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Alakara, E.H.; Guzelkucuk, S.; Bayer,
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Abstract: The physicochemical structure of the mixing water used in concrete has a significant effect
on the physical and mechanical properties of cementitious composites. The studies on the effect
of magnetized water (MW) on the properties of FA/BFS-based cementitious composites are still
in their infancy. This study explores the effect of MW on the fresh and hardened properties of fly
ash (FA)/blast furnace slag (BFS)-based cementitious composites. A total of 22 different mixture
groups having FA/BFS (0, 5, 10, 15, 20, and 25%) by weight of cement were produced using tap water
(TW) and MW. The fresh-state properties (the initial and final setting times and the consistency) and
hardened-state properties (the compressive strength, water absorption properties, and rapid chloride
ion permeability test) of produced cementitious composites were investigated. The development
of hydration products was analyzed using scanning electron microscopy (SEM) and the mercury
intrusion porosimetry (MIP) test. The results reveal that the fresh- and hardened-state properties of
cementitious composite samples produced with MW are significantly improved. The properties of
the samples utilizing MW showed that FA and BFS could be used at a higher rate for the same target
properties in cementitious composites by using MW as mixing water. Using up to 25% FA/BFS in
cementitious composites prepared with MW is recommended.

Keywords: magnetized water; fly ash; slag; cementitious composite; fresh properties; hardened
properties

1. Introduction

Fly ash (FA) is an industrial by-product retained by electronic filters in the chimneys
of coal-fired power plants. FA includes oxides such as Fe2O3, CaO, MgO, SO3, Na2O, and
K2O, while a significant part of the FA consists of SiO2 and Al2O3 [1–4]. FA particles have
a mostly spherical shape and an amorphous structure [3]. The diameter of FA particles
ranges from 1 to 150 µm, and about 75% are smaller than 45 µm [1,2,5]. The specific gravity
of FA usually varies between 2.1 and 3.0 g/cm3 [3]. FA is used in many areas, including
concrete production, road applications, waste-water treatment, soil stabilization, geopoly-
mer concrete applications, and agricultural applications [6–10]. Concrete production is at
the forefront of the field where FA is most widely used. The literature shows that FA can
improve the fresh and hardened properties of concrete [11–15]. Blast furnace slag (BFS)
is an industrial by-product consisting of silicates and aluminosilicates, which is released
during pig iron production in furnaces [16,17]. Residues from the combustion of coke,
limestone, iron ore, and other materials construct BFS [18]. The specific gravity of BFS is
approximately 2.90, while its unit weight is around 1200–1300 kg/m3 [16,19]. Studies show
that BFS can improve the fresh and hardened properties of concrete [20,21]. In addition,
since cement production is responsible for 6–9% of global greenhouse gas emissions [22,23],
CO2 emissions can be significantly reduced by using fly ash and slag in concrete [24,25].
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The physicochemical structure of the mixing water used in concrete has a significant
effect on the physical and mechanical properties of the concrete, such as workability, com-
pressive strength, flexural strength, water absorption, durability, and permeability [26–29].
Hydrogen bonds between the molecules of water, a polar material, cause clusters. Each
water cluster generally contains 100 water molecules at room temperature [26,30]. After
the water passes through a particular magnetic field, some changes occur in its molecular
structure, and this is called magnetized water (MW). The molecular structure of water
passing through a permanent magnetic field has different properties. Danish physicist
Hendricks Anton Lorenz discovered this effect in water in the early 1900s [31,32]. The water
cluster exposed to the magnetic field breaks up into smaller clusters. In this way, the size
and number of water clusters decreases, and the water molecules disperse, as presented
in Figure 1 [33–35]. As a result, the activities of water molecules increase [31]. MW differs
from tap water (TW) in terms of mechanical, thermodynamic, and electromechanical prop-
erties [26]. Due to these properties, MW is used in many applications, such as agricultural,
industrial, and medical fields [36].
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MW has a lower surface tension than TW, and the surface tension of MW is measured
with a device called a tensiometer [37]. The surface tension of the water significantly
affects the hydration process of cement particles. The hydration process first occurs on
the surface of the cement particles in a mixture. Thus, a thin layer of hydration products
is formed on the cement particles, which prevents the hydration development of the
particles [31]. This hinders the strength development of concrete. The use of MW in
concrete enables the water molecules to penetrate the cement particles more quickly and
improve the hydration of the cement particles. As a result, the mechanical properties of
concrete improve significantly [38–47]. Several researchers have explored the properties
of cementitious composites that have MW. Su and Wu [30] investigated the effect of MW
produced with different magnetic field densities (0.2, 0.4, 0.6, 0.8, 1.2, and 1.35 Tesla) on
mortar and concrete samples containing FA. Depending on the strength of the magnetic
field, increases in compressive strength and workability were achieved. Su et al. [31]
investigated the compressive strength and workability of mortar and concrete samples
containing slag, which they prepared using MW. As a result, they determined that MW
increased the compressive strengths of the mortar and concrete samples by up to 19 and 23%,
respectively. Wei et al. [35] found that MW reduces the early age shrinkage of concrete and
increases its compressive and splitting tensile strengths by 29.95 and 16.01%, respectively.
Ahmed [37] reported that the concrete samples produced using MW and nano alumina
significantly improved the fresh, hardened, and microstructural properties compared to
the control samples. Ghorbani et al. [42] investigated the effect of MW on mortar mixtures
containing marble dust at different rates (0, 10, 20, 30, and 40%) with the help of a magnet
with a magnetic field strength of 0.65 T. The results of this study showed that MW provided
an increase of up to 32% in strength. Barham et al. [44] investigated the effect of concrete
mixtures containing MW and silica fume on compressive strength and bond strength, and
the results showed that MW increased the compressive strength of all mixtures regardless of
the silica fume content. Afshin et al. [45] investigated the effect of MW on some properties
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of high-strength concrete, such as compressive strength and workability. As a result, the
slump values and compressive strength of the mixtures using MW increased by 45 and
18% compared to the control mixtures. Prabakaran et al. [46] investigated the effect of
MW on the compressive and tensile strength properties of polypropylene fiber-reinforced
concrete, and the use of MW increased the compressive and splitting tensile strengths by 30
and 21%, respectively. Gholhaki et al. [47] reported that MW could significantly improve
the hardened properties of self-compacting concrete; the compressive and splitting tensile
strengths of the samples prepared using MW increased by 49% and 41%, respectively.

A detailed literature review has shown that studies on the effect of MW on the proper-
ties of FA/BFS-based cementitious composites are still in their infancy. Consequently, the
present study explores the effect of MW on the fresh and hardened properties of FA/BFS-
based cementitious composites. A total of 22 different mixture groups with FA/BFS (0, 5,
10, 15, 20, and 25%) by weight of cement were produced using TW and MW. The fresh-
state properties (the initial and final setting times and the consistency) and hardened-state
properties (the compressive strength, water absorption properties, and rapid chloride ion
permeability test) of produced cementitious composites were investigated. The develop-
ment of hydration products was analyzed using scanning electron microscopy (SEM) and
the mercury intrusion porosimetry (MIP) test.

2. Experimental Program
2.1. Materials

Ordinary Portland cement (OPC) conforming to the EN 197-1 [48] was used in this
study. The fly ash (FA) used in this study was Class F (SiO2 + Al2O3 + Fe2O3 > 70% and
CaO < 10%) FA obtained from the Sugözü Power Plant in Türkiye. The blast furnace
slag (BFS) used in the study was obtained from Bolu Cement in Türkiye. The chemical
compositions and physical properties of the OPC, FA, and BFS are presented in Table 1.
The sand used in this study was the CEN reference sand specified in EN 196-1 [49].

Table 1. The chemical composition and physical properties of OPC, FA, and BFS.

Chemical Composition (%) OPC FA BFS

SiO2 21.02 57.80 34.82
Al2O3 5.38 20.90 17.73
Fe2O3 3.22 5.25 0.65
CaO 62.59 7.84 38.22
MgO 1.98 1.78 5.48
Na2O 0.22 2.19 0.46
K2O 0.51 1.61 1.51
SO3 3.11 0.37 0.55
Other elements 1.97 2.26 0.58

Physical properties

Specific gravity (unitless) 3.18 2.04 2.87
Blaine fineness (cm2/g) 3356 2945 3925
Loss on ignition 1.58 1.32 1.43

Two types of water were used in the preparation of mortar mixtures. The first is
tap water (TW) taken from municipal water, and the second is magnetized water (MW),
obtained by passing tap water through a magnetic field. To obtain MW, TW was passed
through a specially designed permanent magnet with a length of 250 mm, an outer diameter
of 42 mm, and an inner diameter of 20 mm. The strength of this magnet was 0.6 T. According
to the mechanism illustrated in Figure 2, the TW was magnetized with the magnet placed
between the circulation pump and the water tank. The TW was passed through a permanent
magnetic field for 20 min in a closed circuit and then used in mortar production. TW was
used in the curing of the mortars.
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2.2. Mixture Proportions

The cementitious composites were prepared with FA/BFS having replacement ratios
of 5, 10, 15, 20, and 25% using MW and TW, as well as the control sample without the
FA/BFS. The mixtures were prepared in accordance with EN 196-1 [49]. The mixtures
were cast into their molds and kept there until the end of 24 h under humid laboratory
conditions. After being removed from their molds, they were moved into a water tank and
cured there until the completion of pre-defined total curing periods of 3, 7, and 28 days
and then the fresh-state properties (the initial and final setting times and the consistency)
and hardened-state properties (the compressive strength, water absorption properties and
rapid chloride ion permeability test) of cementitious composites were performed. The mix
ratios of the FA/BFS-based cementitious mortars are presented in Table 2.

Table 2. The mixing ratios of FA/BFS-based cementitious mortars.

Mixture ID. Water Type Water (g) FA (%) BFS (%) FA (g) BFS (g) Cement (g) Sand (g)

RefTW

Tap Water

225 0 - 0.0 - 450.0 1350
FA5TW 225 5 - 22.5 - 427.5 1350
FA10TW 225 10 - 45.0 - 405.0 1350
FA15TW 225 15 - 67.5 - 382.5 1350
FA20TW 225 20 - 90.0 - 360.0 1350
FA25TW 225 25 - 112.5 - 337.5 1350
BFS5TW 225 - 5 - 22.5 427.5 1350

BFS10TW 225 - 10 - 45.0 405.0 1350
BFS15TW 225 - 15 - 67.5 382.5 1350
BFS20TW 225 - 20 - 90.0 360.0 1350
BFS25TW 225 - 25 - 112.5 337.5 1350

RefMW

Magnetized Water

225 0 - 0.0 - 450.0 1350
FA5MW 225 5 - 22.5 - 427.5 1350

FA10MW 225 10 - 45.0 - 405.0 1350
FA15MW 225 15 - 67.5 - 382.5 1350
FA20MW 225 20 - 90.0 - 360.0 1350
FA25MW 225 25 - 112.5 - 337.5 1350
BFS5MW 225 - 5 - 22.5 427.5 1350

BFS10MW 225 - 10 - 45.0 405.0 1350
BFS15MW 225 - 15 - 67.5 382.5 1350
BFS20MW 225 - 20 - 90.0 360.0 1350
BFS25MW 225 - 25 - 112.5 337.5 1350
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2.3. Test Methods
2.3.1. Fresh Properties

The setting time and workability measurements of FA/BFS-based cementitious mor-
tars prepared with TW or MW were performed per EN 196-3 [50]. A mini-slump test
determined the workability measurements. While making this measurement, the mortar
mixtures that were prepared according to EN 196-1 [49] were poured into the truncated
conical mold on the flow table. The mortars were poured into the mold in 2 layers and
25 times rodding in each layer was applied. Subsequently, the truncated conical mold
was lifted slowly, and by turning the shaking device, 25 strokes were made in 15 s per EN
12350-3 [51]. After the shaking process, the flow diameters of the mortars in both directions
were measured, and the average was taken as the final flow diameter value.

2.3.2. Compressive Strength

The compressive strength of the FA/BFS-based cementitious mortars prepared with
TW or MW was determined per EN 196-1 [49]. In this respect, 40 × 40 × 160 mm prismatic
samples having different ratios of FA and BFS (0, 5, 10, 15, 20, and 25%) were produced.
While performing the compressive strength test, the sample placed in a cross-sectional
area of 40 × 40 mm was loaded with a loading speed of 2.4 kN/s. The average of the
compressive strengths of six prismatic samples for each curing age was taken as the final
compressive strength value. A UTCM-6431 coded device belonging to the UTEST company
was used in the experiments.

2.3.3. Water Absorption

The cubic mortar samples with dimensions of 50 × 50 × 50 mm3 (width × height × length)
were used for the water absorption test. This experiment was conducted on three samples
for each mixture, and the average result was accepted as the final water absorption value.
Water absorption was determined per ASTM C642 [52] for 3-, 7- and 28-day curing periods.
The procedure of the experiment was as follows: first, the surface of the samples, which
were removed from the water curing, was dried with the help of a towel and weighed (B).
Subsequently, the samples were kept in an oven at 100 ± 5 ◦C for 24 h and weighed again
at 20 ◦C–25 ◦C (A). Finally, the water absorption values of the cementitious mortars were
calculated using Equation (1):

Water absorption percentage :
[

B − A
A

]
× 100 (1)

2.3.4. Rapid Chloride Ion Permeability

The rapid chloride ion permeability test (RCPT) of the FA/BFS-based cementitious
mortars prepared with TW or MW was performed per ASTM C 1202 [53] for 3-, 7- and
28-day curing periods. For this experiment, Ø100 × 200 mm cylindrical samples were
prepared per EN 196-1 [49] and cured for 3, 7, and 28 days. Before the experiment, these
samples were cut in Ø100 × 50 mm dimensions, and test samples were produced. In this
respect, four cylindrical samples were used for each mixture group, and the average result
was accepted as the final RCPT value. During the test, the mortar samples were placed
in the test cell, one end of which was in contact with a 0.30 M sodium hydroxide (NaOH)
solution and the other end with a 3% sodium chloride (NaCl) solution. Mortar samples
were exposed to a constant voltage of 60.0 ± 0.1 V for six hours, and the total amount of
current passing through each sample was measured in Coulombs © and recorded. The
RCPT results were classified from “Negligible” to “High” per ASTM C 1202 [53]. The
test device belonging to the Geotechnical Testing Equipment of the RCPT experiment is
illustrated in Figure 3.
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2.3.5. Mercury Intrusion Porosimetry (MIP)

The pore size distribution of the cementitious composite samples RefTW, RefMW,
FA10MW, FA20MW, BFS10MW, and BFS20MW, which were water cured for 7 and 28 days,
was characterized by mercury intrusion porosimetry (MIP) test. The Quantachrome Pore-
master PM60 test device was used. The MIP measurements were carried out with a device
capable of producing pressures up to 414 MPa and a contact angle of 130. Before the
measurement, the samples were dried at 50 ◦C until they reached a constant weight. MIP is
widely used to characterize the pore structure of cementitious materials [1,54,55].

2.3.6. Microstructure Analysis

The microstructural properties of RefTW, RefMW, FA10MW, FA20MW, BFS10MW, and
BFS20MW, which were water cured for 7 and 28 days, were investigated. The microstructure
analyses were investigated with the help of a scanning electron microscope (SEM) using
Zeiss EVO 40XP. The SEM analyses were conducted on small samples coated with gold to
obtain clear images.

3. Results and Discussion
3.1. Fresh Properties
3.1.1. Setting Characteristics

Figure 4 illustrates the initial setting times of the FA/BFS-based cementitious pastes
prepared with TW or MW, together with the error bar illustrating the standard deviation.
The results show that the initial setting times of cement pastes produced with MW were
longer than those produced with TW. This result is in accordance with the results of the
previous study [42]. Figure 4 shows that the initial setting times increased as the FA and
BFS replacement ratios increased, regardless of the water type. The results obtained are
compatible with the results of previous studies [56–58]. In samples produced with TW
or MW, the initial setting times of the FA-based samples were higher than those of the
BFS-based samples. This can be attributed to the fact that the specific surface area of BFS is
higher than that of FA; thus, it hydrates faster.

Figure 5 illustrates the final setting times of the FA/BFS-based cementitious pastes
prepared with TW or MW, together with the error bar illustrating the standard deviation.
The results show that the final setting times of cement pastes produced with MW were
longer than those produced with TW. This result is in accordance with the results of the
previous study [42]. In addition, as the FA and BFS replacement ratios increased, the final
setting times also increased regardless of the water type. The results are compatible with
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previous studies [56,57]. The final setting times of the FA-based samples were higher than
those of the BFS-based samples in all mixture groups.
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Figure 4. The initial setting time of the FA/BFS-based cementitious pastes.
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Figure 5. The final setting time of the FA/BFS-based cementitious pastes.

As the replacement ratio increased, the initial and final setting times of the supplemen-
tary cementitious materials (SCMs), such as FA and BFS, increased compared to the control
samples. This might be attributed to the SCMs, such as FA and BFS, starting the hydration
late and delaying the setting times.

3.1.2. Consistency

Figure 6 demonstrates the FA/BFS-based cementitious mortars prepared with TW
or MW flow diameters, together with the error bar illustrating the standard deviation.
The consistency of fresh cement mortars prepared with MW increased compared to those
prepared with TW for both the FA and BFS additives. The results show that the flow
diameters increased as the FA replacement ratio increased, regardless of the water type.
The spherical morphological feature of FA could explain this [6]. The literature shows that
the FA replacement ratio increases the flow diameter of mortar mixtures. Thus, the results
in the present study are compatible with the literature [59,60]. The flow diameters of fresh
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mortar samples prepared with MW increased by 11.5, 7.1, 10, 6.25, 9.1, and 8.6% compared
to those prepared with TW for 0, 5, 10, 15, 20, and 25% FA replacement ratios, respectively.
This can be attributed to the water passing through the magnetic field. The water clusters
are broken up and separated into smaller water molecules, resulting in a more fluid state of
the mortars.
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Figure 6. The flow diameters of the FA/BFS-based cementitious mortars.

The flow diameters of the BFS-based mortars produced with TW showed that the
flow diameters increased for the 5, 10, and 15% replacement ratios. However, the flow
diameter of the 25% BFS-based mortars produced with TW decreased compared to the
control mortars produced with TW. This might be attributed to the specific surface area of
BFS being higher than cement and FA. After exceeding a certain ratio, the consistency of
the BFS-based composites decreased, and thus the flow diameters decreased. The results
obtained are similar to the studies conducted on increasing the diffusion diameter of
magnetized water [31].

3.2. Compressive Strength

Figure 7 illustrates the compressive strengths of FA/BFS-based cementitious mortars
produced with TW or MW for 3-, 7- and 28-day curing periods, together with the error
bar illustrating the standard deviation. From Figure 7, the compressive strengths for both
FA and BFS-based samples increased with MW. The compressive strengths of the BFS-
based mortars were higher than those of FA-based mortars. From Figure 7c, an increase of
8.3–11.1% in the compressive strength of FA-based composites was achieved, while an
increase of 10.2–12.5% in the compressive strength of BFS-based composites was achieved
with the use of MW. This development seems to align with studies reporting that the
mechanical properties of concrete mixes prepared with MW can be improved. The water
clusters are broken up into smaller molecules; thus, the activity of the water molecules
increases when the water is passed through the magnetic field [33,35]. As a result of this,
the binder material hydrates more with magnetized water and significantly contributes
to the strength, especially at an early age. Therefore, the compressive strength increased
with the use of MW [31,32,42]. Figure 7 shows that the compressive strengths decreased as
both the FA and BFS replacement ratios increased, regardless of the water type. This can
be attributed to the late completion of hydration of the SCMs, such as FA and BFS, thus
reducing their strength at early ages. However, in the case of using BFS, it was observed
that these decreases in compressive strength were at lower levels compared to using FA.
The reason for this is that the particle size of BFS is smaller than that of FA. The results were
similar to those in the literature [12,61]. As a result, it is possible to say that the decreases
in the compressive strengths of the SCMs-based cementitious composites at early ages can
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be compensated for by using MW. Considering the increase in compressive strength with
the use of MW, it has been observed that SCMs such as FA and BFS can be added to the
cement at higher replacement rates. In addition, significant savings can be achieved from
using cement by evaluating the high number of industrial by-products. Considering that
cement production is responsible for approximately 6–9% of greenhouse gas emissions
in the world [62–64], it is thought that this rate could be significantly reduced by using a
higher amount of SCM.
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Figure 7. The compressive strengths of the FA/BFS-based cementitious mortars for curing periods of
(a) 3 days, (b) 7 days, and (c) 28 days.
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3.3. Water Absorption

Figure 8 demonstrates the water absorption of the FA/BFS-based cementitious mortars
produced with TW or MW, together with the error bar illustrating the standard deviation.
Figure 8 shows that the mortar mixes produced with MW have a lower water absorption
than those produced with TW. This can be attributed to the increase in the activity of MW,
improving the hydration of the binder and providing a less porous structure of the cement
matrix. As the curing age increased, the water absorption decreased. This is because the
hydrated elements increased, and the porosity of the mortar matrix decreased. The results
show that the water absorption of the BFS-based mortars were at lower levels than the
FA-based mortars. The reason for this is that, as in the compressive strength, the particle
size of BFS is smaller than that for FA, and it hydrates faster than FA. In this way, BFS
creates fewer pores in the mortar matrix compared to FA and reduces water absorption [65].
The 3-, 7- and 28-day water absorption periods showed that the water absorption of the
control mixtures increased as both the FA and BFS replacement ratios increased. The main
reason for this is the low hydration of FA and BFS at the early ages, the high hydration
development in later ages, and the formation of additional hydrates.

3.4. Rapid Chloride Ion Permeability

The RCPT results of the FA/BFS-based cementitious mortars produced with TW or
MW are presented in Table 3. Table 3 shows that the samples produced with MW have
lower RCPT results than those produced with TW at all ages. The chloride ion permeability
increased as both FA and BFS replacement ratios increased, regardless of the water type.
A comparison of the samples containing FA and BFS shows that the samples containing
BFS are more durable in terms of chloride ion permeability than the samples containing
FA at all ages, regardless of the water type. A comparison of the chloride ion permeability
of the 28-day mortars with those of the 3 and 7-day mortars shows that the voids in the
concrete decrease with the effect of hydration reactions in the later ages [1,6]. In addition,
the RefMW gave the best results among all mixtures and all ages in terms of the RCPT.

3.5. Mercury Intrusion Porosimetry

Figure 9 illustrates the pore size distribution of the RefTW, RefMW, FA10MW, FA20MW,
BFS10MW, and BFS20MW, which were water cured for 7 and 28 days. As the curing age
increased, the porosity of each mixture group decreased. In addition, a comparison between
the RefTW and RefMW shows that the number of pores can be reduced with the use of
MW. The key reason for this is that the surface hardness of the water passed through the
magnetic field decreases and the hydration of the binding materials occurs more intensely.
The RefMW had a smaller average pore size than the other samples at 7 days, while the
FA10MW and FA20MW samples were found to have a smaller average pore size than
the RefMW sample at 28 days. The reason for this is that the pozzolanic reaction of FA is
forming additional hydrates in later ages and increasing the density of the pores in the
matrix [66,67].

3.6. Microstructure Analysis

Figure 10 shows the SEM images of the 7-day water-cured control samples produced
with (a) TW and (b) MW. Figure 10b shows that the samples contain more calcium silicate
hydrates (C-S-H) than Figure 10a. This can be attributed to MW’s low surface tension,
thus improving the hydration of the cement. Under these circumstances, the number of
hydrated cement particles with MW increases, and more C-S-H is formed.
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Figure 8. The water absorption of the FA/BFS-based cementitious mortars for the curing periods of
(a) 3 days, (b) 7 days, and (c) 28 days.
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Table 3. The rapid chloride permeability test results calculated at 3, 7, and 28 days.

Mixture ID.
Rapid Chloride Permeability Test (Coulomb)

Mixture ID.
Rapid Chloride Permeability Test (Coulomb)

3-Day 7-Day 28-Day 3-Day 7-Day 28-Day

RefTW 6705 4380 3115 RefTW 6705 4380 3115
FA5TW 7018 4553 3224 BFS5TW 6836 4450 3190
FA10TW 8275 5495 3569 BFS10TW 7955 5205 3340
FA15TW 9018 6108 3771 BFS15TW 8895 5898 3560
FA20TW 10,905 7485 4134 BFS20TW 9865 7095 3895
FA25TW 11,625 7975 4763 BFS25TW 10,965 7565 4255

RefMW 5225 3697 2592 RefMW 5225 3697 2592
FA5MW 5358 3916 2807 BFS5MW 5305 3805 2653
FA10MW 6415 4630 3092 BFS10MW 6253 4350 2875
FA15MW 7132 5093 3255 BFS15MW 6809 4756 3108
FA20MW 8825 5987 3735 BFS20MW 8038 5467 3280
FA25MW 9667 6396 4163 BFS25MW 8955 5957 3976
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Figure 10. The SEM images of (a) RefTW and (b) RefMW composites after 7 days of water curing.

Figure 11a shows a more intense C-S-H compared to Figure 11b. This is because
Figure 11b contains a higher rate of FA, and the hydration development of FA is lower at
the early ages and higher at the later ages.
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Figure 12a shows a more intense C-S-H than Figure 12b. From Figure 12a, the calcium
hydroxide (CH) can be seen to gradually transform into C-S-H. The CH is more densely
packed than the C-S-H in Figure 12b. This is because Figure 12b contains a higher rate of
BFS and the hydration development of the BFS is lower at the early ages and higher at the
later ages.

The amounts of C-S-H in Figure 13a,b are almost the same. In Figure 14b the amount
of C-S-H is slightly more intense than in Figure 14a.
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Figure 15a shows a more intense C-S-H than Figure 15b. This is because the sample in
Figure 15b contains a higher rate of FA, and the hydration development of FA is slower
and higher in the later ages.

Figure 16 shows that the amount of C-S-H is approximately the same for both samples;
however, the amount of C-S-H in the matrix containing the 10% BFS is slightly higher
than the matrix containing the 20% BFS. This is because the sample in Figure 16b con-
tains a higher rate of BFS, and the slower hydration development of the BFS is higher in
the later ages.
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The amount of C-S-H in Figure 17b is high. This can be attributed to the higher
hydration rate of BFS compared to FA. It is important to note that the results may vary in
different parts of the samples as mortar is heterogeneous.
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4. Conclusions

This study investigates the effect of MW on the fresh and hardened properties of
FA/BFS-based cementitious composites. A total of 22 different mixture groups with
FA/BFS (0, 5, 10, 15, 20, and 25%) by weight of cement were produced using TW and
MW. The fresh-state properties (the initial and final setting times and the consistency) and
hardened-state properties (the compressive strength, water absorption properties and rapid
chloride ion permeability test) of produced cementitious composites were investigated.
The following conclusions can be made based on the findings of this study:

(1) The initial and final setting times of cement pastes produced with MW were longer
than those produced with TW. The consistency of fresh cement mortars prepared
with MW increased compared to those prepared with TW for both the FA and BFS
additives. This can be attributed to the fact that when the water is passed through
the magnetic field, the water clusters are broken up and separated into smaller water
molecules, resulting in the mortars being more fluid. The flow diameters increased as
the FA replacement ratio increased, regardless of the water type;

(2) The compressive strengths for both the FA and BFS-based samples increased with
the use of MW. This might be attributed to the binder material hydrating more
with the MW;
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(3) The mortar mixes produced with MW have a lower water absorption than those
produced with TW. The samples produced with MW have lower RCPT results than
those produced with TW at all ages. The chloride ion permeability increased as both
the FA and BFS replacement ratios increased, regardless of the water type. This might
be attributed to the increase in the activity of MW, improving the hydration of the
binder and providing a less porous structure of the cement matrix;

(4) Using up to 25% FA/BFS in cementitious composites prepared with MW is recom-
mended. Thus, the use of cement will be saved, the amount of CO2 released to nature
will be reduced, and significant contributions will be made in terms of sustainability;

(5) With the use of MW, the workability of cementitious composites will increase, and it
will reduce the use of plasticizer chemicals in cementitious composites; therefore, the
cost will decrease;

(6) It is thought that using MW will provide significant advantages for the sector repre-
sentatives. Although the initial installation cost of the MW system is seen as high, the
installation cost will be met by the future cost savings;

(7) In further studies, the use of MW on the properties of geopolymers/alkali-activated
materials could be investigated. In addition, the effects of MW on shrinkage cracks
and the hydration heat of cementitious composites could be examined.
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