, was consistent. Before the ultimate load, lateral
deformation did not immediately enter the failure stage. In specimen MC-ST, the first wave
of local buckling was seen when the load decreased from an ultimate load of 1195 kN to
roughly 1183 kN. In the compression area, there was noticeable buckling. After that, the
displacement quickly dropped. While there was no noticeable buckling on the bottom of
the specimen, the steel surface displayed significant buckling close to the top, as illustrated
in Figure 7. It is possible that this occurred because the inner part of the steel tube lacked a
sufficient solid area, preventing the load from properly transferring to the lower portion
of the column. Although the local buckling shape was perfect, it undoubtedly became
deformed, possibly due to an empty steel tube.

3.2. Axial Load–Displacement Relationship

To examine the specimens MC-CFST, SC-CFST, and OC-CFTS, the ultimate load-
bearing capacity and ductility were improved in specimen MC-CFST compared to SC-CFST
and OC-CFST. On the other hand, SC-CFST’s ultimate loading capacity is better than ha of
OC-CFST, as illustrated in Figure 8a,c.

Table 3 shows the ultimate loading capacities (NEmax) of cross-shaped CFST and ST
group columns that are compressed axially. As shown in Figure 8b,d, when comparing the
specimens MC-ST, SC-ST, and OC-ST, the specimen MC-ST had enhanced load-carrying
capacity. Due to the inner cross-sectional difference, the SC-ST and OC-ST specimens’
loading capacities were lower than those of the MC-ST specimen. Compared to cross-
sectional changes, MC-CFST and MC-ST specimen capacity improved by 22.48% and
18.26% more than SC-CFST and SC-ST specimens, respectively. On the other side, SC-CFST
and SC-ST specimens improved by 7.23%, and 19.04% more than OC-CFST and OC-ST
specimens. The confinement factor benefit for infilled concrete, provided by the steel
tubes, prevented potential local buckling of the steel tube and raised ductility. Due to the
cross-sectional changes and increased steel ratio in the MC-CFST and MC-ST specimens,
the steel tubes played a significant role in the ultimate loading capacity and the outside
swelling of the steel surface. The confinement effect for infilled concrete provided by the
steel tubes prevents potential local buckling of the tube and improves ductility. All CFST
columns perform better than ST columns; CFST columns have shown an almost three times
batter performance.

3.3. Ductility Index

According to the geometric graphic approach, as illustrated in Figure 9, some loading
and Vertical displacement highlighted position, such as the yielding experimental location
(NEy, δEy), ultimate experimental place (NEmax, δEmax), 0.85% dropped location (N0.85Emax,
δ0.85Emax) [34–36]. A member’s ability to resist significant plastic deformation without a
noticeable loss of strength is referred to as mechanical ductility. In order to create the
ductility index (η), the ratio of the compressive strain must be equal to the residual load-
bearing capacity (average 0.85NEmax) of the strain, equivalent to NEmax, used,

η =
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There is a list of the determined ductility index (η) values in Table 4 as well. Although
the increase was relatively small, η improved when the confinement increased; due to the
decrease in confinement, OC-CFST had a lower value.
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Table 4. Summary of the experimental and FEM results.

Specimen N0.85E
(kN)

NEy
(kN)

δEy
(mm)

NEmax
(kN)

δEmax
(mm) NFEM NFEM/NEmax η

MC-CFST 3234.24 3306 2.138 3805 3.581 3688 0.97 0.93
SC-CFST 2580.6 2735 2.067 3036 3.063 2948 0.97 0.862
OC-CFST 2400.4 2627 2.045 2824 2.936 2845 1.007 0.810

MC-ST 939.25 1105 1.445 1195 1.445 1210 1.012 -
SC-ST 794.75 935 1.224 995 1.224 974 0.979 -
OC-ST 698.7 791 1.1853 822 1.185 843 1.026 -
AVP 0.99
AVE 0.01

4. Numerical Model Analysis
4.1. Type of Elements

A three-dimensional (3D) FEM model was created in the ABAQUS application to
more closely research the impact of different parameters on the axial bearing capacity
of the cross-shaped CFST and ST column specimens. Both steel tube and core concrete
were modeled by solid 8-node model variant (C3DR), and the loading cover plate had a
stiff body.

4.2. Materials, Interaction, Boundary Condition, and Meshing

In the steel stress–strain relationship graph, that graph separated into five stages: the
elastic stage; the elastic–plastic step; the plastic stage; the strengthening stage; and the
second plastic flow stage, as illustrated in Figure 10c, and the equation that describe the
related theoretical expression is presented below [37].

σs =



Esεs εs ≤ εe

−Aε2
s + Bsεs + C εe < εs ≤ εy1

fy

[
1 +

0.6
(
εs − εy2

)(
εu − εy2

) ] εy2 < εs ≤ εu

1.6fy εs > εu

(2)

Here,

εc =
0.8fy

Es
, εy1 = 1.5εe, εy2 = 10εy1, εu = 10εy2, A =

0.2fy(
εy1 − εe

)2 , B = 2Aεy1, C = 0.8fy + Aε2
e − Bεe

where σs, εs represent the Steel stress and strain, respectively, Figure 10a,b demonstrate
the model suggested in the standard for the design of concrete structures [37,38]. The
theoretical statement is as follows:

y =


2x− x2 , x ≤ 1

x
β0(x− 1)η + x

, x > 1
(3)

x =
ε

ε0
, y =

σ

σc0
, σco = f

′
c, f

′
c = 0.76fcu, εco = εc + 800ξ0.2 × 10−6

εc =
(

1300 + 12.5f
′
c

)
× 10−6, η = 1.6 +

1.5
x

, β0 =

(
f’
c

)0.1

0.2
√

1 + ξ
, ξ =

fyAs

fckAc

Here,

σc0 —Compressive stress and strain relationship of the ultimate stress;
εc0 —The ultimate strain of the compressive stress and strain relationship;
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f
′
c , fck , fcu —Compressive strength of concrete cylinders, and cube;

As , Ac —The cross-sectional area of the steel tube and the concrete in the core area;

y =

 1.2x− 0.2x6 , x ≤ 1
x

αt(x− 1)1.7 + x
, x > 1 (4)

x =
ε

εt0
, y =

σ

σt0
, σto = 0.26f2/3

cu , εto = 65× 10−6 × σ0.54
t0 , εto = 65× 10−6 × σ0.54

t0

Here

σt0 —The ultimate stress of the tensile stress and strain relationship;
εt0 —The ultimate strain of the tensile stress and strain relationship;

The material plasticity parameter was chosen, as illustrated in Table 5. Surface-to-
surface contact establishes the interface between the concrete and the steel tube. The slave
and enslaver surface, respectively, correspond to the interior side of the steel plant and the
outer faces of the core concrete plan. The definitions of hard contact and penalty friction
were used to characterize normal and tangential contact, respectively. Based on earlier
studies, the friction coefficient was expected to be 0.3 [39].
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Table 5. Concrete plasticity parameter.

Dilation Angle Eccentricity fb0/fc0 Shape Factor, K Viscosity Parameter

30o 0.1 1.16 0.667 0.0001

The two end sides of the cross-shaped CFST and ST columns were given two reference
points: the top and bottom. The boundary conditions were implemented using the experi-
ment circumstances as a guide. The top was subjected to loading by using displacement
control models. The tie function applied rigid constraints between the top and bottom
surfaces and corresponding reference points. End plates were not used in the studies since
the end faces were uniform due to strict constraints. The element sizes used for meshing
were all 20 mm through the cross-section.

4.3. FEM Model Verification

In Table 4, the ultimate load NEmax from the experiment is compared with the maxi-
mum load NFEM from the FEM. The two groups of results are harmonious, and NFEM has
an average percentage (AVP) value of 0.99; this average error percentage (AVE) is 0.01.
Figures 11 and 12 display a comparison between the experimental and FEM simulation
results of the failure characteristics of the MC-CFST, SC-CFST, OC-CFST, MC-ST, SC-ST,
and OC-ST specimens. Figure 11 shows that the two kinds of buckling for MC-CFST and
SC-CFST specimen include outward and local buckling, but OC-CFST just has outward
buckling. In the ST specimen all local buckling in the upper area of the specimen as illus-
trated Figure 12. As can be observed, the FEM simulation failure pattern was essentially
consistent with the experimental pattern. In the experiments on cross-shaped CFST and
cross-shaped ST specimens, the axial load–vertical and –lateral strain graphs generated
from the FEM were compared in Figures 13 and 14.
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Figure 13. Axial load–strain graph FEM and experimental CFST Specimen: (a) Axial load–vertical
strain; (b) Axial load–lateral strain.

It can be seen that the FEM strains match the experiment results in the elastic stage;
the load–strain graphs are almost identical. The FEM and experiment load–strain graphs
are not entirely as accurate for all specimens but are still close in the elastic–plastic and
failure stages. This comparison further confirms the accuracy of the FEM. It is possible to
say that the axial compression properties of the cross-shaped CFST and cross-shaped ST
column specimens can be accurately reflected by the FEM simulation model developed in
this research.
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4.4. Parametric Analysis of CFST Columns

The parametric analysis investigates the impact of the steel tube thickness (t), steel
yield strength (fy), and concrete strength (fcu), on the mechanical performance of cross-
shaped CFST column specimens. Table 6 shows the chosen mechanical performance for
parametric analysis. Figure 15 illustrates the specimen numbering guidelines for the
parameter analysis.

Table 6. The values of analysis parameters.

Parameter t (mm) fy (MPa) fcu (MPa)

Concrete strength 3 330 40
3 330 60

Steel strength
3 300 60
3 390 60
3 420 60

Steel thickness
2 330 45
5 330 45
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4.4.1. Impact of Concrete Strength

As illustrated in Figure 16a, the impacts of concrete strength on the axial load–vertical
displacement graphs for MC-CFST, SC-CFST, and OC-CFST columns were evaluated. The
chart matches up during the initial phase, showing that altering the concrete’s strength
minimizes the initial compression flexibility. The load-bearing capacity seems to rise as
concrete strength rises until it reaches the ultimate stage. High-strength concrete displays a
faster reduction in load-bearing capacity during the failure stage, and low-strength concrete,
compared to high-strength concrete, displays a slight decrease in load-bearing capacity.
This is due to the steel tube’s fundamental role in supporting the load placed on the core of
the crushed concrete.
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ferent steel tube thickness; (c) different steel strength.

4.4.2. Impact of Steel Thickness

The axial load–displacement graph of the MC-CFST, SC-CFST, and OC-CFST columns
is shown as a function of steel tube thickness in Figure 16b. Based on thickness, the SC-CFST
and OC-CFST column’s ultimate load is almost the same, but the MC-CFST column shows
a very high maximum loading capacity. However, in initial loading, all columns show the
same growth. Based on steel tube thickness in the failure phase, MC-CFST loading capacity
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decreases slowly compared to SC-CFST and OC-CFST. This happened because of the steel
confinement factor. Better confinement factors showed better performance, but to reach
the ultimate loading capacity, all CFST columns follow almost the same slope with the
same thickness.

4.4.3. Impact of Steel Strength

Figure 16c illustrates the axial load—displacement graph for MC-CFST, SC-CFST,
and OC-CFST columns of various steel strengths. The axial compression flexibility of all
CFST specimens appears to be unaffected by changes in steel strength with the same cross-
section. A more substantial restriction of the steel tube to the core concrete is suggested by
higher steel strength. As all CFST specimens’ ultimate load-bearing capacity rises, the axial
load–vertical displacement graph grows softer and softly reaches a point of failure.

5. Cross-Shaped CFST Column Calculation Method

A particular design standard cannot be used to directly calculate the axial ultimate
load-bearing capacity of cross-shaped CFST columns. The CFST column’s load-bearing
capacity is determined in Table 7, using the different standards, AIJ [40], GB50936-2014 [41],
ACI and AS [42], EC-4 [43], and CECS-2004 [44], made for square and rectangular CFST
columns. Table 7 shows Nus standards ultimate loading capacity of cross-shaped CFST
columns and

Buildings 2023, 12, x FOR PEER REVIEW 17 of 21 
 

  

(a) (b) 

 

(c) 

Figure 16. Axial load–displacement graph of CFST specimen: (a) different concrete strength; (b) dif-

ferent steel tube thickness; (c) different steel strength. 

4.4.3. Impact of Steel Strength 

Figure 16c illustrates the axial load—displacement graph for MC-CFST, SC-CFST, 

and OC-CFST columns of various steel strengths. The axial compression flexibility of all 

CFST specimens appears to be unaffected by changes in steel strength with the same cross-

section. A more substantial restriction of the steel tube to the core concrete is suggested 

by higher steel strength. As all CFST specimens’ ultimate load-bearing capacity rises, the 

axial load–vertical displacement graph grows softer and softly reaches a point of failure. 

5. Cross-Shaped CFST Column Calculation Method 

A particular design standard cannot be used to directly calculate the axial ultimate 

load-bearing capacity of cross-shaped CFST columns. The CFST column’s load-bearing 

capacity is determined in Table 7, using the different standards, AIJ [40], GB50936-2014 

[41], ACI and AS [42], EC-4 [43], and CECS-2004 [44], made for square and rectangular 

CFST columns. Table 7 shows Nus standards ultimate loading capacity of cross-shaped 

CFST columns and Ꞷ=NEmax/Nus. 

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

L
o

a
d

 (
k

N
)

Displacement (mm)

 MC-330-40-3

 MC-330-60-3

 SC-330-40-3

 SC-330-60-3

 OC-330-40-3

 OC-330-60-3

0 5 10 15 20 25

500

1500

2500

3500

4500

0

1000

2000

3000

4000

L
o

a
d

 (
k

N
)

Displacement (mm)

 MC-330-45-2

 MC-330-45-5

 SC-330-45-2

 SC-330-45-5

 OC-330-45-2

 OC-330-45-5

0 5 10 15 20 25

500

1500

2500

3500

4500

0

1000

2000

3000

4000

L
o

a
d

 (
k

N
)

Displacement (mm)

 MC-300-60-3

 MC-390-60-3

 MC-420-60-3

 SC-300-60-3

 SC-390-60-3

 SC-420-60-3

 OC-300-60-3

 OC-390-60-3

 OC-420-60-3

= NEmax/Nus.

Table 7. Cross-shaped CFST column load-bearing capacity with different standards.

Specimen
AIJ GB50936-2014 ACI & AS EC-4 CECS-159:2004

Nus
(kN)
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MC-CFST 3699.45 1.03 3321.96 1.15 3281.40 1.16 2766.84 1.38 3340.45 1.14
SC-CFST 3410.40 0.89 3126.67 0.97 3059.95 0.992 2561.91 1.18 3143.61 0.67
OC-CFST 3269.85 0.86 3033.11 0.93 2952.30 0.957 2462.28 1.15 3051.20 0.93

Different standards have few errors to get accurate results, as shown in Table 7. In this
research developed GB50936-2014 [41] formula to obtain the more precise ultimate loading
capacity of cross-shaped CFST columns,

Nu = ϕN0 (5)

N0 is the CFST column design value under axial strength load that is calculated by

N0 = fscAsc (6)

fsc = (1.212 + θBs + θ
2Cc)fc (7)

θ = αsc
fy

fc
(8)

αsc =
As

Ac
(9)

Bs =

(
0.131× fy

213

)
+ 0.723 (10)

Cc = −
(

0.070× f
′
c

14.4

)
+ 0.026 (11)

ϕ is dependent on the confinement factor value, that is,

ξ ≥ 1.5, ϕ = 0.95
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ξ = 1.2, ; ϕ = 0.90;

ξ = 1, ϕ = 0.85;

ξ ≤ 0.75; ϕ = 0.80;

The section capacities were calculated using the developed mathematical Equation (5),
applying representative models from the different parametric analyses. As demonstrated
in Figure 17, there is a logical correlation between parametric and mathematical results and
the mean (τ) and standard deviation (µ), which shows a better relationship between them.
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6. Conclusions

An in-depth analysis of the structural behavior of MC-CFST, SC-CFST, OC-CFST,
MC-ST, SC-ST, and OC-ST columns under axial compression is discussed in this study. The
following is a list of the main findings from the research that is being presented:

1. The cross-shaped CFST showed more significant load-carrying capacity than cross-
shaped ST columns. The cross-shaped columns’ load-bearing capacity can be in-
creased by increased CFST column confinement factor. A decrease the in the confine-
ment factor ratio will decrease the local buckling. Additionally, there was a crack
indication in the corner area on the MC-CFST and MC-ST specimens.

2. The results of the experiments were used to establish and validate the FEM model. The
load-bearing capacity and stiffness of the specimen might all be accurately simulated
by the FEM model. The FEM model has been used to analyze the steel tube’s local
buckling and the concrete’s stress concentration.

3. The MC-CFST column loading capacity under compression is underestimated by
the design code GB50936-2014, ACI & AS, EC-4, and CECS-159:2004. The SC-CFST
and OC-CFST columns’ capacity was underestimated by AIJ and EC-4 design codes.
However, the cross-shaped CFST column is unsafe in those cases.

4. Improved calculation procedures were proposed for estimating the ultimate load-
bearing capacity of cross-shaped CFST columns under axial compression. The cal-
culation technique for the factor coefficient, ϕ, has been provided by introducing
the influence of the confinement factor, ξ, for the axial compressive load. With the
conclusion of experimental and FEM data, the mathematical calculation values are in
better agreement.
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