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Abstract: Structural health monitoring (SHM) is critical to maintaining safe and reliable civil infras-
tructure, but the optimal design of an SHM sensing system, i.e., optimal sensor placement (OSP),
remains a complex challenge. Based on the existing literature, this paper presents a comprehensive
review of OSP strategies for SHM. It covers the key steps in OSP, from evaluation criteria to efficient
optimization algorithms. The evaluation criteria are classified into six groups, while the optimization
algorithms are roughly categorized into three classes. The advantages and disadvantages of each
group of methods have been summarized, aiming to benefit the OSP strategy selection in future
projects. Then, the real-world implementation of OSP on bridges, high-rise buildings, and other engi-
neering structures, is presented. Based on the current progress, the challenges of OSP are recognized;
its future development directions are recommended. This study equips researchers/practitioners
with an integrated perspective on state-of-the-art OSP. By highlighting key developments, persistent
challenges, and prospects, it is expected to bridge the gap between theory and practice.

Keywords: structural health monitoring (SHM); optimal sensor placement (OSP); evaluation criteria;
optimization methods; engineering applications; future challenges

1. Introduction

Modern society continues to push the boundaries of architectural feats, as exempli-
fied by the design and construction of iconic super high-rise buildings [1], long-spanning
bridges [2,3], and other intricate large-scale structures [4]. However, the complexity and
novelty of these structures also pose significant challenges. They are confronted with
heightened exposure to diverse and dynamic loads, weather effects, operational demands,
and environmental factors over their service life. Furthermore, damage or performance
degradation in such critical structures can bear severe economic, safety, and societal conse-
quences. Traditionally, the condition assessment of civil engineering structures is usually
conducted via visual inspection, but this method relies on the experience of the inspector
and the frequency of inspections, which does not identify problems in a timely and accurate
manner. Therefore, we need to adopt scientific and effective methods to pay attention to
the state of health of these large-scale structures and to make responses in time [5].

SHM can be regarded as the strategy and process of damage identification and char-
acterization for engineering structures [6]. A typical SHM system consists of a sensor
system, a data processing system (including data acquisition, transmission, and storage),
and a health assessment system [7]. The sensor system is the source of SHM data, which
can directly transform the measured physical parameters such as acceleration, velocity,
displacement, stress–strain, and temperature into electronic signals as output; the data
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processing system is to process the electronic signals from the sensor system for signal
processing, storage, and transmission; the health assessment system is to analyze and
evaluate the data from the data processing system, to evaluate the structure’s performance,
and provide a basis for the future maintenance and management. A robust SHM system
should be able to meet the following conditions [8]:

1. The system should be as well constructed as possible at a low cost.
2. The system is robust for continuous operation.
3. The system can easily obtain and store large amounts of data for analysis.
4. The system is sensitive to the vibration information of the structure and insensitive

to noise.

Therefore, SHM relies on sensor networks to capture data on the dynamic response
and performance of structures. These sensors, including accelerometers, strain gauges,
and fiber Bragg gratings, etc., are essential for monitoring critical parameters that can
represent a structure’s damage/health condition. However, limitations such as budget
constraints, data storage capacity, power availability, and sensor installation feasibility
necessitate careful consideration of the number and placement of sensors.

In simple structures with only a few degrees of freedom, sensors can be placed at all
critical nodes [8]. However, for larger and more complex structures, cost considerations
require selecting optimal sensor positions from numerous candidates. This involves finding
a set of positions that maximizes or minimizes a specific evaluation criterion for the sensor
configuration. OSP is such a process, that “given a set of n candidate positions, find m
positions, where m < n, which could maximize or minimize the value of the proposed
evaluation criterion for the sensor configuration” [8]. The number of sensor placement
schemes is shown in Equation (1):

c =
n!

m!(n − m)!
(1)

Given the scale of many structures, exhaustive methods are impractical for evalu-
ating sensor placements. Thus, we need systematic and efficient methods to optimize
sensor quantity and placement, aiming to extract the maximum useful information while
respecting economic and logistical constraints [9].

The quantity and placement of sensors are crucial factors determining the amount
and precision of structural data acquired, significantly impacting the financial aspects of a
monitoring system. The core issues involve determining optimal sensor types, numbers,
positions, and configurations to adequately monitor the structure [10] while meeting
economic and logistic constraints.

1. Determining monitoring objectives according to the structural application.
2. Determining the type of sensor which is suitable according to the monitoring objective.
3. Determining parameters such as the number of sensors and the candidate locations

of sensors.
4. Determining evaluation criteria for the optimal placement of sensors.
5. Determining the optimization algorithm for the optimal arrangement of sensors.
6. Determining the cost function and the input parameters for the optimization algorithm.
7. Determining the optimal solution for the sensor placement employing numer-

ous calculations.

Within the steps involved, the pivotal points in OSP research are the evaluation
criterion and the optimization algorithm. The evaluation criterion hinges on the specific
monitoring objectives and must adeptly mirror the effectiveness of the sensor placement
solution within those objectives. Typically, in the context of OSP, a continuous calculation
of the cost function is imperative for ascertaining the optimal solution. Consequently,
the structure and format of the evaluation criterion wield a substantial influence on the
computational efficiency of the OSP, bearing substantial importance in this regard.
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Optimization algorithms closely align with the chosen evaluation criteria, with the pre-
vailing approach involving iterative iterations [11–40] to derive an OSP solution. In parallel,
certain researchers have ventured into innovative territories, such as integrating neural
networks into the process [41,42], to address this challenge, and this will be demonstrated
later in this work.

Expanding upon these advancements, this paper further explores the practical imple-
mentation of OSP in real-world engineering scenarios. Emphasizing its diverse applications,
OSP has proven integral in enhancing the safety and performance of various infrastructures.
This is exemplified through successful case studies in monitoring Yingwuzhou Yangtze
River Bridge, Canton Tower, and other key structures such as Shenzhen Sports Center,
employing advanced OSP techniques. These real-life applications not only demonstrate
OSP’s effectiveness but also its potential for future innovations in SHM.

Addressing practical needs, our study extensively reviews the existing literature in
the OSP field, incorporating more than 200 relevant papers from major publishers such as
Elsevier, Wiley, Springer, SAGE, and MDPI. This work aims to provide a comprehensive
exploration of OSP within the SHM context, as depicted in Figure 1, offering detailed
insights into evaluation criteria and optimization algorithms in OSP (Sections 2 and 3),
delving into current OSP strategies in the engineering sector (Section 4), and summarizing
the challenges in current practices along with future trends in sensor placement (Section 5).
Lastly, in Section 6, we synthesize and encapsulate the study’s main findings, with the
integration of detailed analyses and real-world applications underscoring the paper’s
significance in advancing OSP methodologies for SHM. Our work aims to serve as a bridge
between theoretical research and engineering practice, providing both critical insights of
the current OSP practice and the future research directions.
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2. Evaluation Criteria

Before delving into the discussion of the evaluation criteria, it is necessary to under-
stand that the various evaluation criteria currently developed are based on the monitoring
objectives of SHM systems. Each evaluation criterion is imbued with a distinct perspective,
thereby engendering scenarios where a sensor layout scheme may excel under specific
criteria but falter under others. The pursuit of an equilibrium among all evaluation cri-
teria simultaneously invariably leads to suboptimal results across the entire evaluation
criteria, underscoring the need for deliberate compromises. In the process of selecting or
formulating evaluation criteria, a judicious contemplation of the SHM system’s monitoring
objectives is indispensable, underlining the significance of determining the specific facets
and physical parameters deserving emphasis.

2.1. Maximum Vibration Signal

In the measurement of the actual engineering, the results will inevitably be contam-
inated by noise and other factors that make the measurement error, so the sensor can
be placed by selecting the location of higher vibration amplitude, thus improving the
signal-to-noise ratio effectively and ensuring the accuracy of the modal identification.

2.1.1. Modal Kinetic Energy (MKE)

To improve the signal-to-noise ratio of the collected data, Salama et al. [43] proposed to
place sensors at measurement points where the structure has a large kinetic energy, which
can increase the signal strength with relatively constant noise to improve the signal-to-noise
ratio, that is, the modal kinetic energy (MKE) criterion, as shown in Equation (2).

MKEi = ∑Nm
j=1 (Φij∑k MikΦkj) (2)

In the equation, Nm denotes the number of modal orders of the vibration modes
involved in the calculation, Φij represents the ith row and jth column of the modal vibra-
tion matrix, and Mik represents the ith row and kth column of the overall mass matrix of
the structure.

Parallel to the MKE approach, Stubbs et al. [44,45] introduced the modal strain energy
(MSE) method. This method diverges by replacing the structural mass matrix with the
structural stiffness matrix. The MSE method is considered a potent indicator for detecting
structural damage. He et al. [46] put forth a sensor arrangement strategy. This approach
harnesses the MSE method for acquiring the initial sensor arrangement, followed by the
application of the modal assurance criterion (MAC) method to fine-tune and optimize the
sensor placement, enhancing the overall effectiveness of the methodology.

2.1.2. Mode Shape Summation Plot (MSSP)

Similar to the MKE, the mode shape summation plot (MSSP) [47,48] also aims to
improve the signal-to-noise ratio of the collected data by calculating the sum of the indi-
vidual variables of the row vectors of the modal matrix to evaluate the performance of the
corresponding sensor placement, as shown in Equation (3).

MSSPi = ∑Nm
j=1|Φik| (3)

In Equation (3), Nm denotes the number of modal orders of the vibration modes
involved in the calculation, and Φij is the ith row and jth column of the modal vibration
matrix. The MSSPi represents the modal component summing index of the ith degree of
freedom of the structure, which is obtained by summing the absolute values of the modal
amplitudes of the Nm order of the ith degree of freedom. Based on the size of the MSSPi at
each node, the degree of freedom with the largest MSSPi is selected as the sensor location.

Gui et al. [49] proposed a method for optimal sensor placement based on the mode
shape summation plot (MSSP) and difference method (DM) with a modal confidence crite-
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rion test. They took the main girder of a railroad tie arch bridge as an example and compared
the optimal sensor placement with the MSSP method, MSSP/DM method, and effective
independence method, respectively, and examined the validity of the MSSP/DM method.

2.1.3. Eigenvector Component Product (ECP)

In Equation (4), Nm denotes the number of modal orders of the vibration modes
involved in the calculation, and Φik is the ith row and kth column of the modal vibration
matrix. Similar to the MSSP method, the eigenvector component product [50,51] (ECP)
involves simply taking the product of the eigenvector elements for a given candidate
location across all modes of interest, where i is the candidate sensor location and Φij is the
ith element of the jth mode shape, j is the order of the modal vibration shape, and Nm is the
maximum order of the modal vibration shape involved in the calculation. A maximum for
this product is deemed to be a candidate measurement location.

ECPi = ∏Nm
j=1

∣∣Φij
∣∣ (4)

2.1.4. Driving Point Residue (DPR)

Imamovic [52,53] proposed the driving point residue (DPR) method based on the
excitable degree of nodes for OSP, as shown in Equation (5).

DPR = Φ ⊗ ΦΛ−1 (5)

In Equation (5), Φ is the modal vibration matrix and Λ is the eigenvalue matrix of
the structure. Larger DPR values indicate that the measurement points are more likely
to be excited and therefore also to obtain a larger structural response, which leads to a
higher signal-to-noise ratio. The later researchers [54] combined the DPR method with the
effective independence method to overcome the drawback that the effective independence
method tends to be selected at candidate points with low vibration intensity. Kaveh
et al. [41] developed an efficient strategy based on the triaxial driving point residue (DPR3)
coefficient and investigated it for large-scale dome-shaped trusses.

2.2. Maximum Modal Identification

A limited number of sensors cannot acquire all the modal information of a structure
that needs to be acquired, so sensor placement can be optimized so that as much modal
information as possible can be acquired.

2.2.1. Modal Assurance Criterion (MAC)

In structural dynamic testing, the aim is to ensure that the structural modal vectors
are as distinct and independent from one another as possible. This independence is crucial
for effectively identifying the modes of vibration. Carne and Dohmann [55] introduced
the modal assurance criterion (MAC), which utilizes the independence of the vectors
recorded by sensors as a means to facilitate a more straightforward distinction of the modal
vibration patterns.

MACij =
(ΦT

i Φj)
2

(ΦT
i Φi)(ΦT

j Φj)
(6)

In Equation (6), MACij denotes the variable in ith row and jth column of the MAC
matrix, respectively; where Φ is the mode shape matrix and subscripts i and j refer to
the ith and the jth column vectors. The MAC matrix’s non-diagonal elements show the
correlations between the modal vibration vectors of various orders, whereas the diagonal
elements consistently hold a value of 1. The non-diagonal elements have values between 0
and 1. A value approaching 1 signifies a strong correlation between the respective modal
vibration vectors, while a value closer to 0 indicates a diminished correlation. Carne and
Dohmann suggested that for effective mode distinction, the maximum value of the non-
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diagonal elements within the MAC matrix should not exceed 0.25. This criterion serves
as a reliable guideline in assessing the independence and discriminability of the modal
vibration patterns, ensuring that the identified modes are delineated.

The MAC has established itself as a versatile tool with a wide array of applications,
garnering extensive attention and development from researchers. One notable extension of
the MAC was undertaken by Yi et al. [25], who advanced the criterion to encompass three-
directional sensors. This involved a thoughtful exploration of various placement strategies
for both unidirectional and three-directional sensors, culminating in the introduction of
the three-dimensional MAC. In another context, An et al. [56] studied the optimal number
and placement of sensors in vibration-based damage detection of composite materials,
treating the number and location of sensors as design variables, while material properties,
ply thickness, and ply orientation angles were considered random variables. Notably, they
assessed the effectiveness of sensor placement by employing the root-mean-square error
of the MAC matrix, providing valuable insights into optimizing sensor arrangements for
damage detection in composite materials.

2.2.2. Redundancy of Mode Shape (RMS)

Addressing the spatial continuity of modal vibration patterns reveals that identical
or symmetrical sensor placements tend to capture similar or symmetrical modal vibration
data. Such repetitive modal information, while abundant, does not substantially contribute
to the structural analysis and should be minimized. This concept has been coined the
“Redundancy of Mode Shape” (RMS) criterion, as named by Stephan [57], and is represented
by Equation (7). This criterion plays a significant role in OSP by emphasizing the avoidance
of redundant modal information.

Rij = 1 −
∥Φi − Φj∥F

∥Φi∥F + ∥Φj∥F
(7)

In the equation, Φi and Φj denote the modal vibration row vectors corresponding to
the ith and jth degrees of freedom, respectively. When the value of Rij is larger, it means
that the information measured by the ith and jth sensors is nearly the same and one of them
can be discarded.

Lin et al. [58] proposed a multi-objective optimization algorithm, which is based on
the particle swarm algorithm and considers three objective functions: linearly independent
mode shapes, dynamic information redundancy, and vibration response signal strength.
This is applied to a simplified finite element beam model of a target building and compared
with other selection methods, and the results show that the algorithm balances the objective
functions reasonably well and outperforms the other methods. Yi et al. [25] proposed a
method for triaxial acceleration sensors, which was established by combining a tridimen-
sional modal assurance criterion and the redundancy function and solved by using the
hierarchical wolf algorithm, and the proposed method was validated by a benchmark
bridge model. The results show that the method can ensure the optimal configuration of
the triaxial sensors.

2.2.3. Singular Value Decomposition Ratio (SVDR)

In 1996, Golub and Loan introduced a valuable sensor optimization criterion known as
the singular value decomposition ratio (SVDR), relying on the singular values of the modal
matrix [59]. The SVDR serves as a direct gauge of the orthogonality and observability of
modal vibrations, bearing substantial physical significance in the context of optimization
parameters, as depicted in Equation (8). This criterion plays a pivotal role in enhancing
sensor placement strategies for SHM.

SVDR =
σmax

σmin
(8)
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In Equation (8), σmax and σmin are the maximum and minimum singular values of the
modal vibration matrix, respectively. When the value of SVDR is smaller, it indicates that
the vectors tend to be more orthogonal, and when the lower limit of SVDR of 1 is reached,
it indicates complete orthogonality.

Cherng et al. [60], based on the signal subspace correlation technique which they
developed, performed a singular value decomposition of the Hankel matrix consisting of
the candidate positions of the sensors to obtain the optimal sensor placement. Chhabra
et al. [61] applied a modified control matrix and singular value decomposition (MCSVD)
method to optimize the placement of piezoelectric actuators on a thin plate and obtained
the optimal placement of the actuators by maximizing the MCSVD using the modified
heuristic genetic algorithm.

2.3. Minimum Parameter Identification Error

In the identification of structural parameters, due to the influence of measurement
noise and other factors causing the error between the results of parameter identification
and the true results, it is possible to optimize the placement of the sensors to increase the
amount of information acquired, reducing the uncertainty of parameter identification.

2.3.1. Fisher Information Matrix (FIM)

Kammer [62] proposed the Fisher information matrix (FIM) concept to ensure the
linear independence of the vectors measured by the sensor and to reduce the uncertainty of
the measured information, as shown in Equation (9):

FIM = ΦT
S ΦS (9)

Within the equation, Φs denotes the measurement vector matrix composed of sensors.
In the context of OSP, the emphasis lies on the minimization of the covariance matrix
pertaining to estimated parameters. This is achieved through the maximization of the deter-
minant and trace of the measurement vector matrix, or the minimization of singular values.
These optimization strategies serve to enhance the quantity of estimated information or to
diminish the associated uncertainties in the estimated parameters.

Diverse research efforts have significantly contributed to the realm of sensor arrange-
ment optimization in SHM and modal identification. Bayard et al. [63] proposed a method
that decouples measurement point arrangement from input parameter design, maximizing
the determinant of FIM for OSP in large structures. Borguet et al. [64] used a weighted sum-
mation of parameters, including determinants and traces of the FIM, for OSP. Yang et al. [24]
proposed a robust OSP method for SHM considering uncertainty, based on interval analysis
method and modal analysis, and derived the interval FIM from the deterministic case,
where the determinant is considered as an optimization function. Yi et al. [25] proposed
a form of a three-dimensional FIM for three-axis acceleration sensors. Loutas et al. [16]
addressed redundant sensor placement concerns and developed an optimal placement
technique for modal recognition and vibration-based SHM. An et al. [65] proposed a robust
framework for the OSP problem under sensor clustering considering both sensor faults and
vibration-based damage detection, replacing the original FIM with the sum of the mean
and standard deviation of the minimum determinant.

2.3.2. Information Entropy (IE)

Papadimitriou et al. [66] introduced the concept of information entropy (IE) into the
Bayesian model update theory, using information entropy to quantify the uncertainty in
the identification of structural stiffness parameters and selecting the OSP by minimizing
the value of IE, as shown in Equation (10).

H(D) = Eθ [− ln p(θ|D)] = −
∫

p(θ|D) ln p(θ|D)dθ (10)
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p(θ|D) = c[J(θ; D)]−
NN0−1

2 πθ(θ) (11)

Eθ is the mathematical expectation of θ, θ is the modulus of the structural parameter
to be identified, and D is the test data obtained by the sensor. p(θ|D) can be calculated
according to Equation (11), where J(θ; D) is the degree of fit of the measured data to the
model response time, N is the number of sampled data, and N0 is the number of observed
degrees of freedom of the structural model. From Equation (11), the IE is the negative
logarithm of the expectation of the posterior probability density function. When the value
of IE is smaller, it means that the uncertainty of parameter identification is smaller.

In subsequent studies, several researchers have made significant contributions to
the domain of sensor optimization for various applications within SHM. Papadimitriou
et al. [67,68] introduced Laplace asymptotic integration to simplify the computational
process. Yang et al. [69] integrated Bayesian risk into sensor optimization, aiming to
minimize the expected loss of the decision outcome. Colombo et al. [29] presented a
framework for SHM sensor network design, defining the fitness function in terms of
Bayesian risk, to maximize detection probability while minimizing the overall cost.

Yuen et al. [30] introduced robust IE to quantify model parameter uncertainty, con-
sidering sensor faults and enhancing robustness in the designed configurations. Bansal
et al. [70] proposed an optimal Bayesian sensor layout method that employs a two-stage
update process with environmental vibration data for model updating, selecting the sensor
configuration that maximizes information gain in model parameters. Pei et al. [71] intro-
duced a conditional IE-based sensor layout method to examine the impact of measurement
noise and model error on sensor placement separately, representing model error using
variations in the cell stiffness matrix.

Bertola et al. [20] investigated a measurement system design method for dynamic
testing, utilizing desired information on self-oscillation frequency. They employed modal-
frequency joint IE for sensor arrangement optimization. Mehrjoo et al. [72] introduced
an information-theoretic-based OSP layout framework for parameter estimation, virtual
sensing, and state monitoring. This framework incorporated Bayesian OSP approaches
and modal expansion to minimize the IE of quantities of interest. It achieved this without
prior knowledge of the input excitation. Underpinning these works is the concept of IE,
which quantifies the uncertainty or unpredictability in a system. In sensor networks and
Bayesian decision making, entropy is indicative of the reliability of sensor data and the
ensuing predictions. High entropy suggests greater uncertainty, influencing Bayesian risk
and the associated decision-making processes.

2.3.3. Mutual Information (MI)

To promote the independence of vectors acquired through sensor measurements, a
valuable approach is to analyze the information gathered by these sensors. When the
information obtained from distinct sensors exhibit lower interconnections, it signifies a ten-
dency towards greater independence among the vectors they capture. Mutual information
(MI) [73] serves as a valuable metric for quantifying the interdependence between different
variables, as expressed in Equation (12).

I(x, y) = log2[
pX,Y(x, y)

pX(x)pY(y)
], (12)

where x, y are the measured values at points X, Y, respectively, pX(x) and pY(y) are the
marginal probability density functions of X, Y, respectively, and pX,Y(x, y) is the joint
probability density function of x, y.

MI measures the degree of information overlap between two sensors, indicating
redundancy in their measurements. OSP involves minimizing MI between sensor data
and enhancing system efficiency. Mark et al. [74] introduced an approach using MI as an
evaluation criterion to select sensor locations for maximizing information about structural
damage parameters. Bhattacharyya et al. [75] computed MI between predicted sensor
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data and system model parameters and transformed it into a relaxed convex optimization
problem, evaluating informativeness and optimal solutions efficiently. These approaches
ascertained both the informativeness of the problem and the potential optimal solutions in
an efficient and structured manner.

2.4. Data Reconstruction Error Minimization

In the context of monitoring random vibration structures, scenarios occasionally arise
where certain critical locations are unable to accommodate measurement points, or the
number of available sensors falls short of covering these critical points. In such cases,
mathematical techniques like Kalman filtering [76], system equivalent reduction expan-
sion process [77,78], Guyan static reduction/expansion [79], and others can be applied to
compute data for unplaced sensor locations based on information collected from existing
sensors. The accuracy of the reconstructed data is significantly influenced by the arrange-
ment of sensors, prompting the pursuit of an OSP to minimize errors in the reconstructed
data. For instance, to achieve the minimization of variance in the reconstructed response,
as depicted in Equation (13).

∆ = cov(yk − ye
k) (13)

In Equation (13), yk is the true value of the response location and ye
k is the value of

the response location calculated using mathematical means. The optimal placement of the
sensors is obtained by minimizing the response variance.

Significant advancements have been achieved by researchers in enhancing the utiliza-
tion of the minimization method within the realm of SHM. These contributions encompass
various key facets, such as the reduction in error variance [11] for heightened precision, as
well as the enhancement of damage detection [80] and early damage sensing [81]. Further-
more, researchers have directed their attention to the refinement of sensors, addressing
factors including sensor normal distance [82] and apparatus configuration [33]. It is worth
noting that the Kalman filter has emerged as an invaluable tool in assessing the effective-
ness of sensor placement [83] and facilitating the seamless fusion of data [84]. Collectively,
these research efforts significantly elevate the sophistication and applicability of SHM
methodologies.

2.5. Probability-Based Damage Detection

The fundamental objective of SHM systems is to acquire dynamic parameters of a
structure to effectively assess its operational state, with a particular emphasis on damage
detection. In this context, Flynn and Todd [85] introduced a global optimality criterion
for addressing the challenge of damage detection within a Bayesian risk minimization
framework. This framework is designed to optimize the allocation of sensing network
resources, with the overarching goal of minimizing the expected occurrence of Type I or
Type II errors; Equations (14) and (15) elucidate these critical concepts within the context of
SHM damage detection.

PFA = ∑K
k=1

P(dk1|hk0)P(hk0)

∑K
k=1 P(hk0)

(14)

PD = ∑K
k=1

P(dk1|hk1)P(hk0)

∑K
k=1 P(hk1)

(15)

In the above equation, PFA represents the global false alarm rate, which is the expected
proportion of undamaged regions of the structure that are incorrectly identified as damaged
or presenting Type I errors. PD stands for the global detection rate, a key performance
metric that signifies the expected proportion of damaged regions correctly identified as
such. P(dk1|hk0) = Pr(T[k] > γ[k]hk0) is the local detection rate of region k. hkj represents

the actual local damage state (j = 0 means undamaged, j = 1 means damaged). P
(

hkj

)
represents the prior probability of the local damage state. dkj is the event that determines
hkj as the local damage state in region k.
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Furthermore, an extensive body of research has yielded various methodologies aimed
at OSP for effective damage detection. Ručevskis et al. [86] delved into the problem of OSP
for damage identification in composite structures. Hou et al. [87] employed sparse recovery
theory to address structural damage detection by integrating a meta-heuristic algorithm for
OSP. This approach focused on minimizing the mutual coherence of the sensitivity matrix
within L1-regularized damage detection. Notably, the method leveraged the sensitivity
matrix from the undamaged state, eliminating the need for prior knowledge of damage
location and severity.

In a complementary effort, Downey et al. [23] introduced a sensor multi-objective
optimization algorithm. This algorithm was developed to mitigate the occurrence of Type I
and Type II errors in SHM systems by utilizing the system error with the estimated response
and IE as bi-objective optimization criteria. These research contributions collectively
enhance the capabilities of damage detection in structural systems through sophisticated
sensor placement strategies.

2.6. Minimum Energy Consumption

Large structures, owing to their intricate designs and diverse features, often present
challenges for the deployment of wired sensors, primarily related to layout constraints
and connectivity issues. In contrast, wireless sensors offer a distinct advantage as they
obviate the need for cumbersome communication cables, simplifying both arrangement
and installation processes. However, the energy supply for wireless sensors remains a
critical concern, and the distance between sensors and base stations directly impacts energy
consumption, underscoring the significance of OSP to extend the operational lifespan
of wireless sensors. Notably, Zhou et al. [88] introduced a comprehensive theoretical
framework for addressing the optimal placement of wireless sensors, focusing on the
attainment of an optimal configuration that enhances recognition quality and network
performance. This research contributes significantly to the enhancement of wireless sensor
deployment strategies in the context of large structures.

EC = f (ECEu, ECPw)(u = 1, 2, . . . , NE; w = 1, 2, . . . , Np) (16)

ECE = f (M, K, C, D, L0, ς) (17)

ECP = f (SP, SE, SL, RP, SR, NR, FD, NC, ξ) (18)

EC represents the evaluation criterion, ECE represents the structural performance
evaluation criterion, and ECP represents the wireless sensor network performance evalua-
tion criterion. M, K, and C represent the mass matrix, stiffness matrix, and damping matrix
of the structure, respectively, ς is the measurement error, L0 is the observation matrix, and
D is the sensor sampling data. SP is the sensor location, SE is the sensor energy, SL is the
sensor load, RP is the sensor communication protocol, SR is the sensor stability, NR is the
sensor network robustness, FD is the detectability of network failure, NC is the network
cost, and ξ is the influence of environmental factors. Zhou et al. [88] achieved the linear
independence of the identified modal vibrations by the above equations, ensuring the
connectivity of the wireless sensor network and pursuing the energy efficiency of the whole
wireless sensor network.

Numerous studies have delved into OSP within wireless sensor networks, address-
ing crucial facets such as energy consumption, information transmission, and network
efficiency. Notably, some research has focused on algorithmic approaches [89] to balance
information quality and energy efficiency in sensor placement. Others have concentrated
on rechargeable sensor placement, specifically tackling the minimum permanent coverage
node placement problem [90]. Additionally, strategies for optimizing relay node place-
ment, considering energy conservation and monitoring efficiency, have been explored in
separate studies [91,92]. The utilization of split clusters within sensor networks has shown
promise for SHM [93]. Moreover, comprehensive network optimization, with an empha-
sis on minimizing energy consumption, incorporates power control, packet transmission
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with error-correcting codes, and topology control [94,95]. Furthermore, integrated efforts
encompass aspects like sensor locations, activity schedules, reference sensor movement
trajectories, and data stream transmission routes [40].

2.7. Others
2.7.1. Cost

An often overlooked yet simple aspect is the actual cost involved in OSP. The cost is
influenced by the location of the sensors. For instance, in the scenario depicted in Figure 2,
where all properties require SHM, the cost at location B could be higher than at locations A
and C due to its position in the middle of a water body. Researchers sometimes may need
to consider such finical effects in the overall optimization progress [96].
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2.7.2. Coverage

Previously, optimization criteria viewed sensors collectively, but focusing on each
sensor individually reveals that coverage is crucial [97], especially for the wireless sensors
that need to consider the effectiveness of data transmission [98,99]. Wu et al. [100] delve
into this aspect for indoor environments, specifically addressing the critical-grid coverage
problem, as shown in Figure 3. This paper proposes a multi-objective optimization model
considering both accuracy and cost, employing the NSGA-II algorithm for optimization to
achieve OSP and demonstrates the practical effectiveness of the proposed method.

Geometry significantly influences sensor coverage in SHM, particularly for vision-
based sensors. As shown in Figure 4, sensors at higher elevations typically offer wider
coverage, while those at lower levels may face coverage limitations due to obstructions or
viewing angles. Additionally, the orientation and angle of the sensors need to be strategi-
cally aligned with the structure’s geometry to avoid blind spots and ensure comprehensive
monitoring. Environmental conditions like lighting and weather also play a role in affecting
sensor performance. Proper placement considering these factors is essential for effective
and reliable SHM.
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2.8. Summary of the Section

Several noteworthy studies have contributed diverse perspectives to the realm of OSP.
Thiene et al. [102] delved into damage identification via guided waves, considering various
evaluation criteria such as information independence, Lamb wave characteristics, bound-
ary reflections, attenuation profiles, excitation amplitudes, and geometric complexities.
Zhang et al. [35] introduced an innovative framework for SHM that amalgamates OSP
rooted in finite element modal analysis with an evidence inference criterion, leveraging
probabilistic and fuzzy uncertainty handling. In the domain of uncertain inverse problems
for structural parameter estimation, Liu et al. [103] proposed the maximum independent
mean-variance criterion to guide OSP. Sadhu et al. [104] employed blind source separation
and tensor decomposition for modal identification, utilizing the resultant modal parameters
to formulate an optimization function for sensor placement. Biswal et al. [105] proposed
a Markov chain Monte Carlo algorithm based on distance measurements for determin-
ing the optimal placement of the accelerometer and the impact hammer. Shi et al. [106]
proposed a weighted standard deviation norm index-based approach, focusing on the
significance of damage in structural performance, while Yang et al. [28] explored uncertain
load-dependent sensor placement by leveraging non-probabilistic response reconstruction
theory. Ghosh et al. [107] established a method for OSP under basal excitation, emphasizing
a stochastic input–output relationship in the frequency domain and modeling seismic
input as a nonstationary stochastic process with uniform modulation. These contributions
collectively enrich the field of sensor optimization for SHM.
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In general, the MAC is the most widely used criterion for sensor placement in SHM. It
is simple to understand, calculate, and interpret. However, it is important to note that the
MAC does not consider the uncertainty in the modal identification process. The FIM can
be used to overcome this limitation, but it can be computationally expensive, especially for
large structures. The MKE, MSSP, and ECP criteria are all simple to calculate and interpret,
and they are not sensitive to sensor placement errors. However, they do not consider
the uncertainty in the modal identification process. Rather than evaluating each criterion
individually, the previously mentioned criteria are organized into six distinct groups. A
comparison of these groups is presented in Table 1.

Table 1. Summary of the evaluation criterion involved.

Criterion Description Advantages Disadvantages

Maximum Vibration Signal Emphasis on high-intensity
vibration signal acquisition.

Enhances signal clarity,
pivotal for detecting

significant structural changes.

Risk of neglecting subtle, yet
crucial, structural signals.

Maximum Modal
Identification

Optimization towards
comprehensive modal
information capture.

Facilitates in-depth analysis of
structural dynamics.

Involves high computational
resource allocation and

complexity.

Minimum Parameter
Identification Error

Precise estimation of
structural parameters.

Increases reliability and
accuracy in structural

assessments.

Necessitates advanced
computational algorithms,

elevating operational
intricacy.

Data Reconstruction Error
Minimization

Aimed at high fidelity in data
interpretation and

reconstruction.

Ensures integrity and
reliability of the data

reconstruction process.

Computationally demanding,
requiring sophisticated data

handling capabilities.

Probability-Based Damage
Detection

Utilizes probabilistic methods
for early structural damage

detection.

Facilitates early intervention
and nuanced understanding

of damage probabilities.

May yield non-definitive
results due to inherent

probabilistic nature.

Minimum Energy
Consumption

Focus on energy-efficient
sensor placement and

functioning.

Promotes sustainable and
cost-effective monitoring,

especially long term.

Could limit data collection
scope in energy-constrained

setups.

It is important to note that the choice of the most appropriate criterion for sensor
placement in SHM is highly contingent on the specific objectives of the application at
hand. If the primary aim is to minimize uncertainties within the modal identification
process, the FIM stands as the optimal selection. However, scenarios, where the emphasis
is on streamlining sensor placement procedures or curtailing computational expenses,
necessitate alternative criteria, such as the MAC, MKE, MSSP, or ECP, which may yield
more favorable outcomes.

In short conclusion, OSP in SHM is a multifaceted and complex process that goes
beyond just adhering to physical criteria such as cost and coverage for the sensors, re-
quiring a thorough and strategic approach, as summarized in Figure 5. The practicalities
involved are multifarious, encompassing budgetary limitations, sensor availability, struc-
tural considerations for sensor installation, as well as the environmental factors at hand.
These elements collectively highlight the nuanced and multifaceted nature of sensor place-
ment within SHM. Such considerations must coalesce to inform an optimal strategy that
effectively meets the monitoring objectives. Hence, a thorough and detailed evaluation
of the application’s unique demands and limitations is paramount. This ensures that the
chosen sensor placement strategy is not only theoretically sound but also practically viable,
aligning with both the objectives and the tangible conditions of the SHM project.
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3. Optimization Methods

OSP methods can be roughly divided into deterministic and stochastic algorithms;
if we can simplify the OSP problem into a continuous function to find the extremum,
deterministic algorithms can be used to obtain the OSP solution easily. However, for most
of the problems, the structure is complex and the candidate positions of the sensors are
discrete. It is impossible to transform them into a continuous function to find the extremum;
therefore, the deterministic algorithms are not suitable for real-world problems [9]. For
such combinatorial optimization NP-hard problems, meta-heuristic algorithms can find
acceptable results efficiently. This section presents detailed information about different
types of optimization methods.

3.1. Deterministic Sensor Placement Algorithm

In the realm of SHM, the application of deterministic optimization methods for sen-
sor placement in relatively simple beam and plate structures has proven effective. These
methods encompass both constrained, such as linear and nonlinear programming [108],
and unconstrained optimization techniques, like Newton’s method [109]. However, these
deterministic methods inherently rely on continuous variables, which means they are most
suited for structures with continuous variable candidate sensor locations, as typically found
in simple planar structures. The complexity of large-scale structures necessitates discrete
sensor locations, posing a challenge for deterministic optimization. To bridge this gap,
creative solutions have been explored. Sepulveda et al. [110] introduced an innovative
approach that treats sensor placement as a mixed design problem, encompassing 0–1 contin-
uous variables. This method extends the applicability of deterministic optimization to large
structures by effectively transforming discrete sensor locations into continuous variables.

3.2. Sequential Sensor Placement Algorithm

The sequential sensor placement algorithm represents an iterative approach for sys-
tematically determining the placement of individual sensors through a series of successive
computations, ultimately culminating in the arrangement of all sensors. This algorithm is
conceptually categorized into two distinct strategies known as forward sequential sensor
placement (FSSP) and backward sequential sensor placement (BSSP).
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The FSSP method operates by identifying eligible sensor placement sites within the
structural nodes. In a stepwise manner, it proceeds to place sensors at candidate locations
that induce the most substantial improvements in the evaluation criterion. Subsequently,
sensors are placed at the remaining candidate locations, and this process iterates until all
sensors have been positioned optimally. A notable instantiation of this method is exempli-
fied by the minimize modal assurance criterion (MinMAC) approach [55], pioneered by
Carne and Dohrmann. Here, a set of candidate locations is empirically determined, and
in each iteration, the candidate location that minimizes the non-diagonal elements of the
MAC matrix is chosen as the sensor location, contributing to the establishment of the final
sensor placement.

The BSSP assumes that all candidate points on the structure are arranged with sensors,
and the sensor location that minimizes the change in the evaluation criterion is selected
for deletion by continuous iterative computation until a predetermined number of sensors
is reached. This method is represented by the effective independence (EI) [62] method, in
which Kammer utilized the modal matrices of all candidate locations, calculated the FIM,
ranked each candidate sensor location according to its contribution to the independence
of the target modal matrix, and used an iterative method to sequentially remove the
alternative sensor location with the smallest contribution in each iteration step.

The sequential sensor placement algorithm offers the advantage of computational
simplicity, rendering it accessible for practical applications. Nevertheless, its primary
drawback lies in its limited efficiency. This reduced efficiency results from the necessity
to iterate through all candidate measurement locations to identify the optimal placement.
Particularly, for large-scale structures featuring thousands of degrees of freedom, this
computational process becomes notably protracted [111]. Furthermore, the interactions or
conflicts that may arise between newly added or removed sensors and those previously
selected contribute to the inherent limitation of achieving a globally optimal solution [112].

3.3. Meta-Heuristic Optimization Algorithm

As the sequential sensor placement algorithm encounters limitations when applied to
large structures, extensive research efforts have been dedicated to the exploration and re-
finement of optimization algorithms. Notably, in the 1970s, John Holland [113] introduced
the genetic algorithm (GA), a paradigm that garnered global recognition due to its ver-
satility and swift problem-solving capabilities. This algorithm leverages computer-based
simulations to emulate the biological evolutionary processes of gene crossover and muta-
tion, transforming problem-solving into an evolutionary process. Numerous researchers
have contributed refinements aimed at enhancing convergence speed and achieving global
optima [114,115]. Alongside the GA, other optimization techniques such as particle swarm
optimization (PSO) [116], ant colony algorithm [117], artificial bee colony algorithm [118],
monkey swarm algorithm [119], firefly algorithm [120], and more have found application in
sensor arrangement. In this paper, the methods employing GA and PSO will be introduced
in more detail, serving as examples for OSP applications.

3.3.1. Genetic Algorithm (GA)

The GA operates through stages of initialization of chromosome sets, fitness evaluation
based on predefined criteria, chromosome ranking and culling by fitness, and generation
of new chromosomes via crossover and mutation [121], as demonstrated in Figures 6 and 7,
where ‘0’ and ‘1’ represented the absence or presence of sensors at specific locations. Due
to challenges in this method during crossover and mutation [122], alternative encodings
like integer [123], floating-point [124], decimal two-dimensional array [125], quantum
probability vectors [126], and dual-structure coding [127] were developed to improve
computational efficiency and stability in GA operations.
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Following the initial generation and fitness evaluation, the GA then comes into a
crucial selection phase, vital for their effectiveness and convergence [128]. Methods in-
clude roulette wheel selection, tournament selection, Boltzmann selection, and random
universal sampling selection. Roulette wheel selection assigns each chromosome a section
on a roulette wheel proportional to its fitness, choosing by random draw [129], while
tournament selection pairs chromosomes randomly, selecting the fittest from each pair for
further evolution [130]. These selection methods are pivotal in guiding the GA towards
optimal convergence.

After chromosome selection, the GA perform crossover operations to generate new
generations. Methods include single-point, double-point, K-point, uniform, and partially
matched crossover. Single-point crossover involves exchange segments beyond a random
point between two chromosome [131] (Figure 7a), while double-point crossover uses
two crossover points (Figure 7b,c). However, these methods may produce duplicate or
missing codes, leading to the use of variants like partially matched crossover, which replace
duplicates in the non-swapped segment with elements from the swapped parent [132]
(Figure 8). These techniques are essential for the evolution of chromosomes in GA, ensuring
viable new generations.
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Mutation operations in GA are crucial for maintaining genetic diversity and avoiding
local optima. Techniques included bit-flip mutation, swap mutation, inversion mutation,
and reverse mutation. Bit-flip mutation changes a specific bit from 0 to 1 or vice versa, as
shown in Figure 9a. Swap mutation randomly exchanges values between two positions,
as demonstrated in Figure 9b. Reverse mutation selects a chromosome segment and
reverses the order of its elements [130], as depicted in Figure 9c. These methods introduce
variability, helping GA explore the solution space more effectively and prevent settling on
suboptimal solutions.
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The effectiveness of GA in finding optimal solutions relies on their iterative nature
factors like population size, search space dimensionality, and the number of iterations
significantly impact their performance [133,134]. Reliable results often require multiple
runs of the algorithm, with the best solution chosen from the outcomes. The ‘no free lunch’
theorem [135] highlights that no single algorithm excels across all problem, emphasizing
the need for problem-specific algorithm selection or development.

Numerous researchers have enhanced GA for various applications. Nasr et al. [81]
enhanced SHM using an optimization algorithm with ensemble Kalman filtering (EnKF),
tested on a 10-story building. Liu et al. [136] focused on OSP for bridge structures using
a single parents GA. Kang et al. [137] introduced a virus coevolutionary parthenogenetic
algorithm (VEPGA), integrating a parthenogenetic algorithm with viral evolution theory
for modal recognition in large spatial structures, exemplified by portal frames and concrete
arc dams. Yi et al. [122] developed a generalized GA for the tallest building in northern
China. Fiber-reinforced shell structures benefited from Nandy et al. [138], using an island
model parallel GA to achieve enhanced computational efficiency. Ganesan et al. [139]
proposed a GA using a 2D discrete Daubechies 4 (db4) lifting wavelet transform for sensor
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placement, and Kim et al. [140] introduced an Adam mutation genetic algorithm (AMGA)
for pipeline monitoring.

Additionally, Qin et al. [141] proposed a parthenogenetic algorithm for optimizing
sensor placement based on initial sensor distribution, verified with a terminal container
crane case study. These advancements in GA demonstrate the algorithm’s adaptability and
efficacy across diverse applications, underscoring the importance of selecting or developing
algorithms tailored to specific project requirements.

3.3.2. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm, developed by Kennedy and Eber-
hart in 1995, is inspired by the foraging behavior of birds [142]. It simulates how birds
adjust positions to find food, with each ‘particle’ representing a potential solution. The
algorithm iterates as particles update their velocities and positions based on experiences,
effectively converging on optimal solutions [143,144]. This method is influential in various
fields, particularly in complex optimization scenarios.

In PSO, each particle possesses velocity and position attributes, essential for movement
and direction. Particles independently search for their optimal solution, the ‘personal best’
(pbest), which is shared within the swarm. The most effective pbest becomes the ‘global
best’ (gbest), symbolizing the swarm’s collective optimal solution at any point. Particles
dynamically adjust speed and position, influenced by the interplay between their pbest
and the swarm’s gbest [145]. This individual and collective refinement process is key to the
algorithm’s success in complex environments.

The velocity and displacement of the particle are calculated as shown in the following
equation [146]:

Vk(i + 1) = ωVk(i) + c1r1(pk
best,i − Xk(i)) + c2r2(gbest,i − Xk(i)) (19)

Xk(i + 1) = Xk(i) + Vk(i + 1) (20)

ω = ωmax −
ωmax − ωmin

itermax
× iter, (21)

where Vk(i + 1) is the velocity of particle k at the (i + 1)th iteration, Xk(i) is the position of
particle b at the ith iteration, pk

best,j is the personal best value of particle k at the ith iteration,

gbest,i is the global best value of particle k at the ith iteration, c1 and c2 are factors that the
influence of determining the personal best value and the global best value on particle k is
called the learning rate or the factor, and r1 and r2 are two independent random numbers
between 0 and 1. ω is the influence coefficient used to control the current velocity, called
the particle’s inertia weight, itermax is the maximum number of iterations, iter is the current
iteration, and ωmax and ωmin are initial and final values of the inertia weight, respectively.

In the PSO framework, a particle’s movement comprises three parts: its current velocity
ωVk(i), representing the inertia of past behavior; the influence of its individual optimum
c1r1

(
pk

best,i − Xk(i)
)

, reflecting its ability to move towards a memorized optimal location;
and the influence of the global optimum c2r2(gbest,i − Xk(i)), symbolizing information
sharing and cooperation among particles. The underlying psychological assumption of
this algorithm is that an individual tends to remember its own optimal solutions while
considering those of others. When it finds that others’ solutions work better, it adaptively
adjusts its approach.

The solution steps of the PSO can be categorized as follows: (1) initialize to generate
a particle swarm population; (2) calculate the fitness of each particle based on a predeter-
mined evaluation criterion or fitness function; (3) update the velocity and position of each
particle; (4) update individual extremes and global optimal extremes. The flowchart of PSO
is shown in Figure 10.
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Advancements in the particle swarm optimization (PSO) algorithm for OSP have been
significant across various contexts. Wang et al. [147] introduced an adaptive mutation prob-
abilistic binary PSO (AMPBPSO) for industrial wireless sensor networks (IWSNs), which
outperformed traditional discrete binary PSO (DBPSO) and GA while maintaining network
reliability. He et al. [148] developed an integer-encoding multi-swarm PSO (IMPSO) for
placing multiaxial sensors on large structures like the Laxiwa arch dam model, showing
improved efficiency and accuracy over standard GA and binary PSO methods. Kong
et al. [149] proposed a discrete PSO-based sensor method for hydraulic control systems
to determine the optimal number and location of sensors. For large-span cable-stayed
bridges, Li et al. [150] proposed the dual-structure coding and mutation PSO (DSC-MPSO),
demonstrating enhanced convergence speed and accuracy compared to genetic algorithms
and standard PSO.

Shi et al. [31] proposed a two-layer optimization strategy for sensor arrangement
optimization, which resulted in a 29.7% higher outcome than the mean value of the opti-
mization results of GA in reducing uncertainty in parameter identification for hydraulic
control systems fault diagnosis. These developments highlight the versatility and enhanced
performance of PSO in various sensor placement applications.

3.3.3. Others

In addition to the meta-heuristic algorithms mentioned above, many excellent algo-
rithms have emerged in recent years, such as dung beetle optimizer [151], artificial gorilla
troops optimizer [152], African vultures optimization algorithm [153], snake optimizer [154],
and so on [155–157], which will not be explained in detail for space reasons. It is worth
noting that, according to the “no free lunch theorem” by Wolpert and Macready [135], the
performance of any two given search algorithms is the same on all possible problems. It is
therefore necessary to select or write a suitable algorithm depending on the object of study.

Yin et al. [158] proposed a weighted centroid artificial fish swarm algorithm (WC-
AFSA) in order to optimize the placement of wireless sensor nodes for wind turbine blades.
The algorithm uses the weighted centroid algorithm to construct the initial fish swarm to
improve the diversity and search accuracy of the fish swarm. Adaptive step size based on
dynamic parameters is utilized to jump out the local optimal solution and improve the
convergence speed.
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Yang et al. [159] proposed an improved artificial bee colony (IABC) algorithm that
uses a dynamic random coverage coding method to initialize the colony to ensure diversity
and effectiveness. After food source matching, the algorithm randomly selects factors with
lower trust values for searching and evolving in order to retain point factors with relatively
high trust when developing food sources, thus reducing the blindness of searching and
improving the convergence efficiency and accuracy of the algorithm. The finite element
model of Ha-Qi long span railway bridge is taken as an example to compare the efficiency
and solution accuracy of IABC and ABC algorithms.

Kaveh et al. [160] proposed a dynamic version for a quantum-inspired evolutionary
optimization algorithm (DQEA) for use in a two-stage optimal sensor placement approach
for structural modal identification. In the first stage, the structure is divided into equal
substructures using graph theoretical technique. In the second stage, a predefined number
of triaxial sensors are proportionally assigned to the substructures and the location of the
sensors is determined using the mentioned optimization algorithm. A standard version
of the quantum-inspired evolutionary algorithm and genetic algorithm are introduced for
comparison using the bridge model of the University of Central Florida as the base structure,
and the results illustrate that the proposed DQEA outperforms the other algorithms.

Gao et al. [161] proposed an optimized sensor placement method based on the initial
sensor placement, using the dynamically adjusted attenuation coefficient gravity search
algorithm (DGSA), which introduced the effective modal mass participation ratio to ensure
the validity of the initial data for the optimal sensor placement. Considering the lack of
development capability of the gravity search algorithm, the attenuation coefficient alpha
is dynamically adjusted to assist the global search in early iterations and the local fine
search in later iterations. The DGSA algorithm is applied to the OSP using a double-coding
method, and the feasibility of the algorithm is verified using a cable-stayed bridge as
an example.

Zhou et al. [162] proposed a multi-objective discrete firefly algorithm based on neigh-
borhood searching (MDFA/NS) to solve the multi-objective optimal placement problem
for wireless sensors. The algorithm utilizes neighborhood information to drive the fire-
flies to move towards the Pareto front at high speed. To enhance the robustness of the
algorithm, elite preservation is also employed. Numerical experiments show that the
optimality criterion maintains the trade-off between information effectiveness and network
performance, and MDFA/NS outperforms the commonly used non-dominated sorting
genetic algorithm II.

Mghazli et al. [163] proposed a new hybrid meta-inspired algorithm that combines
three algorithms, namely teaching–learning-based optimization (TLBO), artificial bee
colonies (ABC), and stochastic paint optimizer (SPO). A high-rise building finite element
model of 410 m was used as an example to compare with the six algorithms, and compared
with the other algorithms, the number of iterations of this algorithm was reduced by 50%
to 70%, thus showing good results in the optimization of cost calculation.

3.4. Summary of the Section

This section provides an overview of sensor placement in SHM, covering determin-
istic sensor placement algorithms suitable for simple structures, such as beam and plate
configurations, including constrained and unconstrained optimization methods. To ad-
dress complex large-scale structures with discrete sensor locations, innovative solutions
like mixed design problems are introduced. The sequential sensor placement algorithm,
categorized into forward and backward methods, offers systematic sensor placement, exem-
plified by the minimize modal assurance criterion (MinMAC) and effective independence
(EI). While this approach is computationally simple, it may lack efficiency, especially for
large-scale structures. To address this, meta-heuristic optimization algorithms, including
the GA, are explored. These algorithms employ evolutionary principles, involving chro-
mosome initialization, fitness assignment, selection, crossover, and mutation operations.
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Various encoding methods and selection techniques are discussed. Table 2 summarizes the
advantages and disadvantages of the methods discussed at the group level.

Table 2. Summary of optimization algorithm involved.

Type of Algorithm Features Advantages Disadvantages

Deterministic Sensor
Placement

• Utilizes mathematical
formulations to
determine optimal
sensor locations.

• Prioritizes accuracy and
computational efficiency
in less complex
structural scenarios.

Emphasizes data precision
and algorithmic speed.

Not well-adapted for
large-scale or highly complex
structures due to scalability

limitations.

Sequential Sensor Placement

• Adopts an iterative
procedure, adding or
removing sensors in each
step to enhance
monitoring efficiency.

• Offers flexibility in
accommodating
structural features.

Focuses on the
comprehensiveness of

coverage and the number of
iterations required for

convergence.

Computationally demanding
for extensive structures,
potentially leading to

increased time and resource
consumption.

Meta-heuristic Optimization

• Employs adaptive
algorithms inspired by
natural processes.

• Offers flexibility and
adaptability in diverse
structural design.

Assesses the optimization of
sensor network coverage and

overall computational
efficiency.

Can be computationally
intensive and may require
extensive calibration and

fine-tuning to achieve optimal
results.

4. Engineering Applications

As previously mentioned, it is imperative to bridge the gap between theoretical
concepts and practical applications in OSP. To accomplish this, it is crucial to show-
case tangible instances where OSP techniques have proven effective in the context of
engineering scenarios.

4.1. Bridges

Several studies have explored OSP for monitoring bridges in different locations. These
studies utilize various techniques such as the effective independence approach, ant colony
algorithm, MAC, and other optimization algorithms. Researchers have applied these method-
ologies to bridges in Poland, Spain, Dalian, Italy, Liaoning, Harbin, and Foshan, demonstrating
the versatility and effectiveness of sensor placement for structural monitoring.

Figure 11 depicts the strategic arrangement of accelerometers on the Yingwuzhou
Yangtze River Bridge, a three-tower, four-span suspension bridge, which extends 3.42 km
in length, with its main span reaching 850 m, connecting Hanyang and Wuchang. It is
equipped with an array of 58 sensors, including thermometers, anemometers, and ac-
celerometers. These sensors facilitate real-time tracking of the bridge’s condition, ensuring
its safety and operational integrity.
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monitoring sensors of the bridge [164].

Moreover, Błachowski et al. [165] undertook OSP for load monitoring using the ef-
fective independence method, augmented by convex relaxation, on a tied-arch simply
supported bridge situated in Poland. Pachón et al. [166] utilized the effective independence
method to determine optimal sensor locations for the E. Torroja bridge, constructed in
Spain in 1957. In a study by Feng et al. [167], an optimal arrangement method for triaxial
sensors, complemented by the effective independence approach, was employed to assess
the Dalian South Bay Cross-sea Bridge. Furthermore, Vincenzi et al. [168] introduced a
novel methodology based on IE theory, integrating both distance and modal vectors, for
OSP on a pedestrian bridge in Italy. These practical applications showcase the versatility
and effectiveness of sensor placement methodologies across diverse structural scenarios.

Meanwhile, Feng et al. [169] introduced an arrangement method for triaxial accel-
eration sensors, leveraging the ant colony algorithm and MAC, and implemented this
approach on the North Bridge in Dalian, Liaoning. Yang et al. [170] proposed a beetle-
swarm evolution competitive algorithm with MAC as the objective function, effectively
applied to a large-span bridge on the Haqi high-speed railroad in Harbin. Luo et al. [171]
developed a novel harmony search cat swarm optimization algorithm, utilizing the MAC
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matrix’s non-diagonal element maxima as the evaluation criterion, which was successfully
employed for the Beijiang Bridge in Foshan, Guangdong. Zhou et al. [88] innovatively
merged the MAC evaluation criterion with considerations of wireless sensor connectiv-
ity and energy balance to formulate a hybrid discrete firefly algorithm, deployed on the
Runyang Yangtze River Highway Bridge in Jiangsu Province.

Moreover, Xiao et al. [172] focuses on identifying damage in large-scale space truss
structures using a stiffness separation method, particularly aimed at large-scale structures
where traditional damage detection methods may be less effective due to the complexity
and size of the structures. Later, by using numerical optimization, Xiao’s team determined
the minimal number of sensors and their most effective layout for evaluating a bridge’s
structural condition [173].

4.2. High-Rise Buildings

High-rise buildings, both current and future, have a significant need for SHM. In this
part, studies have utilized different evaluation criteria such as MAC, MKE, and a combi-
nation of both. Researchers have conducted trials on diverse structures, including MIT
campus buildings, the Canton Tower, Shanghai Center Tower, Shanghai Center Building,
Jingji Financial Center, Dalian World Trade Center, and the Civil Engineering Research
Building of National Taiwan University. The outcomes of these studies showcase the effec-
tiveness and advantages of these innovative algorithms in achieving OSP for monitoring
high-rise buildings and superstructures.

The Canton Tower in South China, standing at 610 m, is equipped with a long-
term SHM system featuring over 700 sensors of 16 types. Ni et al. [174] developed a
reduced-order FEM for benchmarking, comprising 37 beam elements and 185 DOFs, closely
matching the full-scale FEM in modal frequencies and shapes. This benchmark study
includes field data from 20 accelerometers, an anemometer, and a temperature sensor,
along with details on sensor locations and specifications, as shown in Figure 12.
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Additionally, Sun et al. [176] proposed a discrete optimization scheme based on an
artificial bee colony algorithm, using MAC as the evaluation criterion, and conducted trials



Buildings 2023, 13, 3129 24 of 36

on various structures, including campus buildings at MIT and the iconic Canton Tower.
Mahjoubi et al. [177] introduced a hypotrochoid spiral optimization algorithm to study
optimal triaxial accelerometer placement for high-rise building monitoring. In an extensive
evaluation using seven optimization algorithms, the efficiency of these approaches was
assessed using the 632-m Shanghai Center Tower as a case study, with MAC as the key eval-
uation criterion. To realize the reconstruction of response to ground shaking, Hu et al. [178]
applied a sequential sensor placement algorithm to achieve the OSP configuration with
the minimum reconstruction error, and illustrated it with the example of Shanghai Center
Building. By using the Jingji Financial Center as the engineering background, Fan et al. [179]
studied the super high-rise construction monitoring system, applying the whole process
of construction simulation technology to the OSP, according to the structural response
changes in the process of construction simulation, to design a suitable temperature, vertical
displacement, and stress measurement points placement scheme. Yi et al. [180] improved
the monkey swarm algorithm and combined it with the MAC objective function to apply
it in the Dalian World Trade Center, illustrating the advantages of the algorithm. Yang
et al. [181] proposed an OSP method that can be used for structures that require repetitive
monitoring to reduce the number of sensors required and to find the higher modal frequen-
cies of the structure and illustrated the workability of the method by conducting a field
test at the Civil Engineering Research Building of National Taiwan University. Mghazli
et al. [163] combined the objective functions of MKE and MAC in a mixed meta-heuristic
algorithm to design an OSP for the Willis Tower in Chicago and compared it with other
algorithms to illustrate the effectiveness of the algorithm.

4.3. Others

Structures with complex designs, such as stadiums and museums, require SHM due
to their architectural intricacies and high usage. SHM is essential for early detection of
structural issues, ensuring safety, and preserving the integrity of these culturally signif-
icant buildings. This proactive approach is crucial for their long-term durability and
safe operation.

The Shenzhen Sports Center spans 57,500 square meters and features a grandstand
capable of seating approximately 45,000 spectators. The stadium is characterized by its
elliptical grandstand, which measures 258 m along its major axis and 200 m along its minor
axis, with the field’s main axis oriented north–south. The structure’s highest point reaches
32 m, featuring a grandstand that includes both upper and lower seating sections and a
layer of private boxes sandwiched in between. The stadium is equipped with an SHM
system that includes more than 100 sensors of four different types, strategically placed to
monitor various critical points throughout the stadium, as shown in Figure 13.

Teng et al. [182] proposed a GA based on modal energy for optimal placement of
multi-objective sensors and used the steel structure of the National Swimming Center as
an engineering background to optimize the placement of acceleration sensors during its
modal testing process. Xu et al. [183] used the particle swarm algorithm to optimize the
arrangement of acceleration sensors and strain sensors in the monitoring system of Xining
City Stadium, respectively. Jin et al. [184] used the effective independence method for OSP
on the giant telescope cable network structure.

Wang et al. [185] proposed a new method named “Reduced Redundant Biaxial Modal
Assurance Criteria” based on the three-dimensional modal assurance criterion for optimal
placement of biaxial acceleration sensors and illustrated the advantages of the RRBMAC
method with the example of a lattice transmission tower. Based on the ant colony optimiza-
tion (ACO) algorithm, Feng et al. [186] proposed the “siege ant colony algorithm”, which
aims to improve the efficiency and accuracy of the OSP problem in large-scale structure
monitoring. The method is applied and compared with the standard method by using the
Han River transmission tower as an example.
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Schulze et al. [187] used a GA to minimize MAC non-diagonal elements to design
an optimal solution for acceleration sensors for a 3-MWwind turbine. Cong et al. [188]
developed a comprehensive strategy involving OSP, complex mode expansion, and cross-
model cross-mode-based model updating technique. To demonstrate the effectiveness of the
proposed method, computer simulations with the National Renewable Energy Laboratory
5-MW reference turbine are carried out.

Yan et al. [189] studied the method of OSP for offshore platforms using the example
of an offshore platform in the South China Sea. Wang et al. [190] proposed an offshore
platform sensor position fractional order optimization method and applied the effective
independence method to experimentally study the fractional order placement of the sensors
and validated the method with an offshore platform in Jinzhou as an example. A digital
twin framework with OSP to accurately calculate the modal response and identify the dam-
age rate of an offshore jacket platform was proposed by Wang et al. [191]. The OSP model
was validated using a multi-objective Lichtenberg’s algorithm for sensor number/location
optimization, and the proposed method was validated using an offshore jacket platform.
These applications underscore the diverse range of innovative OSP for SHM.

4.4. Summary of the Section

This section has highlighted numerous successful applications of OSP techniques
across a wide range of engineering scenarios. The research presented has optimized sensor
configurations for bridge monitoring utilizing methods like the effective independence
approach and MAC on structures in various locations worldwide. High-rise building
monitoring studies have employed criteria such as MAC, modal kinetic energy, and their
combination to determine OSP for tall buildings. Additionally, OSP has been featured for
other structures including the swimming center, stadiums, telescope networks, transmission
towers, wind turbines, and offshore platforms. Through diverse case studies evaluating
different algorithms and metrics, this section underscores how OSP methods have been
effectively deployed across this range of contexts to achieve practical, optimized solutions
for SHM. These many examples showcase the versatility and demonstrate the value of
employing theoretical frameworks for optimal sensor configuration in addressing real-
world engineering challenges.
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5. Challenges and Prospects

The previous sections provide an extensive review of OSP, covering its evolution,
methodologies, primary research focus, and real-world applications in engineering. While
the field has witnessed substantial growth, challenges still exist, which could guide future
research directions.

5.1. Challenges
5.1.1. Interplay of Sensor Placement Sensing Techniques and Data Processing

The development of robust sensor networks for SHM must navigate the complex
interplay between OSP, sensing techniques, and data processing. OSP plays a pivotal role
in determining the physical locations of sensors, seeking to maximize spatial coverage and
minimize resource expenditure. However, it must align with sensing techniques, which are
critical when resources are scant, like in environmental monitoring, where visual sensing
networks are advantageous for reducing sensor count without compromising data quality.
Sensing techniques set the parameters for data collection, affecting both temporal and
spatial data resolution, and consequently, the OSP strategy. Data processing techniques,
such as compress sensing [192,193], offer a critical role in refining raw sensor data, enabling
data quality enhancement and mitigation of suboptimal placement effects. Addressing
this interplay calls for a comprehensive sensor network design strategy to achieve optimal
performance and meet specific application needs.

5.1.2. The Bottleneck of Optimization Algorithms

The quest for a universally applicable algorithm is increasingly challenging due to
the inherent diversity and complexity of real-world structural monitoring problems. The
“no free lunch” theorem underscores that an algorithm’s efficacy depends on the specific
problem it addresses, necessitating a strategic approach involving the development or
selection of tailored evaluation criteria to align with distinct application needs. This
customization of evaluation metrics enables optimization algorithms to be finely tuned,
improving the computational efficiency of specific problem classes and ensuring a precise
alignment of algorithmic solutions with unique application requirements.

5.1.3. Discrepancy between Research Advancements and Practical Applications

Many real-world applications still rely heavily on established guidelines and algo-
rithms, highlighting an urgent need to more effectively integrate research findings into
practical engineering applications. Future research in OSP should focus on closing this gap,
adopting a pragmatic approach that emphasizes real-world applicability.

5.2. Prospects
5.2.1. Optimal Sensor Placement under Uncertainty

In practical engineering applications, it is imperative to consider factors such as
structural modeling inaccuracies, device sampling precision, and measurement noise, all of
which contribute to uncertainties in the identification of modal parameters. Therefore, when
planning sensor placement, it becomes crucial to minimize these uncertainties, enhancing
the overall stability and reliability of the sensor system. As an illustration, Lam et al. [14]
addressed this challenge by modeling prediction errors as spatially correlated Gaussian
processes, effectively resolving sensor redundancy and clustering issues. In a similar vein,
Cantero-Chinchilla et al. [15] conducted research into optimal sensor configuration under
conditions of parameter uncertainty. Their work encompassed aspects such as uncertainty
in parameters, uncertainties in functions concerning parameters, and the spatial correlation
of sensors.

5.2.2. Optimal Arrangement of Different Types of Sensors

In the field of SHM, according to the application of different purposes, the correspond-
ing sensors are also different, such as acceleration sensors [122,167,169], which are com-
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monly used in the vibration monitoring of the structure to obtain the dynamic information
of the structure, such as frequency, damping ratio, etc.; fiber-optic strain sensors [194,195],
which are commonly used in the strain monitoring of the structure to monitor fatigue
rupture or corrosion, etc.; and temperature sensors [196–198], which are often used in coop-
eration with other sensors to monitor the effect of temperature changes on the structure. In
addition to these popular sensors, there are also wind speed and direction sensors [199],
inclination sensors [200], and so on. A single sensor type can only obtain part of the dy-
namic parameter information of the structure, and obtaining enough information about the
structure requires the arrangement of multiple types of sensors; with sufficient information,
a more comprehensive monitoring of the structure can be carried out.

A future development direction is how to use different types of sensors together to
improve the monitoring effect. At present, scholars have carried out related research, such
as the shifting of the OSP from a single type to a multi-type OSP and the performance of
data acquisition and information fusion of multi-type sensors to improve the completeness
of the sensor network. For example, Ručevskis et al. [86] investigated the problem of
optimal arrangement of multiple types of sensors for damage and the identification of
composite structures. Zhang et al. [33] proposed an algorithm for the optimal arrangement
of multiple types of sensors.

5.2.3. Optimal Sensor Placement under Multiple Objectives

Current OSP methods primarily focus on the optimization of individual criteria such
as modal independence, modal energy, system observability, and reliability. However,
practical engineering applications often demand the satisfaction of multiple criteria simul-
taneously. In such scenarios, the optimization directions of each criterion may conflict with
one another, and the magnitudes of evaluation criteria may not be consistent. Consequently,
there is a growing need to explore multi-objective optimization methods that can strike a
balance among different indicators. An example of such a method is NSGA-II [201], which
is primarily designed for bi-objective optimization. For more complex multi-objective opti-
mization scenarios, Deb et al. [202] introduced the NSGA-III algorithm in 2014, specifically
tailored for handling problems with three to fifteen objectives. While research on OSP using
the NSGA-II algorithm remains relatively limited, a few notable studies have emerged. For
instance, Jiang et al. [203] defined a multi-objective optimization problem encompassing
cost, reliability, and the implementation complexity of sensors, employing NSGA-II for
OSP. Civera et al. [204] used the dual objective function of AutoMAC and CrossMAC
with the NSGA-II algorithm to investigate Fossano’s church. Wang et al. [191] proposed
a new digital twin (DT) framework based on optimal sensor placement for accurately
calculating the modal response and identifying the damage rate of an offshore conduit rack
platform. Its OSP model adopts the multi-objective Lichtenberg algorithm (MOLA) for
optimizing the number and placement of sensors, which achieves a good balance between
the cost of sensors and the accuracy of modal computation. Yang et al. [205] proposed an
uncertainty-oriented multi-objective robust optimization method for optimal sensor place-
ment by combining the traditional optimal sensor placement method with non-probability
theory. The FIM and its uncertainty are taken as the first objective, and the minimum and
mean values of the non-diagonal elements of the MAC matrix are taken as the second
objective. An interval possibility is developed using the interval Pareto fronts to determine
the optimal number of sensors.

Some researchers have also transformed it into a single-objective optimization problem
by introducing weights for each indicator of the multi-objective function. Yang et al. [17]
proposed an algorithm for structural health monitoring sensor placement based on an
iterative updating process. The multi-objective function optimization is transformed into a
single-objective optimization problem by considering the effects of different objective order
differences. Zhang et al. [206] proposed a three-stage method for optimal sensor placement
and developed a new logarithmic-type weighted fitting function for multi-type sensors
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and multi-objective monitoring, using a courtyard-style heritage built 133 years ago as
an example.

It should be noted that how to strategically situate sensors to optimize multiple
objectives is an important ongoing research direction. It is expected to propose new
methods that can consider the influence of each parameter in the near future.

5.2.4. Optimal Sensor Placement with Emerging Technology

In the current landscape of sensor placement research, meta-heuristic algorithms are
frequently employed to strike a balance between computational efficiency and accuracy.
However, in situations where data is insufficient, these approaches can become inefficient
and computationally expensive. To address these limitations, integrating AI techniques
into the field of OSP presents a promising avenue. By harnessing extensive datasets to con-
struct mapping networks, the potential exists to significantly enhance both computational
efficiency and accuracy. A noteworthy illustration of this approach can be found in the
work of Kaveh et al. [41], who incorporated reinforcement learning into OSP to optimize
the computational efficiency of meta-heuristic algorithms.

6. Conclusions

In conclusion, OSP signifies an evolutionary stride in multidisciplinary integration,
calling for a fluid incorporation into contemporary engineering methodologies and an
embrace of insights from a plethora of technological fields. The pivotal steps in this intricate
process are systematically outlined in Figure 14, which elucidates the dual objectives of this
synthesis: to achieve cost-efficiency and to optimize performance in accordance with the
demanding criteria of various engineering applications.
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Our expansive review elucidates the pragmatic benefits of OSP within the realm
of SHM, illustrated across diverse engineering scenarios. Case studies corroborate the
effectiveness of selecting pertinent evaluation criteria that resonate with the specific goals
of projects and the strategic employment of optimization algorithms. These approaches
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collectively yield advanced monitoring capabilities, manifesting in tangible advantages
such as heightened accuracy in data reconstruction and the early detection of faults.

Extending beyond conventional civil structures, our investigation embraces a vast
spectrum of applications, emphasizing the adaptability of optimization methodologies
and the pivotal role of bespoke sensor planning. Looking ahead, we envision a future
brightened by the advent of real-time sensor optimization through digital platforms, a
development that hints at the transformative potential of collaborations between academic
research and industry practices. Such synergies promise to substantially fortify the practices
of structural monitoring. OSP techniques have evolved into a refined, data-centric tool
poised to address the escalating demands of infrastructure and process monitoring.

Our research underlines the necessity of an all-encompassing approach that skillfully
negotiates the interplay between coverage, precision, cost-effectiveness, and operational
efficiency. OSP extends beyond the constraints of technical specifications, inviting a thought-
ful contemplation of practicalities such as economic limitations, sensor availability, and
environmental variables. The quest for optimal sensor locations unfolds as a multifarious
challenge that demands the melding of disparate considerations to achieve specific monitor-
ing objectives within the confines of logistical and fiscal realities. This paper shines a light
on the nuanced equilibrium demanded by OSP, championing the development of bespoke,
application-centric strategies within SHM. Our findings delineate OSP methodologies that
stand out for their technical soundness and pragmatic viability, ensuring the deployment
of sensor networks is as efficacious as it is attainable in tangible settings.
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