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Abstract: The non-linear behavior of infilled frames is very complex. The behavior of this structure
may be studied by experimental and numerical approaches. An experimental test can provide a
more realistic output but has the disadvantages of high costs, relatively long time and specific room
usage. A numerical analysis can be an alternative to analyze the behavior of infilled frames. One
of the most powerful numerical approaches is meso-modeling. This approach has the advantage of
being able to capture local damage to the panel. For this reason, the progressive damage identified
in the meso-model can be used as a basis for determining damage state criteria. The grouping of
damage states is proposed based on the initial identification in the form of local damage linked
to global damage, i.e., IDR. This study’s proposed level of infilled frame damage is DS1 = 0.17%,
DS2 = 0.52%, DS3 = 0.79% and DS4 = 1.99%. However, the quantification results of the structural
damage level cannot be generalized because many complex factors influence the behavior of infilled
frames. Subsequently, a parametric study was carried out to determine the contribution of the
mechanical properties of the infilled frame material to the degree of structural damage.

Keywords: numerical model; infilled frame; meso-modeling; damage states; local damage

1. Introduction

Buildings with infill walls with concrete or steel frames are commonly used in con-
struction in various countries, especially for residential homes. The majority of structural
analysis considers infill walls only as non-structural elements without contributing to the
strength and stiffness of the structure. This is due to the many uncertain variables that affect
the behavior of infill wall panels. In addition, there were some difficulties in modeling
infills with various typologies [1]. However, many studies have been carried out and have
demonstrated the contribution of the infills to the overall strength and stiffness of the frame
structure [2–5]. The infill walls can contribute beneficially or detrimentally to the behavior
of the structure [6–8], depending on various factors, such as the relationship between the
frame and the wall, the strength and stiffness of the frame and the wall, as well as the
mechanical properties of the structural materials [9].

The uncertain response of infilled wall structures occurs due to the complexity of
factors [10]. This is because the infilled frame is a composite structure consisting of concrete,
steel, mortar and bricks; all of these materials have different properties. In addition to these
factors, the configuration of vertical loads, reinforcement ratios and geometric factors of
infill structures also add to the complexity of the behavior of infill frames [11]. Several
geometric factors of infilled wall structures include the percentage of wall openings, location
of openings in walls, number of stories, structural dimensions, construction techniques
and others. It is these various kinds of uncertainty variables that cause the behavior of
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structures to become very complex and non-linear [12]. Therefore, a comprehensive infilled
wall structure study is needed in the form of an appropriate and reliable model approach
to obtain a structural response close to actual conditions.

The seismic response of structures can be analyzed using an experimental approach
using full-scale tests. Several experimental studies have been carried out with various
loading conditions (e.g., table shaking, cyclic and quasi-static, etc.) and different parameters
(e.g., reinforcement effect, multiple column effect, etc.) to understand the behavior of infilled
frames [13–15]. This methodology can obtain structural behavior similar to the existing
structure. However, it also has the disadvantage of being high-cost and time-consuming
while also requiring a specific place and adequate testing equipment [16–18]. On the other
hand, numerical analysis is useful because it does not require a particular place, the cost is
relatively cheap and the time required is quite short without compromising the accuracy of
the analysis results [19]. Many studies and research have been carried out related to the
mechanism of modeling infilled wall structures in recent decades. Modeling techniques
capable of simulating the behavior of infill structures are divided into three categories,
i.e., micro modeling, meso modeling and macro modeling [20–22]. Making the model can be
assisted using commercially available software with the model simplification method [23].

One method of determining damage states is an analytical approach. The analytical
approach evaluates the structural vulnerability using the mechanical properties of certain
structural parameters, for example, inter-story drift (IDR). IDR-based damage states are
a design of simplification. In reality, the level of damage is influenced by many parame-
ters, such as structural systems, construction materials, accumulation and distribution of
structural damage, element failure modes, number of cycles, duration and acceleration
of earthquakes [24]. Of course, this method has the advantage of being able to provide
a quick solution in knowing the vulnerability value of a structure. On the other hand,
some researchers have suggested that the evaluation of seismic performance for infilled
structures requires consideration of the quantification of damage to non-structural com-
ponents [8,9,25]. The values of DS have been proposed by several researchers based on
the degree and severity of the crack pattern on the panel, as well as the failure typology of
the brick units [26–28]. In addition, DS-based quantification of peak load achievement and
strength reduction ratio achievement was also presented by Cardone et al. [27]. Consider-
ing time, place and cost, the seismic performance assessment of the structure can use an
alternative, a validated numerical model. Progressive damage identified in the numerical
model will be used to determine damage state criteria at various levels. The purpose of this
mechanism is the ability to quickly identify structural performance through an assessment
of structural damage, both local and global damage.

This paper investigates the behavior of infilled wall structures via a meso modeling
approach to identify the structure’s progressive local damage. Subsequently, the paper
proposes a grouping of infilled frame damage states based on the local damage level related
to global engineering parameters, i.e., inter-story drift ratio (IDR). Furthermore, this paper
also conveys the relationship between the mechanical properties of structural materials
and the degree of damage that occurs.

2. Various Approaches to Model an Infilled Frame

The classification and illustration of the different infilled frame modeling techniques
can be seen in Figure 1. The three infilled frame modeling strategies can be explained
as follows:
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(a) Micro Modeling

Micro modeling is a method of discretizing structural elements, i.e., by dividing the
structure into many elements to account for the local effects in very detailed portions [12].
The approach of this model is to make the bricks, mortar and brick–mortar interfaces, or
together with the frame, into a different continuum element [29]. It aims to consider the
effect of mortar joints with several criteria for the resulting joint failure. The benefits of
micro modeling are that it can provide an overview of the behavior of the infilled frame
structure; local effects related to cracks in each part of walls, beams and columns; the failure
mode of the panel; and contact area failures.

(b) Meso Modeling

Despite its advantages, the downside of using the micro modeling is in the analysis
phase of large-scale infilled wall structures. The micro modeling has negative consequences,
i.e., greater computational effort and longer time in completing the analysis stages. For this
reason, researchers try to find a way to model a reasonable large-scale infilled frame but
with a much more concise computational effort called meso modeling. For meso modeling,
the approach taken is almost the same as for micro modeling. The difference is that the
bricks are modeled as a continuum element, but the mortar and mortar–brick joints are
modeled together into one interface element. This method was first proposed by Page [30].

(c) Macro Modeling

This modeling method defines masonry units, mortar joints and unit–mortar interface
joints as a single-element model of a homogeneous anisotropic continuum. The diagonal
strut model is widely used and accepted as one of the best approach methods, simple but
rational in describing the behavior of infilled structures. In this macro modeling, the infill
wall panels are simulated using diagonal struts along the loading direction. The concept
of wall modeling applying a macro approach model using diagonal supports was first
proposed by Polyakov [31] and then underwent many transformations. Development using
a single strut approach started from what was done by Crisafulli and Carr [32]. This method
has advantages in the simplicity of mathematical formulas and has provided reasonable
estimates in calculating the stiffness value. However, on the other hand, this method
has the disadvantage of being unable to predict the shape of the deflection that occurs in
the column and then produces shallow bending moment and shear force values [32,33].
Meanwhile, Kumar [34], El-Dakhakhni [35], Tanganelli [36] and Pashaie [37] argue that
multi-struts modeling can produce the closest bending moment values when validated
using a numerical model using FEM Software.

Buildings 2023, 13, x FOR PEER REVIEW 3 of 20 
 

The approach of this model is to make the bricks, mortar and brick–mortar interfaces, or 
together with the frame, into a different continuum element [29]. It aims to consider the 
effect of mortar joints with several criteria for the resulting joint failure. The benefits of 
micro modeling are that it can provide an overview of the behavior of the infilled frame 
structure; local effects related to cracks in each part of walls, beams and columns; the fail-
ure mode of the panel; and contact area failures. 
(b) Meso Modeling 

Despite its advantages, the downside of using the micro modeling is in the analysis 
phase of large-scale infilled wall structures. The micro modeling has negative conse-
quences, i.e., greater computational effort and longer time in completing the analysis 
stages. For this reason, researchers try to find a way to model a reasonable large-scale 
infilled frame but with a much more concise computational effort called meso modeling. 
For meso modeling, the approach taken is almost the same as for micro modeling. The 
difference is that the bricks are modeled as a continuum element, but the mortar and mor-
tar–brick joints are modeled together into one interface element. This method was first 
proposed by Page [30]. 
(c) Macro Modeling 

This modeling method defines masonry units, mortar joints and unit–mortar inter-
face joints as a single-element model of a homogeneous anisotropic continuum. The diag-
onal strut model is widely used and accepted as one of the best approach methods, simple 
but rational in describing the behavior of infilled structures. In this macro modeling, the 
infill wall panels are simulated using diagonal struts along the loading direction. The con-
cept of wall modeling applying a macro approach model using diagonal supports was 
first proposed by Polyakov [31] and then underwent many transformations. Development 
using a single strut approach started from what was done by Crisafulli and Carr [32]. This 
method has advantages in the simplicity of mathematical formulas and has provided rea-
sonable estimates in calculating the stiffness value. However, on the other hand, this 
method has the disadvantage of being unable to predict the shape of the deflection that 
occurs in the column and then produces shallow bending moment and shear force values 
[32], [33]. Meanwhile, Kumar [34], El-Dakhakhni [35], Tanganelli [36] and Pashaie [37] 
argue that multi-struts modeling can produce the closest bending moment values when 
validated using a numerical model using FEM Software. 

 
Figure 1. Developed infill frame modeling technique [12,20–22] 

3. Damage States Definition 
Several parameters are used to limit the structure’s performance level, such as the 

value of stress, strain, maximum load, inter-story drift, acceleration between floors and 
physical damage that occurs. Some codes apply and state the concept of determining dif-
ferent levels of performance [38–40]. In addition, previous studies state that the damage 
to panels for infilled frame structures is divided into 3 to 4 levels [26–28,40–42]. Based on 

Figure 1. Developed infill frame modeling technique [12,20–22].

3. Damage States Definition

Several parameters are used to limit the structure’s performance level, such as the
value of stress, strain, maximum load, inter-story drift, acceleration between floors and
physical damage that occurs. Some codes apply and state the concept of determining
different levels of performance [38–40]. In addition, previous studies state that the damage
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to panels for infilled frame structures is divided into 3 to 4 levels [26–28,40–42]. Based
on the experimental result, some researchers propose different structural damage limits
using IDR.

Analysis of structural performance in terms of inter-story drift value (IDR) is one
of the most common simplification methods. A single design parameter such as drift
value (IDR) alone may not adequately control all performance objectives of structural and
non-structural systems [43]. Structural response, i.e., drift value (IDR), can be associated
with macroscopic damage indicators in the form of crack severity values and failure of
brick units. This response is then associated with the level of structural damage. Several
researchers suggested the level of damage to the infilled frame in the form of IDR based
on the test results. Researchers tried to connect the mechanical properties in the panel
with the IDR to facilitate people to take practical and appropriate corrective actions in the
design step.

According to Chiozzi [28], the classification of damage states for infilled frames by
calculating the width of the cracks is then associated with the proposed appropriate IDR
threshold. Zhang [44] proposes that the IDR limit is related to the shape and characteristics
of the infill wall damage and refers to the existing performance index. A study conducted
by Chun Hui Liu [41] classified the damage states of the infilled frame by considering
the description of the damage and mechanical properties of infill walls. This damage
description is based on the degree of cracking, block and mortar damage, loads in a plane
and displacement. The database of Chun Hui Liu uses 132 infilled frame experiments from
previous researchers. Cardone [27] said that observations on the severity of cracks, failure
of brick units and damage to frames determined the damage states for infilled frames.
Kalman Sipos [42] collects various infilled frame tests and makes averages of the drift
value (IDR) that occurs at the first yield (IDRy) and ultimate point (IDRu). IDRy is the first
point marked by a sudden decrease in the stiffness of the infilled frame. Meanwhile, IDRu
is the ultimate point associated with the maximum lateral capacity. Table 1 summarizes
some of this study’s results and a code that quantifies damage states for infilled frames
based on IDR, structural stiffness conditions, crack severity and the definition of wall panel
damage states.

Table 1. The damage states the definition of infilled frame in some researchers and code.

Performance
Level

Research Results & Codes

Cardone [27] Chun Hui Liu [41] Chiozzi [28] Kalman Sipos [42] FEMA273 [40]

DS1
Light diagonal crack,
crack width < 1 mm,

IDR = 0.06–0.46%

No crack,
IDR = 0.1%

Crack width < 2 mm,
IDR = 0.125%

First yield,
IDR < 0.1% IDR < 0.1%

DS2

The crack becomes
wider 1–2 mm,

cross-crack,
IDR = 0.21–1.38%

A diagonal crack
on the panel and
different cracks
start to connect,

IDR = 0.3%

Crack width 2–4 mm,
IDR = 0.327% 0.1 ≤ IDR < 0.3% 0.1 ≤ IDR < 0.3%

DS3
Crack width > 2 mm,

starting to fail,
IDR = 0.5–1.98%

Crack develops
into a cross-crack,

peak load,
IDR = 0.9%

Crack width > 4 mm,
IDR = 0.82%

Ultimate point,
0.3 ≤ IDR < 0.75% 0.3 ≤ IDR < 0.6%

DS4 Failed/collapse,
IDR = 1.06–3.26%

Collapse,
IDR = 1.9% - IDR ≥ 0.75% IDR ≥ 0.6%

4. Numerical Modeling Methods
4.1. Modeling Configuration

In this study, the modeling of the infilled frame structure uses a meso-model approach
assisted by finite element software—ATENA 3D. The results of this numerical model
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will later be validated using the results of the Kakaletsis experiment [45]. The scope
of the analysis in this study will be focused on the full-infilled frame model resulting
from the Kakaletsis test. One of this study’s objectives is to see an effective and accurate
numerical model approach when analyzing the behavior of infilled structures against
the test results. In addition, from this meso model, the stages of quantifying damage
states can be carried out by using output in the form of global and local parameters.
Figure 2 gives a detailed description of the prototype of the building model. The portal
structure uses gross height = 1500 mm and gross width = 1300 mm, with beam cross-
sectional dimensions = 100 × 200 mm and column cross-sections = 150 × 150 mm. The
dimension of the bricks is 60 × 60 × 93 mm. According to Kakaletsis, this portal model
represents 1/3 scale of the prototype structure.
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4.2. Meso Modeling Approaches

A finite element method is powerful when assessing structures’ behavior due to
earthquake loads [46]. The model is generally built from several macro elements that
describe one or more parts of the test model specimen. In this study, infilled frame structure
modeling uses ATENA 3D. Figure 3 provides information about the technique of detailing
the parts of the meso modeling, divided into several macro elements, and the connection
relationships between macro elements in one infilled frame structural system. Special
attention for this meso modeling technique is making each brick unit by directly including
the joint variable. The mortar joints between the bricks and frames, and between the
bricks with adjacent bricks are simulated as a 3D gap connection (without thickness). The
picture also shows that the steel plate is installed to transfer the load to the frame to avoid
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numerical singularities caused by stress concentration, as for the relationship between the
reinforcement and the frame using a perfect connection. Details on defining macro element
meso modeling are generally presented in Table 2.
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Table 2. General definition of macro element—the interface of meso modeling.

No Name of Macro Element Material Usage

1 Plinth beam (foundation) Concrete

2 Column Concrete

3 Beam Concrete

4 Plate Steel

5 Plate Steel

6 Bricks Masonry

7 Brick–Interface 3D Gap Connection

8 Macro element–Interface Perfect Connection
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The technique of dividing the mesh size within a structural element is essential for
the quality of the numerical results. For fine meshing division with mesh size = 1/10 of
the smallest structural element, it will cause longer computation time. Meanwhile, the
results are less accurate for coarser meshing with a meshing size = 1/2 of the smallest
structural element. The ideal mesh size uses a one-fourth value per each dimension of the
structural element [47]. Based on this theory, the meshing size in each beam, column, sloof
and wall element is different. In Figure 3 and Table 3, information is presented regarding
the meshing configuration used in this modeling. In this study, the mesh size has used
the most optimal size. Stages of sensitivity analysis to variations in mesh size have been
carried out to obtain convergent mathematical calculations.

Table 3. Meshing configuration of meso modeling.

Element Meshing Size (m) Meshing Type

Plinth beam (foundation) 0.05 Brick

Column 0.0375 Brick

Beam 0.025 Brick

Plate 0.05 Tetra

Masonry 0.05 Brick

In ATENA 3D, the behavior of concrete as a frame is simulated using 3D NonLinear
Cementitious 2. This type of material is also used for infill walls. This model combines
constitutive models for tensile such as fracture and compressive–plastic behavior. The
material model is based on orthotropic smeared crack formulation and the crack band
model. This model uses Rankine failure criteria and uses exponential softening with
rotated or fixed crack models. The hardening/softening plasticity model is based on
the Menetrey–Willam failure surface [48]. A summary of initial parameter values for
concrete, reinforcement and wall materials is based on the Kakaletsis test results [45].
The value of the tensile strength of concrete and brick walls (f t) is calculated using the
Formula (1) [49]. Meanwhile, the Ec value, the elastic modulus of concrete, is calculated
using the Formula (2) [50]. The specific fracture energy (Gf) using the Equation (3) [47].
The material properties values for constructing an infilled frame model based on 3D finite
elements are presented in Table 4.

ft = 0.44 √ fc
′ (1)

Ec = 4700 √ fc
′ (2)

Gf = 0.0000025 ft (3)

The 3D interface material is based on the Mohr–Coulomb criterion without tension.
This joint model defines two stiffness values, i.e., tangential stiffness (Ktt) and normal
stiffness (Knn). The numerical formula that Cervenka recommends for calculating the two
stiffness values is as in Equations (4) and (5). Ei(min) and Gi(min) are the minimum value
of the material’s elastic modulus and shear modulus around the contact area per connected
element; t is the thickness of the contact area. Values related to interface material properties
are summarized in Table 5.

Knn =
min{Ei}

t
(4)

Ktt =
min{Gi}

t
(5)
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Table 4. Initial properties of the fracture–plastic constitutive model.

Description Symbol Concrete Masonry Unit Ref

Elastic modulus E 2.510 × 104 6.607 × 102 MPa [45]

Poisson’s ratio µ 0.200 0.100 /

Tensile strength f t 2.349 0.260 MPa

Compressive strength f c −2.851× 101 −2.630 MPa [45]

Specific fracture energy Equation (3) Gf 5.000 × 10−6 4.500 × 10−1 N/mm [47]

Crack spacing Smax 0.125 / m

Tensile stiffening Cts 0.400 / / [47]

Critical compressive disp. ωd −5.000 × 10−4 −5.000 × 10−4 / [47,51,52]

Plastic strain at f c εcp −1.417 × 10−2 −1.358 × 10−3 /

Reduction of f c due to cracks rc,lim 0.800 0.800 / [47]

Crack shear stiffness factor SF 2.000 × 101 2.000 × 101 /

Aggregate size 1.600 × 10−2 / m

Fixed crack model coefficient 1.000 1.000 /

Table 5. Initial interface material properties.

Description Symbol Value Unit

Normal stiffness (Equation (4)) Knn 6.607 × 104 MPa

Tangential (shear) stiffness (Equation (5)) Ktt 3.003 × 104 MPa

Tensile strength f t 0.420 MPa

Cohesion C 0.520 MPa

Friction coefficient Φ 0.770 /

Reinforcement modeling using CCReinforcement type in the ATENA. Multilinear law
with yield value (Fy) and ultimate value (Fu) of reinforcement uses Kakaletsis test results.
Whereas the steel plate uses a homogeneous elastic model of 3D Elastic Isotropic type with
the elastic modulus E = 200,000 Mpa and Poisson’s Ratio = 0.3.

Boundary conditions are such to replicate the test setup of Kakaletsis. This boundary
condition is applied to a numerical model made to replicate the setting of the test object
in the experiment. The boundary condition for infilled frame modeling is presented in
Figure 4. The sloof beam is modeled as a clamp that is constrained in the Y and Z directions
(point 1). The axial load of 50 kN is applied in each column (point 2a). Kakaletsis’s
experiment uses cyclic loading that applies a gradual increase in displacement control.
This loading protocol uses seven amplitude sets. In one set of amplitudes, there are two
cyclic loadings. The cycle starts from a ductility level of 0.8 or equal to an amplitude of
about ±2 mm. Then continue to increase gradually until the level of ductility 2, 4, 6, 8,
10 and 12, or according to the displacement of 6, 12, 18, 24, 30 and 36 mm. Whereas in
this numerical model, the lateral load is applied gradually with displacement control as a
quasi-static loading. The monitoring point is set as prescribed deformation in the lateral
direction (point 2b). This homogeneous steel plate is installed as a load transfer plate to
the structural elements, both lateral and axial loads (point 3). Based on the Kakaletsis
experimental setting, the condition of the support structure should be rigid but still shows
the possibility of deflection due to applied loading. Whereas for the X direction, it is free
but given displacement constraints by the surface spring material, which is modeled as a
CCSpring material, an elastic type material with an initial stiffness (K) = 35 MPa (point 4).
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5. Numerical Modeling Validation

The validation step starts from a bare frame. This validation stage is carried out
using the capacity curve of the cyclic curve conversion of the Kakaletsis test results by
connecting the outermost values (envelope). The results of the validation of the response of
the structure are shown in Figure 5. The graph shows the similarity between the open-frame
numerical model compared to the test. The conformance is quantified into validation on
four (4) parameters, i.e., the displacement value at peak load, peak load, initial stiffness and
residual strength at collapse. For initial stiffness obtained using Formula (6), Fy is yielding
load, and δy is yielding drift. The four parameters of this calibration benchmark show the
average similarity at a value = 103%. Table 6 shows the comparative error value between
the meso model and the experiment in detail. Because the capacity curve validation results
show similarities, this open frame model can be used as a control model to proceed to
infilled frame modeling.

K =
Fy

δy
(6)

After the open frame control model is obtained, the next stage is the infilled frame
modeling. This stage is to add infill walls as structural elements. Infilled frame modeling
uses the parameters given in Tables 4 and 5 and continues with the validation stage using
the results of the Kakaletsis experiment. The results of the numerical modeling infilled
frame response in this early stage can be seen in Figure 6. Nonlinear behavior due to
the softening of masonry after the yield point and or the cracking of the panel modeled
by a stiffness matrix that changes according to the degradation. This is also clarified by
ATENA’s theory, which states that the uncracked and cracked conditions have different
stiffness matrices. The material stiffness matrix for the uncracked concrete has the form of
an elastic matrix of the isotropic material. For the cracked concrete, the matrix has the form
of the elastic matrix for the orthotropic material.
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Quantification Unit

Models
Similarity
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Displacement at peak load mm 15.00 13.83 92%

Initial stiffness kN/mm 7.30 8.16 112%

Residual strength at the collapse kN 39.00 40.31 103%
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Through Figure 6, it can be seen that the value and position of the peak load, dis-
placement at peak load, initial stiffness and residual strength show similarities of 99%,
101%, 87% and 115%, respectively. However, to improve the behavior of the after-peak load
model, a sensitivity analysis is still carried out in the next stage. At this stage, the adjusted
parameters are only the variables used to model the walls. The first adjustment stage is
to vary the brick elastic modulus (EmM) value. The initial value = 660 MPa, increased
to 750 MPa and 900 MPa. The adjustment range for the modulus of elasticity of bricks is
based on the results of research conducted by Crisafulli [1] that the value of EmM ranges
from 400 fcM < Em < 1000 fcM. The resulting structural response when increasing the EmM
value can be seen in Figure 7a. From the resulting graph, it can be seen that the greater
the value of the modulus of elasticity of the brick, the higher the strength of the post-peak
structure. This was done to get post-peak behavior close to the experiment.
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The load-deformation behavior of the infilled frame is influenced by material proper-
ties, including the elastic modulus of masonry (EmM). For this reason, it is expected that
the influence of EmM can be identified at the elastic phase as well. However, the structural
condition of the support also significantly affects the behavior. In the experiment, the hori-
zontal restraint was provided through anchorage to join the plinth beam and floor. Based
on this experimental setting, the support condition still shows the possibility of lateral
deformation due to applied loading. The numerical model adopted this by providing a
horizontal elastic spring. Consequently, the load-deformation at the elastic phase is not
sensitive to the EmM as that would occur in the case of a rigid connection.

According to Lourenco [20], the tensile strength value of brick panels is 3–10% of the
compressive strength value. Due to the slight difference in Figure 7a, a little adjustment is
needed in the tensile strength of the bricks (ftM), which was initially = 0.26 MPa to 0.25 MPa.
According to studies conducted by previous researchers [53–55], this value is still in the
range of brick tensile strength values of 0.16–0.58. The structural response generated using
the ftM adjustment is shown in Figure 7b. From this figure, it can be seen that lowering
the ftM value affects the decrease in the peak load value, increases the behavior of the
after-peak load model and also reduces the residual strength. Therefore, the infilled frame
model with a value of ftM = 0.25 MPa can be used as an infilled frame model in the next
analysis stage.

Based on the last model, i.e., IF_MESOMODEL_EmM750_FtM0.25, the similarity of the
calibration results with the experiment can be quantified in detail, as presented in Table 7.
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Table 7. Validation results for infilled frame meso model vs experiment.

Parameters
Quantification Unit

Models
Similarity

Experiment Meso

Peak load kN 80.00 77.09 96%

Displacement at peak load Mm 9.00 9.11 101%

Initial stiffness kN/mm 16.67 14.80 89%

Residual strength at the collapse kN 52.44 55.97 107%

The meso model can capture crack pattern information on open and infilled experi-
mental frames. For the open frame meso model, the first crack occurs in the upper beam of
the front of the column (Figure 8), and this also occurs in the experimental results presented
by Kakaletsis. The meso model collapsed at IDR = 3.11%, almost similar to the experimental
results, which informed that the test object collapsed at IDR = 2.80%. Figure 9a shows
the mode of the meso crack pattern in the model and the test object—Figure 9b when the
structure collapses.
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Figure 8. The first crack that occurs in the meso-model.

The meso output of the infilled frame model is seen to have failed at IDR 1.99%, as
shown in Figure 9c. Figure 9c shows a crack pattern mainly oriented from top left to
bottom right, suggesting a diagonal strut orthogonally oriented. While the test results
stated that the failure of the infilled wall structure occurred at IDR 1.9% with the mode
of the crack pattern, as shown in Figure 9d. Figure 9d shows the failure mode composed
of diagonal cracking and bed-joints sliding. The difference in the crack pattern from the
numerical model with the experiment could be due to the type of connection adopted.
In the numerical model, the connections between elements are not modeled in detail
into separate macro elements but instead are modeled as interface elements although the
properties of the interface element have tried to describe the actual mechanical properties
of the mortar joints between the bricks. Apart from these factors, there are other factors,
such as the loading protocol, used in the experiment using cyclic loading that applies a
gradual increase in displacement control. Whereas in this numerical model, the lateral load
is applied gradually with displacement control as a quasi-static loading.
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6. Damage States Analysis

From the structural response obtained from numerical modeling, some of the resulting
values can be associated with structural performance limitations. The most commonly
used value for quantifying structure level performance is the inter-story drift ratio (IDR).
However, each inter-story drift (IDR) level will vary due to several factors, such as typolo-
gies, material properties, geometric factors and many more. For these reasons, for the more
advanced, realistic and precise analysis, it is necessary to determine the damage limits of
the infilled wall structure, i.e., IDR as a global behavior connected to local behavior such as
crack width and failure mode.

The advantage of meso modeling is that local behavior values such as crack width
and failure mode for both infill elements, beam, and column elements can be obtained
through the output of the post-processor. In contrast, the weakness of macro modeling
results is the inability to output local behavior values that occur in infilled panels. One of
the things that cause macro modeling to be unable to capture local behavior is when the
first initiate the diagonal strut model approach, i.e., by first predicting that the wall panel is
damaged diagonally.

Determination of the damage limit based on the proposed IDR starts with quantifying
the level of damage to the structure based on the mode of local damage to the panels,
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followed by the severity of the cracks. To obtain detailed information on the level of shape
and severity of panel cracks, see Figure 10. The next step is measuring the crack width
of the panel at each level of damage. After getting the level of damage based on local
damage, it is then linked to global behavior. The global behavior assessment begins with
the identification of the condition of the structure when it undergoes the elastic–plastic–
ultimate–failed phase. At this stage, it is necessary to identify the degradation of stiffness
values in each structural condition. After these stages are completed, it is continued by
associating the IDR value with several levels of damage to the proposed structure. Of
course, the drift values proposed as damage limits must be checked for compliance with
applicable codes and previous research (Table 1). The definition of damage states is divided
into 4 points, i.e., DS1 = slight damage, DS2 = moderate damage, DS3 = extensive damage
and DS4 = near collapse. Through the data generated by the meso-model that has been
validated by experiment, the proposed classification of damage states for infilled frames is
presented in Table 8. A macro overview of damage points plotted on the capacity curve of
infilled frames can be seen in Figure 11.
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Table 8. Proposed Definition of Damage States for Infilled Frame based on Meso Model.

Performance
Level

Proposed

Panel Failure Definition Failure Mode &
Crack Severity

Panel Crack
Width (mm) State IDR

DS1 Small crack Figure 10a 0.01 First yield 0.17%

DS2 Diagonal cracks are starting to
connect, block damage in panels Figure 10b 0.22 Elastic–Plastic 0.52%

DS3 Cross-shaped cracks and block
damage to panels increases Figure 10c 0.69 Ultimate 0.79%

DS4 Failed/collapse Figure 10d 1.91 Collapse 1.99%
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Compared with several references and codes (Table 1), the range of damage states
proposed in this study shows little difference. The difference might be due to the complexity
of the factors that affect the behavior of the infilled frame, such as the different properties
of the constituent materials, the technical brick-making, infilled construction techniques
and many others. Especially for the constituent material factors of this infilled frame, a
parametric study will be attempted. This method is used to find out in more detail the
relationship between the properties of the constituent materials and the behavior of the
structure associated with a particular definition of damage. In addition, this method is
expected to inform the properties of the constituent materials, which significantly affect the
behavior of the infilled frame. Five were chosen for the variable mechanical properties of the
infilled frame, considering that these five values are some of the mechanical properties that
significantly affect the behavior of the infilled frame. The mechanical properties values that
will be used as variations in this numerical model are the compressive strength of concrete
(f c), the yield strength of the reinforcement (f y), the reinforcement ratio (ρ), compressive
strength of masonry (Fm) and elasticity modulus of masonry (EmM). This variation in
mechanical properties is related to the structure’s behavior, i.e., in classifying the level of
damage, according to the suggestions in this study (Table 8). Through a parametric study
using this meso model, the stages of classifying damage states start from investigating the
damage/severity of the panels per step and then proceed to define the exact crack width
value. After the local damage values are obtained, they are connected to IDR per level of
damage states.
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In general, Figures 12–16 section (a) shows the relationship between the influence
of several variations of the mechanical properties of the infilled frame on the level of
damage grouped according to the identification of the proposed crack width (Table 8).
Meanwhile, Figures 12–16 section (b) shows the results of grouping the level of structural
damage through the initial data (local damage) and then associating it with the IDR value.
The recapitulation of Figures 12–16 illustrates that the difference in mechanical properties
will result in a different IDR even though the crack width per level of damage has been
following the proposed value. This phenomenon is clearly seen when the damage level
is DS2, DS3 and DS4. Therefore, the classification of infilled frame damage is highly
dependent on complex structural behavior, one of which is the mechanical properties of
the constituent materials.
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Figure 16. Correlation of damage states (DS) and elasticity modulus of masonry (EmM) associated
with: (a) crack width (mm); (b) IDR (%).
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It seems that the mechanical properties do not influence the DS1 value. For example,
the IDR value of DS1 is 0.17%, regardless of variation in mechanical properties, as shown
in Figures 12b, 13b, 14b, 15b and 16b. The minor structural damage at this initial level
(DS1) may be the reason. On the contrary, it shows that mechanical properties affect the
value of IDR at a high damage state. The higher the damage state, the more significant the
effect of the mechanical properties. At a higher damage state, the structure is in an inelastic
condition, causing nonlinearity in the behavior of the structure. Subsequently, at severe
damage states, i.e., DS3 and DS4, the curve’s trend is volatile as the value of mechanical
properties increases (see Figures 12b, 13b, 14b, 15b and 16b).

Both models with variations in concrete compressive strength, f c (Figure 12b), and
the yield strength of the reinforcement, f y (Figure 14b), produce the same DS1, DS2, and
DS3 values. Based on this data, it can be concluded that concrete compressive strength (f c)
and the yield strength of the reinforcement (f y) hardly affect the behavior of the infill wall
structure when the condition is still within an elastic–plastic–peak load. Another thing
that needs to be observed is the model’s output with variations in the yield strength of
the reinforcement (f y), shown in Figure 14b. The DS4 value in this variation model shows
an upward trend with the increase in the quality of the reinforcement used. Based on this
background, it can be concluded that, with the increase in the quality of the reinforcement
used, the collapse resistance of the infill wall structure is getting better.

In general, it can be concluded that the numerical method using the meso model is
quite effective in determining infilled frame damage conditions based on local damage,
which is then linked to global behavior. The local damage is identified based on the failure
mode, the severity of the damage and the crack width that occurs on the panel. Meanwhile,
global behavior is related to the IDR value. Global damage associated with IDR is needed
to simplify the mechanism for classifying damage conditions in infilled frames.

7. Conclusions

Numerical modeling is one of the methods used in describing the actual structure
model, which can capture the behavior of the structure both when it is elastic and inelastic.
The huge benefit that can be taken from the construction of numerical models and their
analysis is the ability to perform structural assessments quickly and effectively without
compromising the accuracy of the results. This study describes in detail the manufacture
of a numerical model to investigate the behavior of elastic-inelastic infilled frames using
the meso model. Some important things that can be summarized as the basis for further
research development:

a. The meso model is capable of capturing local damage information on each structural
component, including wall panels, which can then be used for determining the level
of structural damage.

b. The stages of grouping the damage states in this study are based on the local damage
that occurs in the panel, i.e., the shape of the crack, the severity of the crack and
the width of the crack. Local damage per level is associated with the value of the
inter-story drift ratio (IDR).

c. The proposed IDR-based damage state values for infilled frames in this study are
DS1 = 0.17%, DS2 = 0.52%, DS3 = 0.79% and DS4 = 1.99%.

d. The difference in IDR values for each level of damage in several previous studies and
this study is due to the complexity of the infilled frame behavior accompanied by dif-
ferent typologies. This is proven through a parametric study conducted in this study
using several mechanical properties of infilled frames, i.e., compressive strength
of concrete, ratio of reinforcement, yield strength of reinforcement, compressive
strength of masonry and elasticity modulus of masonry.

e. When the structure is still in elastic condition, the difference in mechanical property
values does not affect the level of damage to the initial structure—minor (DS1). On
the other hand, differences in the values of mechanical properties cause the values of
DS2, DS3 and DS4 to have fluctuate differences. This is due to the degree of damage
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occurring when the structure is in an after-elastic condition, so this inelastic condition
results in nonlinear behavior of the structure.

8. Recommendation

In general, it can be concluded that when assessing the performance requirements
of simple infill structures, the meso model approach can be used. However, if the infilled
frame has a variety of elemental complexity, then infilled frame modeling through a finite
element micro model approach is highly recommended.
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