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Abstract: The use of machine-learning algorithms in optimizing the energy efficiency of HVAC
systems has been widely studied in recent years. Previous research has focused mainly on data-
driven model predictive controls and reinforcement learning. Both approaches require a large
amount of online interactive data; therefore, they are not efficient and stable enough for large-scale
practical applications. In this paper, a Bayesian optimization framework for HVAC control has been
proposed to achieve near-optimal control performance while also maintaining high efficiency and
stability, which would allow it to be implemented in a large number of projects to obtain large-
scale benefits. The proposed framework includes the following: (1) a method for modeling HVAC
control problems as contexture Bayesian optimization problems and a technology for automatically
constructing Bayesian optimization samples, which are based on time series raw trending data; (2) a
Gaussian process regression surrogate model for the objective function of optimization; (3) a Bayesian
optimization control loop, optimized for the characteristics of HVAC system controls, including
an additional exploration trick based on noise estimation and a mechanism to ensure constraint
satisfaction. The performance of the proposed framework was evaluated by using a simulation
system, which was calibrated by using trending data from a real data center. The results of our study
showed that the proposed approach achieved more than a 10% increase in energy-efficiency savings
within a few weeks of optimization time compared with the original building automation control.

Keywords: HVAC control; energy efficiency; contexture Bayesian optimization

1. Introduction

The substantial energy consumption of heating, ventilation and air-conditioning
(HVAC) systems means that it is important to optimize their energy efficiency. Optimal
control methods for HVAC systems that are driven by machine learning have been widely
studied recently, particularly data-driven model predictive control (MPC) and reinforce-
ment learning (RL). Maddalena et al. [1] and Zhang et al. [2] conducted thorough reviews
in these fields. It has been found that owing to their high model complexity and low data
efficiency, it is still difficult to deploy them in a wide range of practical HVAC systems at
a low cost. There have also been studies on the Bayesian optimization of HVAC controls,
as it is an efficient black-box optimization method. The main objective of this paper is to
introduce the work related to the Bayesian optimization of HVAC controls and to propose
an efficient framework.

Most previous studies on the use of Bayesian optimization for HVAC controls have
focused on the use of Bayesian optimization to assist the hyperparameter optimization of
other underlying control algorithms, such as traditional proportional integral derivation
(PID) control and MPC. Fiducioso et al. [3] used a Bayesian optimization approach to
optimize the proportional and integral gains of a proportional integral (PI) controller in a
ubiquitous room temperature control loop. In their study, the performance of the algorithm
was evaluated by simulation. Lu et al. [4] used Bayesian optimization to optimize the MPC
controller parameters to minimize the year-long closed-loop costs. Their simulation results
showed that Bayesian optimization can find the optimal backoff terms by conducting
13-year-long simulations, which could significantly reduce the computational burden of
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a naive grid search. Lu [5] extended their work by introducing a reference model, which
gathered the closed-loop performance of a low-complexity MPC controller through evalua-
tion. This changed the goal of Bayesian optimization from learning the objective function to
learning the residual function (the error between the reference and the objective function),
which is a much easier task. The simulation results showed that the use of a reference
model can assist Bayesian optimization to more judiciously sample the parameter estimate
and to more quickly discover the regions in which the solution exists. Chakrabarty et al. [6]
used Bayesian optimization to warm start the extremum-seeking control algorithm. The
warm start increased the likelihood of attaining a global optimum for locally convex, rather
than globally nonconvex, objective functions by identifying regions in which the global
optimum most likely resides. Bhattacharya et al. [7] used Bayesian optimization to effi-
ciently explore the design space and to jointly optimize both the system and the control
design parameters of a commercial building—a chiller plant, which included the quantity of
chillers, the chillers’ capacities and the switching thresholds for turning the chillers on/off
in the chiller’s sequencing control logic. Chakrabarty et al. [8] used Bayesian optimization
to calibrate the dynamic models of HVAC systems. In this case, the Bayesian optimization
did not directly belong to HVAC controls; however, it could still be helpful for enabling
control algorithms to rely on a system dynamic model.

Unlike the aforementioned studies, Takabatake et al. [9] used Bayesian optimization as
a main control algorithm to directly control the cooling water temperature and the cooling
water flow rate in a one-on-one HVAC system (one cooling tower and one chiller). To
ensure the thermal comfort of the rooms, the load-side setpoints, including the chilled
water temperature and the chilled water flow rate, were fixed to 7 ◦C and 1008 L/min,
respectively. The search ranges of the cooling water temperature and the cooling water
flow rate were determined by the ambient wet bulb temperature and by the chiller load
factor, according to an empirical formula. The interval between changing the set values
was fixed to 1 h. The training results indicated that the optimal setpoint values could be
automatically determined in 4 weeks if the training proceeded under the rated specification
control with Bayesian optimization.

The control performance of Bayesian optimization in assisting the hyperparameter
optimization of the other underlying control algorithms was limited by the performance
of the underlying control algorithm itself. The performance of Bayesian optimization in
Takabatake’s study [9] was limited by the fixed control intervals and by the very restricted
control variables, which excluded the important load-side setpoints. In addition, the safety
of the setpoint adjustment relied only on the predefined search ranges, which lacked online
safety assurance. In this study, we propose a Bayesian optimization framework for HVAC
controls that can enable the direct control of the full setpoints of the water system in HVAC
systems, with safety assurance. The major contributions of our work are as follows:

1. A method for modeling HVAC control problems as contexture Bayesian optimization
problems is proposed, and an approach for automatically constructing Bayesian opti-
mization samples from raw time series trending data is also proposed. This approach
includes automatically identifying and discarding the transition process and automati-
cally determining the data observation duration of Bayesian optimization samples.

2. A mechanism is provided to ensure its operational safety by feedforwarding a combi-
nation of constraint optimization and feedback constraint correction in the Bayesian
optimization control loop. Meanwhile, an additional exploration trick, which is based
on noise estimation, is also proposed and studied to make the optimization more
robust in terms of noise observation.

2. Background
2.1. HVAC Systems and Their Control

A typical HVAC system can be broken down into two main subsystems: a water
system and an air system. The water system consists of chillers or heat pumps that produce
a cold/heat source and water circulation devices (e.g., pumps) to transfer the cold/heat
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source. The air system includes air-handling units (AHUs), variable air volume (VAV),
boxes and fan coil units (FCUs), which regulate a space’s air conditions, such as its air
temperature and humidity. A heat exchange between the water system and the air system
is achieved through a heat exchanger, which is in the AHU, PAU or FCU [10].

The energy efficiency of HVAC systems can be significantly affected by their control
strategies. Currently, in practice, rule-based control (RBC) is widely used to determine the
setpoints of HVAC systems, such as various temperature/pressure/frequency setpoints.
The rules in RBC are usually static and are determined on the basis of the experiences of
engineers and facility managers. Significant energy savings can potentially be achieved if
optimal control strategies are used to replace traditional building automation (BA). The
control systems with tradition BA usually use static rules [11].

2.2. Sequential Decision Problem

A sequential decision problem means that at a given state vector (st) and at a particular
time step (t), the selected action (at) affects not only the immediate reward until the next
time step (t + 1) but also the next state (st+1). Consequently, it indirectly affects the next
action (at+1) that will be taken and the future reward, after (t + 1). To attain the goal of
achieving long-term accumulated rewards in sequential decision settings, we should take
into account the future state trajectory (st:t+horizon) when making decisions at a time step (t).

The main approaches that are used to handle a sequential decision problem are MPC
and RL. In MPC, we construct a state transfer function st+1 = f (st,at) and a reward function

rt = r(st, at), and then we solve an h-step planning problem a∗t:t+h−1 = argmax
at:t+h+1

h−1
∑

i=0
rt+i at

each time step (t); then we discard a∗t+1:t+h−1 and apply only a∗t to the system control [12].
In RL, there are many approaches, such as model-based and model-free approaches and
off-policy and on-policy approaches. Given the complex dynamic system optimization,
which focuses on sample efficiency, off-policy and model-free approaches are widely
used. This approach internally uses mainly Bellman’s optimality equation, Q∗(st, at) =

E
st+1∼P(·|st ,at)

[
r(st, at) + γmax

at+1
Q∗(st+1, at+1)

]
and takes action by maximizing the optimal

Q function [13]. Both MPC and RL need a large number of data to learn the complex state
transfer function or the self-contained optimal Q function, which makes it difficult to apply
them to practical, physical systems such as HVAC systems.

2.3. Contextual Optimization Problem

In a contextual optimization problem, the reward function r(s, a) to be optimized
consists of two types of variables: state variables (contextual variables) (s) and optimization
variables (a). State variables s are given by the environment and are set as fixed in the
optimization, and optimization variables a are adjusted by the optimization algorithms to
maximize the reward function, which is denoted as a∗ = argmax

a
r(s, a).

The main difference between contextual optimization and sequential decisions is that,
in contextual optimization, different state variables (s) are independent of each other, and
we never model the relationship between them; therefore, it is easy to construct samples
and approximation models of the reward function by directly observing the state variables,
optimization variables (a) and reward pairs, without involving the complex, self-contained
reward function approximation.

Typically, several standard function optimization methods can be used for contextual
optimization problems. For example, gradient-based optimization algorithms (e.g., L-
BFGS), evolutionary algorithms (e.g., genetic algorithm) and Bayesian optimization are all
feasible methods. Bayesian optimization treats the contextual variables as an immutable
part of the objective reward function, which is given outside of the optimization algorithm.
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2.4. Bayesian Optimization and Gaussian Process Regression

Bayesian optimization is a sequential, model-based optimization approach for the
global optimization of black-box functions f(x). It does not assume any functional forms of
f, and it is usually employed to optimize the functions that are expensive to evaluate [14].

Bayesian optimization consists of two main components. The first component is a
probability surrogate model for modeling the objective function. Usually, the Gaussian
process regression model is used thanks to its excellent probability prediction properties.
The second component is an acquisition function, which balances the exploration and ex-
ploitation to decide which position to sample next. Usually, the expected improvement (EI),
the upper confidence bound (UCB), the knowledge gradient and the entropy search can be
used as acquisition functions [14]. Algorithm 1 shows the main Bayesian optimization pro-
cess. The Gaussian process regression model was used to estimate the posterior probability
distribution of f, given x. Next, an acquisition function was used to choose x, which was
most likely to become the best solution by simultaneously factoring in the posterior mean
(which stands for exploitation) and the uncertainty (which stands for exploration) of f(x).

Algorithm 1: The main process of Bayesian optimization

1: Place a Gaussian process prior to f
2: Observe f at n0 points according to an initial space-filling experimental design.
3: Set n = n0.
4: while n ≤ N,
5: Update the posterior probability distribution on f by using all available data.
6: Let xn be a maximizer of the acquisition function over x, where the acquisition function is computed
by using the current posterior distribution.
7: Observe yn = f (xn), usually an expensive step.
8: Increment n
9: endwhile
10: Return a solution: either the point evaluated with the largest f (x) or the point with the largest posterior
mean.

Gaussian processes (GPs) comprise a flexible class of models that are used for spec-
ifying prior distributions over functions f : X → R . They are defined by the prop-
erty that any finite set of N points X = {xn ε X}N

n=1 induces a Gaussian distribution on
RN . The convenient properties of the Gaussian distribution allowed us to compute the
marginal and conditional means and variances in a closed form. GPs are specified by
a mean function m : X → R and a positive definite covariance or by a kernel function
K : X×X → R . The predictive posterior mean and covariance under a GP can be ex-
pressed as Equations (1) and (2), respectively [15]:

µ(x; {xn, yn}, θ) = K(X, x)TK(X, X)−1(y−m(X)) (1)

∑
(

x, x’; {xn, yn}, θ
)
= K

(
x, x’

)
− K(X, x)TK(X, X)−1K

(
X, x’

)
(2)

Here, K(X, x) is the N-dimensional column vector of the cross-covariances between
x and the set X. The N × N matrix K(X, X) is the Gram matrix for the set X. The mean
function is usually set to be a constant value. Several commonly used kernel functions
include LinearKernel, MaternKernel, RBFKernel, PeriodicKernel, etc. [16].

3. Framework Overview

The optimal control of HVAC systems naturally belongs to sequential decision prob-
lems. While further studies of sequential decision methods (e.g., MPC and RL) are valuable,
it is still challenging to stably and efficiently apply them to practical, physical systems
because of the lack of high-fidelity simulators. However, for engineering purposes, ap-
proaches with high optimization efficiency, low deployment and maintenance costs, and
high stability and safety are also attractive and valuable if they can achieve near-optimal
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control performance and, thus, significantly improve on the performance of traditional
BA controls. This motivated us to simplify the HVAC control problem into a contex-
tual optimization problem, a∗ = arg max

a
r(s, a). In this way, we eliminated the time

series–dependent state trajectory and to used Bayesian optimization to efficiently solve
the problem. We have described the performance of the Bayesian optimization of HVAC
controls as near optimal thanks to its relatively long adjustment interval for the setpoints.
Unlike MPC and RL, it did not carry out high-frequency optimal adjustment for the real-
time state changes in the system, which would have been necessary to achieve theoretical
optimal performance. Figure 1 shows the overall Bayesian optimization framework for
HVAC control.
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Figure 1. The overall framework of Bayesian optimization for HVAC control.

Starting from a physical HVAC system, the main Bayesian optimization control loop
included the following steps:

1. We collected trending data for HVAC systems by using a data collection application
programming interface (API) from the Internet of Things (IoT) platform. Next, we
conducted some preprocessing and stored the results in a raw time series database. A
few of the common preprocessing activities include the following.

• The timestamp alignment of different sensor points simplify the subsequent use of
monitor data, which is usually aligned to one sample per minute.

• The useful virtual points calculated by the raw sensor points, such as the total power
of the whole HVAC system, the average indoor air temperature and the quantity of
running chillers, are added.

• The data calibration and abnormal warning of sensor data are carried out.

2 We constructed Bayesian optimization samples from the raw time series database and
stored the results in a Bayesian optimization sample database. This was implemented
by aggregating a period of raw time series data into one aggregated sample. The last
generated setpoints were used to build the Bayesian optimization samples. How-
ever, the generated setpoints were modified by the subsequent constraint correction.
Therefore, the generated setpoints could not be reconstructed from the raw time series
monitor database. Instead, an additional target setpoint buffer was used to store
the setpoints that were historically generated. In Section 4, we describe the sample
construction process in more detail.

3 The Bayesian optimization sample database was used to fit the surrogate model of the
objective function and the prediction model of the constraints. In Section 5, we explain
the objective function modeling, and in Section 6.2, we explain the constraint processing.
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4 We generated the best setpoints corresponding to the current objective function surro-
gate model by constraint optimizing the acquisition function of Bayesian optimization.
To make Bayesian optimization more robust in terms of noise observation, we used
additional random exploration and noise-based exploration. In Section 6, we demon-
strate the details of the setpoints’ generation.

5 We corrected the generated setpoints by predefining the constraint condition to ensure
that the setpoints were safe for HVAC system operations. Next, we applied the final
setpoints to the HVAC system control by mapping API from the IoT platform. The
feedforward constraint optimization in Step 4 and the feedback constraint correction
here provided a dual guarantee of the HVAC system’s operational safety. In Section 6.2,
we will demonstrate the details of this.

4. The Construction of the Bayesian Optimization Samples

This section introduces the process that we used to construct the Bayesian optimization
samples from the raw time series trending data. This section is organized as follows: In
Section 4.1, we describe the main idea behind modeling the HVAC control problem as
a contextual optimization problem. We also describe the main process that we used
to construct the Bayesian optimization samples. In Section 4.2, we describe the main
transition characteristics that we used when we adjusted the setpoints and the algorithm to
automatically identify the end time of the transition process. This was used to exclude the
transition process when we aggregated the Bayesian optimization samples. In Section 4.3,
we describe our method for deciding whether the observation of current setpoints should
be continued. This method was used to obtain the Bayesian optimization samples that
could represent the real performance. In Section 4.4, we describe the main fields and
methods of data aggregating that we used to construct the Bayesian optimization samples.

4.1. Main Idea

The goal of an HVAC system is to control space temperature and humidity, keeping
them within a certain range. Other parameters also change over time, e.g., the flow rate; the
pressure and temperature of the chilled and cooling water; and the outlet air temperature
of AHUs. Once the range of the space’s temperature and humidity can be successfully
controlled, the other parameters can be optimized to achieve better energy efficiency.

Using Bayesian optimization to control the space temperature and humidity directly
is very difficult because the space temperature and the humidity need real-time and stable
dynamic control, but Bayesian optimization is unable to handle the dynamic closed-loop
control of an HVAC system. Typically, an air system is controlled by using a traditional BA
sequence to control the space temperature and humidity. However, by utilizing the thermal
capacity of the system, the setpoints of the water system can be adjusted within a relatively
large range without making the space temperature and humidity exceed the required range.
Therefore, it is practical to use Bayesian optimization to optimize the setpoints of water
systems. Because the BA setpoints usually use quasistatic values, which are set according
to an engineering judgment, the hour-long adjustment interval of the setpoints used in
Bayesian optimization is sufficient to produce a significant energy-efficiency improvement
compared with BA controls.

To enable Bayesian optimization for HVAC controls, the energy efficiency of certain
setpoint values, under certain contextual values, should be obtained, which is denoted by
r(s, a). Here, s stands for contextual values, and a stands for setpoint values. The trending
data of HVAC systems are usually in minute-long time steps; however, constructing r(s, a)
directly in this interval is not practical, owing to the high noise, high randomness and
high proportion of the transition time. Therefore, they cannot represent the actual stable
performance of the setpoints. Thus, r(s, a) is constructed by properly aggregating the time
series data.

Algorithm 2 shows the pseudocode for collecting one r(s, a) sample from an interaction
with an HVAC system. The main logic is explained, as follows: When applying new desired
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setpoints targetSP to HVAC systems at a certain time stamp t0 to obtain r(s, targetSP), it
takes a while for the HVAC system to complete the transition process, owing to the setpoint
adjustment. Here, ts is used to denote the end time of the transition process. The HVAC
systems’ performance is then observed under this desired targetSP for a sufficient duration
to construct the r(s, targetSP), which is then stored in the database (bayesDB). The Bayesian
optimization control loop will then use this bayesDB to fit the surrogate model for the
objective function and to generate a new targetSP.

Algorithm 2: Pseudocode of construct for one Bayesian optimization sample from the raw time
series monitor data

1: def collectOneSample(t0, targetSP, minTransConformDuration,
2: minBayesObsDuration, maxBayesObsDuration, maxDuration):
3: while t < t0 + minTransConformDuration:
4: monitorHVAC()
5: ts = getEndOfTransTime(t0, t)
6: whilets is None and t < t0 + maxDuration-minBayesObsDuration:
7: monitorHVAC()
8: ts = getEndOfTransTime(t0, t)
9: if ts is None:
10: finishTrans = False
11: ts = t
12: else:
13: finishTrans = True
14: while (t < ts + minBayesObsDuration) or ((t < min(ts + maxBayesObsDuration, t0 + maxDuration)
and continueBayesObs(ts, t)):
15: monitorHVAC()transDB <- transDB ∪ aggTransData(t0, ts, finishTrans, targetSP)
16: bayesDB <- bayesDB ∪ aggBayesData(ts, t, finishTrans, targetSP)

For details on minTransConformDuration, maxDuration and getEndOfTransTime, refer to
Section 4.2. For details on minBayesObsDuration, maxBayesObsDuration, continueBayesObs,
refer to Section 4.3. For details of aggTransData and aggBayesData, refer to Section 4.4.

4.2. Transition Process Identification

The period of the transition process during the setpoint adjustment of an HVAC system
is identified and excluded when constructing r(s, targetSP). In the exploration process of
the Bayesian optimization, the next targetSP that is generated may be very different from
the existing setpoints, which results in drastic changes in the short-term performance of
the transition process. However, when the exploration has been completed and the system
operates in the stable optimal control stage, the variation in targetSP will be relatively small
and the drastic changes in the performance will not happen; therefore, the performance of
the transition process in the exploration process should not be taken into account when
constructing r(s, targetSP).

In this study, by observing the online system transition tests, we were able to sum-
marize the four main transition period types (shown in Figure 2): type (a) demonstrates
the direct transit from one performance level to another performance level, continuously
and rapidly; type (b) demonstrates the transit from one performance level to another
performance level by a significant pulse, quickly; type (c) demonstrates the transit by a
significant pulse, quickly but with no significant changes in the performance level; and type
(d) demonstrates the transit from one performance level to another performance level by a
significant short time pulse, followed by a long-time directional trend. In some cases, no
significant transition process existed, and these cases have not been included in these four
categories. The goal of this transition process identification was to automatically identify
these types of transition processes and to keep the correct prediction when no significant
transition process existed.
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Because the start time of a transition process was equal to the adjustment time of
the setpoints, only the end time of the transition process needed to be predicted. As
can be seen in Figure 2, the dynamic characteristics of the original objective function
value were complex. These included the trends in both directions and the significant
fluctuations that occurred even outside of the transition process period. However, we
observed that the standard deviation of the objective function value was always larger in
the transition process; thus, the standard deviation could be used to easily identify the
transition process. In addition, because the standard deviation was not sensitive to the
slow trend of the objective value, the trend detection after the standard deviation detection
could be combined to complete the identification. A front standard deviation detection was
used to deal with the situation in which no significant transition process existed. Algorithm
3 shows the pseudocode of the whole identification process, which returns the end time
of the transition process or which returns ‘None’ when the transition process has not yet
ended. Here, tb and te are set by Algorithm 2.

There are two low-pass filterings in Algorithm 3. The first filtering is used mainly
to eliminate the outliers of the objective function to obtain a smooth standard deviation
estimate and, thus, to use a high critical frequency. The second filtering is used mainly to
eliminate the fluctuation of the objective function to obtain the trend part and, thus, to use a
low critical frequency. In our test, most of the differences between the identified transition
durations and the manual labels were within 10%. The images in Figure 3a–d were selected
as examples from the different time periods in which the transient processes occurred. The
images in Figure 3a–c show the transient processes only with dramatic parameter changes
(e.g., VFD speed reset), which can be detected with a standard deviation estimation. The
yellow areas of these figures show the transient periods. The image in Figure 3d shows
the transient process with a low trend (e.g., chilled water temperature reset), in which
the trend detection and the standard deviation detection were combined to complete the
identification. The trend detection period is demonstrated through the gray areas.
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Algorithm 3: The pseudocode of the transition process identification

1: def getEndOfTransTime(tb, te, window = 30 min, stdDecayThreshold = 0.2, objectiveTrendThreshold = 0.03):
2: data = read raw time series monitor data between tb − 2 * window to te from DB
3: lowpassObjective = low-pass filtering of objective function value by butterworth filter with order = 4
and critical frequency = 0.2 [17]
4: lowpassObjectiveMovingStd = rolling standard deviation of lowpassObjective with the specified
window length and center = True
5: if maximum value of lowpassObjectiveMovingStd between tb and tb + window less then 2 *
maximum value of lowpassObjectiveMovingStd between tb − window and tb − window/2:
6: returntb
7: maxStd, minStd = maximum and minimum value of lowpassObjectiveMovingStd between tb and te
8: stdThreshold = (maxStd − minStd) * stdDecayThreshold + minStd
9: t1 = find the time of the maximum value of lowpassObjectiveMovingStd between tb and te
10: t2 = find the first time when lowpassObjectiveMovingStd lower than stdThreshold after t1
11: t3 = find the first time of local minimum of lowpassObjectiveMovingStd after t2
12: ts = t3 − window/2

13: lowpassObjective2 = low-pass filtering of objective function value between ts and te by butterworth
filter with order = 4 and critical frequency = 0.02
14: ratio = (lowpassObjective2.max() − lowpassObjective2.min())/lowpassObjective2.min()
15: if ratio > objectiveTrendThreshold:
16: objectiveTrend = moving diff of lowpassObjective2 with periods = -window/2
17: t4 = find the last time when objectiveTrend greater than 0.01 * (lowpassObjective2.max() −
lowpassObjective2.min())
18: if t4 is the last valid time of objectiveTrend, thus means still in transition trend:
19: ts = None
20: else:
21: ts = t4 + 1
22: returnts
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4.3. Bayesian Observation Duration Decision

In this study, Bayesian observation meant observing the performance of the HVAC
system for a period of time to construct the r(s, targetSP) sample for the Bayesian optimiza-
tion. The duration of the Bayesian observation needed to be balanced. If the duration of
the observation had been insufficient, the observed performance would have been with
high noise owing to various random factors or with high bias owing to only a small part
of the performance oscillation period’s being observed. However, if the duration of the
observation had been too long, the optimization would have been slowed down and the
state during the observation may have been too far away from the initial state.

To obtain a proper duration of the observation, the duration was limited to be-
tween minBayesObsDuration and maxBayesObsDuration, where minBayesObsDuration and
maxBayesObsDuration were the hyperparameters set by an engineering judgment—usually
30 min for minBayesObsDuration and 3 h for maxBayesObsDuration. Next, continueBayesObs
was used to decide whether to continue the observation between minBayesObsDuration and
maxBayesObsDuration. This returned the response ‘True’ only when it needed to continue
the observation, which would have been the case in the following situations:

• In performance changes in which a significant trend was detected by a trend detection
algorithm, similar to Algorithm 3.

• If the feedback constraint correction was triggered, as judged directly by the feedback
correction log.

4.4. Data Aggregation

After finishing the transition process and the Bayesian observation process to obtain
the targetSP, the aggregated transition data sample and the Bayesian data sample were
constructed into the transDB and bayesDB, respectively.

An aggTransData was used to aggregate the transition data. Because the transition
process data were not used directly for optimization, the (sampleId, t0, ts, f inishTrans,
targetSP, duration = ts − t0) tuple was returned for log purposes, where sampleId was the
unique identifier of one call to collectOneSample.

An aggBayesData was used to aggregate the Bayesian observation data; the (sampleId,
ts, t, f inishTrans, targetSP, duration = t− ts, s, reward, exceedConstraint, noise, in f os,
resampleCount = 0) tuple was returned for optimization purposes, where the sampleId
was the same as it was in the aggTransData; and the remaining fields were constructed
as follows:

• The s was constructed by averaging the state variables between the timestamp, as
follows: ts − T and ts, where T is the hyperparameter of time length (usually 15 min,
in practice).

• The reward was constructed by averaging the performance variable so that it could be
optimized between timestamp ts and t. Note that reward = r(s, a) = r(s, targetSP)
formed the Bayesian optimization samples.

• exceedConstraint is a bool variable indicating whether the space temperature limit
has been exceeded and is used to support constraint optimization. The constraint
judgment conditions in this study were manually predefined. When the temperature
limit was greatly exceeded for a long time, the constraint was considered to be violated
and exceedConstraint was set to ‘True’.

• The word ‘noise’ represents the noise estimate of the reward and was used to support
better exploration, based on the noise in optimization. However, noise does not
represent the fluctuation of the original objective function but rather the uncertainty
of the aggregated reward. The noise was designed to be high when the finishTrans
was ‘False’ or the objective function value had an unfinished trend.

• The infos was constructed by averaging the useful trended points of an HVAC system be-
tween the timestamp (ts) and t for potential debugging and algorithm upgrade purposes.

• The resampleCount was initialized to zero and was used to record the resample times
of this targetSP in the optimization loop.
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5. Surrogate Model for Objective Function

Once the Bayesian optimization samples had been obtained, they could be fitted by
using a surrogate model. After this, the model was used to predict the objective function
value in the Bayesian optimization loop. The Gaussian process regression model was
selected as the surrogate model thanks to its excellent probability prediction properties.
Because the mean function of the Gaussian process is usually set as a constant value, a
kernel function was designed.

By following the common forms in Bayesian optimization, the optimization problem
was expressed as a maximization problem; thus, the negative total power of the whole
HVAC system was used as an objective function value. The feature variables of the
surrogate model included the following three categories:

1. Device power-on status—an HVAC water system may include multiple parallel de-
vices, such as chillers and pumps. The actual power-on devices will change over time.
Because different parallel devices may have significantly different energy efficiency,
the power-on status of the devices needs to be a part of the model’s features. Another
approach could be to simply use the quantity of parallel power-on devices to replace
the detailed power-on status when the parallel device’s model and pipe connection
are similar to reduce the model’s complexity.

2. Setpoints—setpoints are the variables to be optimized in an HVAC water system.
They include the chilled water outlet temperature of the chillers and the frequency of
the water pumps and cooling tower fans, in the form of float numbers.

3. Environment variables—environment variables may have a significant impact on
the energy efficiency of an HVAC system, such as the IT load of the data center
and the outdoor wet bulb temperature. Because the Gaussian process and Bayesian
optimization find it difficult to deal with high-dimensional features, typically only a
small number of key environment variables are added to the features.

Through our test, it was found that setpoints and environment variables can be mixed
without affecting the model’s performance. It was also found that the best way to deal
with the device power-on status was to use different independent submodels for different
power-on statuses. Although using a multitask Gaussian process model and a multitask
Bayesian optimization to deal with mixed power-on status data is a possible approach
that could be used to improve the optimization efficiency [13], as we had not achieved the
expected test results at this point, we chose to use independent submodels in this study.
However, upgrading to multitask Bayesian optimization will not affect the structure of the
proposed framework.

LinearKernel and MaternKernel [16] were selected as the kernel functions for the
setpoints and the environment variables. The LinearKernel was used to deal with the
overall trend, and it was useful in extrapolating the prediction. The MaternKernel was
used to deal with the complex nonlinear relation.

Figure 4 shows the prediction results from the test sets of two data sets from a data
center. In this case, the setpoints included the outlet water temperature of the chillers, the
frequency of the cooling tower fans, the cooling pumps and the primary and secondary
chilled pumps. The environment variables included the IT load of the tested data center,
the outdoor wet bulb temperature and the chiller load factors. Data sets 1 and 2 were
divided by the chiller’s power-on status. The data were modeled by two submodels, and
the respective mean absolute percentage errors of the test sets were 2.8% and 1.27%. As a
comparison, the respective test errors of the linear regression model were 4.88% and 1.69%,
and for the lightGBM model, the respective test errors were 6.33% and 2.31%. In order to
evaluate the performance of the extrapolation prediction, the time between the selected
training set was far away from the test set. The training set of data set 1 was 1 month before
the test set, and the training set of data set 2 was 1 week before the test set.
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6. Bayesian Optimization Control Loop

Algorithm 4 introduces the basic Bayesian optimization control loop for HVAC sys-
tems. It is similar to the standard Bayesian optimization process in Algorithm 1, except
that UCB is directly used instead of a general acquisition function. UCB is defined as
mean + alpha·std, where alpha is the exploration coefficient, which is usually set to con-
stant two.

Algorithm 4: Basic process of Bayesian optimization control loop for HVAC systems

1: initial: transDB <- ∅, bayesDB <- ∅, setpoints SP, surrogate model for objective function
reward = GP(s, a), minTransConformDuration, minBayesObsDuration, maxBayesObsDuration,
maxSampleDuration
2: logic:
3: initSP = randomSampleSP()
4: sendToHVAC(initSP)
5: collectOneSample(now(), initSP, minTransConformDuration, minBayesObsDuration,
maxBayesObsDuration, maxSampleDuration)
6: while True:
7: GP = fitGPModel(bayesDB)
8: SP∗ = arg max

SP
UCB(GP(currentState(), SP))

9: sendToHVAC(SP∗)
10: collectOneSample(now(),SP∗, minTransConformDuration, minBayesObsDuration,
maxBayesObsDuration, maxSampleDuration)

Both transDB and bayesDB were initialized to be empty and were set to hold the
transition data and the Bayesian optimization sample data, respectively. SP stands for all
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the setpoints to be optimized; minTransConformDuration, minBayesObsDuration, maxBayesOb-
sDuration and maxSampleDuration are hyperparameters of the sample duration (described
in Section 4); randomSampleSP represents the random sampling of one SP within the
configured bounds, uniformly; sendToHVAC represents the application of the selected
SP to the HVAC system control by a device-controlled API; collectOneSample represents
the collection of one Bayesian optimization sample (described in Section 4); currentState
represents the calculation of the current state, according to the method of constructing state
properties in bayesDB; and fitGPModel represents the fitting of the surrogate model for the
objective function reward GP(s,a) with the newest bayesDB data.

We chose UCB as an acquisition function because the best settings for HVAC controls
are generated continuously online—unlike in the common Bayesian optimization scenarios,
in which the goal is to find better settings within a given number of trials. As we expected,
after sufficient explorations, UCB was able to generate the candidates with the maximum
performance; however, other acquisition functions, such as EI, may generate only random
candidates because the acquisition function value cannot be improved any more.

The following subsections describe how we dealt with the noise observation problem
and the constraint guarantee problem in HVAC controls.

6.1. Noise Observation

The constructed Bayesian optimization samples contained noise owing to the original
observation noise in the HVAC system or the aggregation bias. The noise may damage
the optimization process because of the use of possible wrong rewards to guide the opti-
mization. In addition to the original sensor calibration, which is important in engineering
applications but not covered in this paper, some other tricks were used in the candidate
generation to make the optimization more robust in terms of noise observation and, thus,
more likely to find the global optimal setpoints, as shown in Algorithm 5.

Algorithm 5: Pseudocode to generate the next setpoints, as the in-place replacement of the
argmax line in Algorithm 4

1: initial: α0, β0
2: def generateNextSP(GP):
3: αt = α0 decay by t
4: βt = β0 decay by t
5: rnd = uniform(0, 1)
6: if rnd < αt:
7: SP∗ = randomSampleSP()
8: elif rnd < αt + βt:
9: SP∗ = resample from bayesDB whih low resampleCount and high noise
10: else:
11: SP∗ = arg max

SP
UCB(GP(currentState(), SP))

12: return SP∗

A certain probability was reserved to perform the random sampling or resampling
of the setpoints with high reward estimation noise, which were executed. The random
sampling probability decreases with time; therefore, an initial sample probability and a
probability decay form were set for the system on the basis of an engineering judgment.

6.2. Constraint Guarantee

A combination of feedforward constraint optimization and feedback constraint cor-
rection were used to ensure the constraint conditions in the Bayesian optimization control
loop. Feedforward constraint optimization involves using a constraint prediction model to
estimate whether any setpoints will cause the HVAC system to break through the constraint
conditions when generating the next setpoints. In this study, we selected setpoints that
kept the constraint conditions and maximized the acquisition function, simultaneously.
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Feedback constraint correction involves monitoring the constraint conditions online. When
the constraint conditions are broken, the predefined feedback correction logic is used to
modify the setpoints generated by the optimization algorithm and to apply the modified
setpoints to system control.

Algorithm 6 shows the main logic of feedback constraint correction. Because of system
differences, in this study the feedback constraint correction rule was manually specified for
each system, as a plugin of the framework.

Algorithm 6: The main logic of feedback constraint correction

1: initial: rule table for adjust direction and step size of each setpoint when each constraint condition is
broken.
2: def constraintCorrection(generatedSetpoints):
3: do constraint conditions detection for last time window
4: if all constraint conditions are satisfied:
5: return generatedSetpoints
6: for each broken constraint condition:
7: for each setpoint in rule table of current broken constraint condition:
8: lastValue =average feedback value of current setpoint of last time window
9: if adjust direction is increase:
10: minValue = lastValue + step size * amplitude of constraint broken
11: generatedSetpoints[current setpoint] = max(generatedSetpoints[current
setpoint],minValue)
12: else:
13: maxValue = lastValue − step size * amplitude of constraint broken
14: generatedSetpoints[current setpoint] = min(generatedSetpoints[current setpoint],
maxValue)
15: return generatedSetpoints

Figure 5 shows an online feedback constraint correction process for the temperature
of cold storage tanks in a data center. The correction rule is that when the temperature of
a cold storage tank is higher than the predefined threshold, the frequency of the primary
chilled pumps should be increased and the frequency of the secondary chilled pumps
should be decreased.
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For a feedforward constraint optimization, binary classification models for constraints
are fitted after every new sample collection. Next, a genetic algorithm is used to maximize
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the acquisition function, under the constraints given by the fitted constraint models; i.e., a
listener function is registered into the genetic algorithm search process. When a solution
in the population violates the constraint, the solutions most similar to Algorithm 6 must
be collected until the constraint has been met, and then this modified solution is used in
the subsequent search process. When there is no solution that meets the constraints, a
predefined limit value is used.

7. Results

In this study, the performance of the Bayesian optimization framework was tested
on a simulated HVAC system of a data center. The model of this HVAC system was
calibrated with real trending data. The HVAC system of the data center contained five
chillers and corresponding cooling towers; cooling pumps, primary chilled pumps and
secondary chilled pumps in its water system; and approximately 10 IDC rooms and more
than 100 air-conditioning terminals in its air system. The chillers rotated their order every
week, and the constraints included that the temperature of the IDC room be lower than
25 ◦C and that the temperature of the cold storage tank be lower than 13 ◦C.

Substantial tests were conducted on this HVAC system to obtain the dynamic charac-
teristics of the system before starting this Bayesian optimization framework study. Because
it was difficult to simulate the transition process and the constraint correction process of
the system with high precision and because these processes are relatively independent of
the Bayesian optimization logic and performance, we verified the algorithms to process
these processes by using only historical data, as shown in Figures 3 and 5. Nevertheless,
the Bayesian optimization performance on the simulated energy-efficiency model was
validated by the historical data, and an additional transition duration prediction model
was fitted by the historical data to help with the evaluation of the optimization duration,
the simulated setpoints and environment variables, which can be referred to in Section 5.

Figures 6 and 7 show the energy efficiency of the optimization process for the different
algorithm configurations on two sets of power-on chillers, respectively. ‘BA control’ in the
legend stands for the cooling load factor (CLF), which was predicted by the setpoints of BA
logic in the current environment. ‘Optimal’ in the legend stands for the optimal CLF under
the current environment. Figure 8 shows the setpoint variation process, which corresponds
to the upper-right Bayesian optimization process, shown in Figure 6.

We summarize our test conclusions as follows:

1. With proper LinearKernel + MaternKernel models, we were able to obtain the optimal
setpoints in 50 h of training, even though there were significant observation noises.
The control approach achieved an energy-efficiency improvement of more than 10%
compared with the BA controls. This proves the efficiency of Bayesian optimization.

2. Some optimal setpoints in this simulation system did not change with the environment.
The main reason for this was that the optimal setpoint was on the boundary of the
configured setpoint range; thus, they will not change. This proves that Bayesian
optimization can continuously generate stable optimal setpoints for the current model.

3. When there are significant observation noises, the optimization process will slow
down. The optimal solution cannot be obtained on some bad kernel functions; there-
fore, a proper kernel function design is crucial to the Bayesian optimization process.
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8. Conclusions

This paper proposed a Bayesian optimization framework for HVAC controls, which
aimed to optimize the setpoints of the water system to achieve high energy efficiency. In
this study, historical data testing and simulation experiments proved its feasibility and
effectiveness. The main advantages of the proposed Bayesian optimization framework for
HVAC controls are as follows:

1. High efficiency—by taking advantage of the Bayesian optimization technology, we
can achieve near-optimal control performance within a few weeks.

2. Safety—thanks to the combination of feedforward constraint optimization and feed-
back constraint correction, the operation safety of the implemented HVAC system can
be fully guaranteed.

3. Stability—because of the simple form of the Gaussian process regression surrogate
model and of the UCB acquisition function, no complex parameters need to be ad-
justed. Unlike reinforcement learning, the model is not affected by random noises;
therefore, we can achieve stable performances across systems and times.

4. Easy to deploy—the main configurations that need to be customized for different
HVAC systems are the feedback correction rules, which are usually easy for HVAC
system operation engineers to implement. Furthermore, the rules for common system
types can be predefined in the framework.

In future studies, we will verify the effectiveness of the complete framework in more
HVAC systems. In addition, we will make more system configurations that can be automat-
ically completed, to reduce the cost and threshold of the framework’s deployment.
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Abbreviation

AHU air-handling units
API application programming interface
BA building automation
CLF cooling load factor
EI expected improvement
FCU fan coil units
GPs Gaussian processes
HVAC heating, ventilation and air conditioning
IoT Internet of Things
MPC model predictive control
PI proportional integral
PID proportional integral derivation
RBC rule-based control
RL reinforcement learning
UCB upper confidence bound
VAV variable air volume
SP setpoints
s state variables or contextual variables
a action
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