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Abstract: The performance of self-compacting concrete (SCC) is gaining popularity in construction
due to its exceptional strength and durability. However, the properties of combined steel and
concrete at elevated temperatures lack experimental data from previous research. This study aimed
to investigate the behavior of the SCC core with a steel tube at ambient and elevated temperatures
varying from 100 ◦C to 800 ◦C with 100 ◦C intervals for each test specimen. Tests were conducted on
circular steel tubes filled with SCC for different grades (M25, M30, and M40) under compression at
elevated temperatures. Experimental observations revealed that the stress–strain curve increased
with increasing the cross-sectional area and grade of concrete. However, increasing the temperature
and length-to-diameter ratio reduced the stress–strain curve. At elevated temperatures, confined SCC
experienced a smaller decrease in the overall modulus of elasticity when compared to unconfined
concrete. Within the compressive elastic region (from 30 ◦C to 400 ◦C), there was a significant
relationship between lateral strain and longitudinal strain, which was followed by a sudden increase
beyond 400 ◦C. Equations for various design parameters were proposed based on the peak load and
confinement factor of confined SCC-filled steel tubes (SCCFSTs) via multiple regression. Moreover,
this study developed load–axial shortening curves, identifying significant properties such as the yield
strength of confined SCCFSTs, including the load-carrying capacity. The predicted numerical analysis
results were well aligned with the experimental results, and the findings contributed valuable insights
for designing resilient and durable combined SCC and steel tube infrastructures.

Keywords: self-compacting concrete; compression; elevated temperature; load-carrying capacity;
durability; regression

1. Introduction

Self-compacting concrete (SCC) is a revolutionary construction material known for its
ability to distribute evenly without the necessity of external vibration. The unique compo-
sition and mixing proportions of SCC demand a thorough investigation of its mechanical
properties, which differ significantly from those of regular vibrating concrete [1]. Since
it has the potential to reduce building costs, improve the workability, and enhance the
durability, SCC has gained popularity in various construction projects [2]. However, the
full appreciation of SCC’s potential is hindered by the lack of comprehensive research on its
mechanical characteristics. Recent studies have demonstrated SCC’s mechanical properties,
particularly its compressive and tensile strengths, highlighting the influence of admixtures,
aggregates, and curing conditions [3,4]. Despite these advancements, research on SCC’s
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behavior at elevated temperatures remains scarce. Numerous studies have been done to
examine the mechanical properties of SCC. SCC exhibits stronger compressive and tensile
properties than normal concrete. The type of admixtures used, the aggregates selected,
and the curing procedures all have an impact on the mechanical characteristics of SCC
components. Insights into how mix proportions affect SCC’s mechanical properties and
strength have also been gained via research on the material’s elastic modulus, stress–strain
behavior, and Poisson’s ratio [5,6]. When compared to normal vibrating concrete, SCC has a
lower rate of strain at peak stress, a higher strength of compressive load, and a higher elastic
modulus. As a result, with the same amount of energy input, overall elasticity is increased.
However, due to its smaller aggregate size and lower aggregate concentration, SCC has a
lower elastic modulus when compared to high-strength vibrating concrete. Moreover, there
are no differences in Poisson’s ratio between SCC and vibrating concrete, showing similar
lateral contraction activities under the load [7]. SCC outperforms traditional concrete in
many situations, making it more suited for facilities susceptible to high stress and loads.
This research work intended to evaluate the elastic modulus, Poisson’s ratio, and stress–
strain performance of SCC to deepen understanding of its mechanical behavior [8]. Three
distinct mixes with various compressive strengths (25 MPa, 30 MPa, and 40 MPa) were used
to cast and test cylindrical SCC specimens in order to determine the stress–strain parame-
ters of each mix. Additionally, an equation was developed to estimate the elastic modulus
of SCC within the strength range of 25–40 MPa. With a comprehensive characterization
of the SCC’s stress–strain behavior under axial loading, the study aimed to contribute to
the development of more resilient and long-lasting structures, particularly under elevated
temperature conditions. Civil engineers and construction specialists can significantly ben-
efit from these findings when designing and constructing high-performance structures.
SCC has emerged as a game changer in the construction industry due to its exceptional
workability, high compressive strength, and durability [8]. Despite recent advancements in
understanding its mechanical properties, more research is needed, especially in exploring
its behavior under high-temperature conditions. This study’s thorough evaluation of the
elastic modulus, Poisson’s ratio, and stress–strain behavior of SCCs intended to close this
gap and pave the way for the creation of more durable structures that can endure high
temperatures. Its results can have a big impact on how SCC is employed in the construc-
tion sector going forward, as there is a rising need for durable and sustainable building
materials [9].

In addition to possessing excellent fire resistance and strength, good ductility, and a
remarkable capacity for the energy absorption, the concrete-filled steel tubes (CFSTs) and
SCC construction have other structural advantages [10,11]. Fire and earthquake hazards
can affect these columns. Fires may considerably lower the CFST columns’ capacity to
support loads and result in a widespread structural failure. To ensure the fire safety and
assess the residual capacity of CFST columns exposed to fire, it is crucial to thoroughly
investigate the combined effects of fires and long-term axial loads during such an exposure.
Therefore, comprehensive research is necessary to understand the combined impact of
elevated temperatures on the structural response. Concrete, with its low heat conductivity
and non-combustible nature, can withstand high temperatures quite effectively. However,
it still has implications for the strength and stability of structures, making it essential
to study its behavior under fire conditions. Owing to its incombustibility and limited
thermal conductivity, concrete performs better than most other building materials at high
temperatures. However, due to variations in the water/cement ratio and permeability of
different concrete grades, the performance of concrete exposed to elevated temperatures
varies with the concrete grade [10,12]. Researchers have looked closely at how the me-
chanical characteristics of concrete (such as the load-carrying capacity, deformation, and
stress) change at high temperatures, since these characteristics have an impact on how
well concrete performs overall when subjected to monotonic loading [13]. When high-
performance concrete is exposed to a temperature of 900 ◦C, the reduction in the modulus
of elasticity, compressive strength, and tensile strength is about 85% to 91% [14–16]. In
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addition to mechanical qualities, fire damage also causes concrete to crack, lose strength,
and spall [16]. It was discovered that the vapor pressure mechanism causes spalling to
occur at temperatures between 480 ◦C and 510 ◦C, and that concrete loses its compressive
strength at temperatures between 250 ◦C and 800 ◦C [15,17].

2. Research Significance

The current study distinguishes itself from prior research in several key aspects. Firstly,
the investigation of the behavior of SCC-filled steel tubes (SCCFSTs) at elevated temper-
atures ranging from 100 ◦C to 800 ◦C represents a unique scope. While previous studies
may have delved into similar topics, this specific temperature range has not been com-
monly explored, setting this research apart and providing valuable insights into extreme
temperature conditions often encountered during fires or other critical events. Secondly,
the inclusion of various concrete grades (M25, M30, and M40) is a departure from many
earlier studies, which often focused on a single concrete grade or a limited range. This
diverse range of concrete grades allows for a broader understanding of how the strength
of concrete influences the structural response of SCCFSTs under elevated temperatures,
contributing to a more comprehensive understanding for the selection of materials under
construction scenarios.

Furthermore, the study’s observation regarding the relationship between temperature
and the length-to-diameter ratio and its impact on the stress–strain curve is a novel finding.
Prior research may not have comprehensively assessed this specific relationship, empha-
sizing the uniqueness of this study’s approach. Additionally, the emphasis placed on the
modulus of elasticity at elevated temperatures distinguishes this research from previous
studies that might have concentrated on different material properties or temperature effects.
Moreover, the identification of a noticeable relationship between lateral strain and longitu-
dinal strain within the compressive elastic region (from 30 ◦C to 400 ◦C) adds to the study’s
novelty. This finding offers practical insights into predicting the SCCFSTs’ behavior under
specific temperature conditions and loads, a dimension that previous studies may not have
examined in such depth. The proposal of equations for design parameters based on the
peak load and confinement factor using multiple regression is a distinguishing feature of
this research. Previous studies may have lacked comprehensive equation development or
focused on different aspects of design parameters, making this work stand out.

Lastly, the creation of a load–axial shortening curve incorporating significant features
such as the yield strength and load-carrying capacity or a confined SCCFST is an innovative
contribution. This curve provides a comprehensive overview of the material behavior
under various loads and temperatures, a perspective that may not have been addressed
to the same extent in previous studies. In addition, the strong alignment of predicted
numerical analysis results with experimental findings enhances the study’s credibility,
making it a reliable resource for practical applications, a characteristic not always achieved
in earlier research endeavors.

3. Methodology

When mixing SCC, material selection is critical. In this process, the appropriate cement,
water, aggregate, and chemical and mineral admixtures were chosen (Figure 1a). The
objective was to make a concrete mix with high strength and good workability. In this study,
the primary binder was ordinary Portland cement (OPC) that met IS 12269-1987. Additional
cementing ingredients, such as silica fume and Fosroc Conplast SP430, were utilized as
binders and to boost the workability and strength of concrete. Table 1 summarizes the
chemical and physical properties of these materials. The current study used fine aggregates
obtained from Ramanagaram in Karnataka and adhered to the IS code description of
zone II grade (IS: 383-1970). The coarse aggregates’ 2.74 specific gravity crushed basalt
stones were purchased from neighboring stone crushers. Mineral admixtures, such as silica
fume, were employed to enhance the strength and fill any gaps. These components also
aided in lowering the water-to-binder (W/B) ratio of the concrete mix. Fosroc Conplast
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SP430, a viscosity modifying agent, was utilized to increase the workability, lower the
W/B ratio, and preserve the proper SCC flow properties. Several trial mix proportions
were established by adjusting the cement content, coarse aggregate content, fine aggregate
content, and W/B ratio in order to reach the required strength. All mix proportions were
thoroughly examined to ensure that they met the criteria for SCC, in line with the standards
established by EFNARC. Figure 1b,c displays cutting the steel tubes and curing of the
specimens, respectively. Using SCC and filling the steel tubes with round dimensions,
Table 2 lists the chemical and physical parameters of the steel tubes based on the source.
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Setting time (min) 
Initial 43 — — — — 
Final 250 — — — — 

Days Compressive strength (MPa)    
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3  10.2 13.8 18.1   

Figure 1. (a) Materials for preparing SCCFSTs, (b) cutting steel tubes, and (c) curing (with specimens
under water; surface layer appears blurry due to presence of water).

Table 1. Chemical compositions and various properties of OPC, aggregates, silica fume, and
Fosroc Conplast.

Chemical Composition OPC Fine Aggregate
(M-Sand) Coarse Aggregate Silica Fume

(Admixture)
Fosroc Conplast SP430

(Superplasticizer)

SiO2 22% 67% 67% 91% —
Al2O3 5% 15% 15% 0.3% —
Fe2O3 1.5% 5% 5% 1% —
CaO 62% 3% 3% 0.7% —
MgO 2% — — 0.2% —

CaSO4 0.3% — — — —
SO3 1% — — — —

Na2O 0.5% 3% 3% 0.4% 72 g per liter
H2O — 2% 0.5% — —

Properties

Density (kg/m3) 1438 1690 1463 525 1200
Specific gravity 3.1 2.68 2.74 2.2 1.2

Setting
time (min)

Initial 43 — — — —
Final 250 — — — —

Days Compressive strength (MPa)
M25 M30 M40

3 10.2 13.8 18.1
7 15.5 19.0 25.2
14 23.5 26.7 36.5
28 26.5 32.0 43.1

Table 2. Chemical elements and properties of circular steel tubes.

Element (%)

C Mn S P Si Al

0.064 0.330 0.010 0.015 0.011 0.042

Properties Value (MPa)

Yield strength 348.80
Ultimate strength 457.90
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The next step involved preparing mix designs for grades M25, M30, and M40 in
accordance with IS 10262-2009 and the Nan Su technique (Table 3). In the table, d and L
designate diameter and length of the specimens, respectively. The mechanical properties of
SCCFSTs of different length-to-diameter ratios of 8 and 10, as per ASTM, were evaluated
after exposure to high temperatures (30–600 ◦C). OPC 53 grade adhering to IS 12269 (2013)
was used. M-sand conforming to IS 2386 (2002) was utilized in the form of fine aggregates
and coarse aggregates of size 12 mm, and downsize was employed. Here, potable water
was used for mixing concrete, which was made according to the mix design and placed
within the steel tubes. Additionally, SCC was placed in a cube mold for testing after 28 days
to verify that the desired strength of concrete was reached. The specimen was held for
28 days to cure. After curing, the specimens were exposed to an open environment for
a duration of 24 h. The specimen was heated in the Lawrence and Mayo oven (1000 ◦C
capacity) to the desired temperature before being moved to the UTM platform. During this
process, the specimens were experiencing axial shortening and uniaxial compressive load.
Utilizing the recorded values of the axial shortening and compressive load, the mechanical
properties of stress, strain, modulus of elasticity, and Poisson’s ratio for ambient and
elevated temperatures were obtained. In Table 4, the designation of the specimens has been
described for the common parameters L, d, thickness (t), area of cross-section, and variation
in temperature. All 84 experimental tests were conducted from ambient temperatures to
elevated temperatures (100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C, and 600 ◦C), and out of these
tests, three temperatures exhibited major variations, such as ambient temperature having a
high strength, at 400 ◦C a minimum drop in the strength, and at 500 ◦C a sudden drop in
the strength. These behaviors are discussed in the next sections of the article.

Table 3. SCC mix designs in accordance with IS 10262-2009 and Nan Su technique, selection of
dimension, and temperature.

Grade Cement (C)
in kg/m3

Fine
Aggregate (FA)

in kg/m3

Coarse
Aggregate

(CA) in kg/m3

Mix
Proportion
(C:FA:CA)

Silica Fume
(Admixture)

Fosroc Conplast
SP430

(Superplasticizer)
W/B

M25 363.54 895.19 604.69 1:2.46:1.66 5% 1.5% 0.55
M30 524.31 778.57 773.06 1:1.48:1.47 7.5% 2% 0.45
M40 494.4 932.04 688.867 1:1.88:1.39 10% 2.5% 0.40

Dimension d in mm L in mm L/d ratio Temperature (◦C)

M25
M30
M40

50 400 and 500 8 and 10
30 and 100 to 800

60 480 and 600 8 and 10

Table 4. Specimen designation based on common parameters.

Notations Based on Temperature
Length-to-Diameter Ratio Diameter-to-Thickness

Ratio (t = 2 mm)
Area of Cross-Section (mm2)

Concrete Steel

L d
L/d d/t Ac As

T = 30 ◦C T = 400 ◦C T = 500 ◦C (mm) (mm)

A1 A13 A25 400 50 8 25 1661.9 301.59
A2 A14 A26 400 50 8 25 1661.9 301.59
A3 A15 A27 400 50 8 25 1661.9 301.59
A4 A16 A28 480 60 8 30 2463 364.42
A5 A17 A29 480 60 8 30 2463 364.42
A6 A18 A30 480 60 8 30 2463 364.42
A7 A19 A31 500 50 10 25 1661.9 301.59
A8 A20 A32 500 50 10 25 1661.9 301.59
A9 A21 A33 500 50 10 25 1661.9 301.59
A10 A22 A34 600 60 10 30 2463 364.42
A11 A23 A35 600 60 10 30 2463 364.42
A12 A24 A36 600 60 10 30 2463 364.42
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3.1. Equations and Procedure

The validation of the experimental data was performed with the following codes and
references: Eurocode [18,19], ACI [20], Mandar et al. [21], and Zhao et al. [22].

3.1.1. Load-Carrying Capacity

The load-carrying capacity of CFSTs has a maximum weight or load that these compos-
ite columns can support before failing [23]. The benefits of both circular steel and concrete
components are combined in CFSTs. The outer steel tube serves as a strong enclosing shell,
increasing the structural strength and ductility. The concrete core adds the compressive
strength, stiffness, and fire resistance to the structure. The diameter, thickness, and material
qualities of steel tube, along with the quality and strength of infilled concrete, all encompass
an impact on the load-carrying capacity of CFSTs [24].

To estimate the load-carrying capacity of CFST structures in diverse applications,
researchers have employed a variety of analytical methodologies and tests. Eurocode [18,19]
provides design recommendations for steel sections that are entirely or partly encased in
concrete, with concrete-filled sections with or without reinforcing. The codes take into
account the concrete hollow circular steel section confinement [25]. The EC 4 equation
(Equation 1) for the load-carrying capacity (P0) of a CFST column is as follows [18]:

P0 = As fyη2 + Ac fc

(
1 + η1

t
d

fy

fc

)
(1)

where As and Ac are the cross-sectional areas of steel tube and concrete core, respectively.
The compressive stress of an unconfined concrete cylinder is given by fc. The equivalent
confinement coefficients for the two materials are 1 and 2.25. P0 of the columns was
estimated using the identical methods published by the Australian Standards (AS) and
American Specifications (ACI), although neither specification takes the confinement on
concrete into consideration (Equation (2)):

P0 = 0.85Ac fc + As fy (2)

According to Zhao et al. [22], P0 of concrete is calculated by deducting the amount of
friction between the concrete core and steel tube from the axial load of the column, and the
concrete compressive strength is derived by dividing the concrete compressive load by the
concrete area of the section (Equation (3)):

fcz =
P0 − σz As

Ac
(3)

where fcz is the concrete compressive strength, and σz is the axial strength of steel tube.
Equation (3) can be rewritten in the form of Equation (4):

P0 = fcz Ac + σz As (4)

3.1.2. Unconfined and Confined Concrete Stress and Strain

The concrete confinement is insufficient in circular steel tube concrete (CSTC) columns
packed with concrete and encompass a higher D/t ratio. This is attributed to the columns’
early demise as a result of localized buckling of steel tubes. Moreover, concrete may be
contained very well in CSTC columns that are packed with concrete and have a low D/t
ratio. The strength of concrete was extremely enhanced in this D/t ratio, and the confined
concrete model can be used as a concrete model [25]. Mander et al. [21] aimed to develop
a specific model to represent concrete and compare it with observed results. They created
Equations (5) and (6) to construct a concrete model and examined it with compressed
concrete behavior lines. These graphs indicated that unconfined concrete is significantly
weaker than confined concrete under the same amount of stress. Both had equivalent
strain–stress curves calculated at 80% of the compressive strength (0.8fcu). Unconfined
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strain was found to be approximately 0.003 [21], 0.0035 [26], and 0.0038 [27], while the
confined compressive strength (fcc) and related confined strain (εcc) can be calculated using
Equations (5) and (6), which were developed by Mander et al. [21]:

fcc = k1 fl + fc (5)

εcc =

(
k2

fl
fc
+ 1

)
εc (6)

where fl denotes the lateral confining pressure that a circular steel tube applies; this is
dependent on the D/t ratio, along with the yield strength of the material. Hu et al. [28]
developed a formula to calculate the predicted fl for the D/t values ranging from
21.7 to 150. They concluded that tubes with low D/t ratios are significantly influenced
by fl, whereas tubes with high ratios are hardly influenced. Equations (5) and (6) can be
utilized to calculate the equivalent uniaxial confined concrete compressive strength (fcc)
and constrained strain (εcc) with k1 and k2 as 4.1 and 20.5, respectively [29].

In order to create the complete equivalent uniaxial curve for limited concrete (as
depicted in Figure 2), it is important to label and identify three sections that include all
the stress and strain data. To begin this process, the elastic range should be checked
with a fixed limit that is 0.5 times the structural characteristic compressive strength (fcc).
Researchers have reported Poisson’s ratio of confined concrete (νcc) being constant at 0.2,
while the modulus of elasticity of confined concrete (Ecc) can be calculated using ACI
(Equation (7)) [21]:

Ecc = 4700
√

fcc MPa (7)
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The portion of the curve referred to as the non-linear section represents the second
stage, which is situated at the point of proportional limit stress and concludes just prior to
the strength restriction of concrete. A formula created by Saenz [30] was used to constitute
this segment of the curve, involving the correlation linking multidimensional stress and
strain with the values of uniaxial stress (f ) and strain (ε). In determining the stress and
strain values that play a definitive role in crafting this reason of the curve, instances of strain
(0.5fcc/Ecc) must be ascertained straddling proportional and restricted strains, whereas the
stress values can be readily computed using Equation (8), presuming the values of strain:

f =
Eccε[

1 + (R + RE − 2)
(

ε
εcc

)
− (2R − 1)

(
ε

εcc

)2
+ R

(
ε

εcc

)3
] (8)
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The calculations that determine the RE and R values are based on Equations (9) and (10),
respectively:

RE =
Eccε

fcc
(9)

R =
RE(Rσ − 1)

(Rε − 1)2 − 1
Rε

(10)

As per the study done by Hu and Schnobrich [31], the values of Rσ and Rε were
determined to be equal to 4. The third section of the stress–strain diagram for restricted
concrete is the area where the curve steadily tapers from the concrete confined compressive
strength (fcc) to a subsequent value comparable to rk3fcc at a strain of 11εcc. The deduction
factor (k3) determines the D/t ratio and steel tube’s yield strength (fy).

In accordance with [31], the constants Rσ and Rε were set as equal to 4. The third
segment of the stress–strain diagram for confined concrete is the section where the curve
reduces from fcc to a lower value equivalent to rk3fcc accompanied with a strain of 11εcc.
The value for the reduction factor (k3) is reliant on the D/t ratio and steel tube’s yield
strength (fy). The k3 value is obtained using empirical equations of Hu et al. [32]. These
equations have an effect on D/t ratios and demonstrated a good confinement effect for a
range from 21.7 to 150. Also, Hu et al. [32] considered the concrete grade (maximum at
a set of 31.2 MPa) to improve the confinement effect. Later, Giakoumelis and Lam [32]
mentioned that this value is suitable for cube strengths having a compressive strength
lower than 30 MPa. In addition to this, it was found that in the case of the compressive
strength higher than 30 MPa for the same values of D/t ratio, the yield stress effectively
decreased. Due to this reason, Giakoumelis and Lam [32] designed a factor (r) to make a
more precisely confined concrete model based on their experimental results. It is good to
calculate the value of r and to start with one for concrete having a compressive strength
of 30 MPa. Tomii [33] and Mursi [34] suggested to take a starting of r value equal to 0.5
for concrete having a compressive strength of higher than or equal to 100 MPa. Finally,
Giakoumelis and Lam [32] decided to carry out linear interpolations of concrete having
a compressive strength between 30 MPa and 100 MPa.

3.2. Multiple Regression

To create a multiple regression line for the different sets of the SCCFST specimens, the
following steps were followed: (i) Collect data: Gather a dataset with multiple independent
variables (predictors: grades, temperature (T), the areas of concrete core and steel tube
(Ac and As), the strength of concrete core (fc), and the yield strength of steel tube (fy), and
one dependent variable (outcome: load-carrying capacity (P0))). (ii) Prepare data: Clean the
dataset, handle missing values, and normalize variables if necessary. (iii) Choose variables:
Select the relevant predictors that may impact the outcome. (iv) Build the model: Use sta-
tistical software to fit the data into a multiple linear regression model (y = a + bx + cz + . . .),
where a designates the intersection, b represents the co-efficient of the variable x, c denotes
the co-efficient of the variable z, and so on. (v) Evaluate model: Assess the model’s
goodness-of-fit, check for multicollinearity, and analyze the significance of variables.
(vi) Interpret results: Examine the coefficients and their significance to understand the
relationship between the predictors and outcome. (vii) Validate and refine [35,36].

4. Results and Discussion
4.1. Load–Axial Shortening Variation

When studying CFST columns under high temperatures or fire exposure situations, the
load–axial shortening variation graphs provide valuable information about their behavior.
Such graphs initially show a comparable elastic response, but as the temperature increases,
the strength of concrete lowers, resulting in earlier cracking and yielding. The slope of the
graphs becomes steeper, indicating that they have lost some of their load-carrying capacity.
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Overall, sufficient deterioration arises when the specimens undergo critical temperatures,
and eventually, they fail [37].

The data displayed in Figure 3 illustrate the relation between normalization of axial
load on the y-axis and axial shortening on the x-axis for affected specimens. Through
adjusting the axial strength according to the nominal axial load, the results are presented
on the ordinate, while axial shortening is calculated from the ratio of strain gauge recorded
axial displacement to the column height, then presented on the abscissa. It was easy to
recognize the differences in the load–axial shortening curves and their post-peak behavior.
Out of all the specimens tested in the graphs depicted in Figure 3, only specimen 1 (30 ◦C
temperature) exhibited a hardening behavior, while the remaining specimens demonstrated
softening tendencies. Specimen 6 (500 ◦C temperature) gave the steepest reduction in the
strength following its peak strength and had poor deformability with an axial displacement
of 2.62% of the column length. When steel reaches a temperature above 500 ◦C, it can
undergo recrystallization, which causes it to lose its mechanical strength and become more
flowable. Its axial strength fell drastically to 24% after reaching its peak strength. This sug-
gests that the elevated temperature of the steel tube is a dominant parameter in determining
the peak behavior. Table 5 confirms this point, showing that all the specimens exhibited
similar maximum normalized strength values between 0.91 and 1.65. The behavior of
circular SCCFSTs was greatly influenced by the surrounding temperature, especially in the
case of columns exposed to temperatures of 400 ◦C and above 500 ◦C.
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Figure 3. Load–axial shortening curves at various temperatures (30–800 ◦C).

Table 5. Summary of specimens’ results at ambient and elevated temperatures.

Designation

Compressive
Strength (MPa) Confinement

Factor

Load-Carrying Capacity (kN) Comparison of
Load-Carrying Capacity

Concrete
Mix Steel Pu P0 Pu/P0

fck fc fy λ Tested EC4
[18,19]

ACI
[20]

Zhao
et al. [22]

Mander
et al. [21]

EC4
[18,19]

ACI
[20]

Zhao
et al. [22]

Mander
et al. [21]

At ambient temperature

A1 26.5 21.2 347.13 2.97 128 130.23 135.5 111.29 105.75 0.98 0.94 1.15 1.21
A2 32 25.6 347.13 2.46 135 137.55 141.72 112.90 114.45 0.98 0.95 1.20 1.18
A3 43.1 34.48 347.13 1.83 148 152.3 154.26 120.41 132.01 0.97 0.96 1.23 1.12
A4 26.5 21.2 347.13 2.42 167 167.01 171.93 143.96 135.55 1.00 0.97 1.16 1.23
A5 32 25.6 347.13 2.01 178 177.85 181.14 147.73 148.07 1.00 0.98 1.20 1.20
A6 43.1 34.48 347.13 1.49 193 199.72 199.73 160.56 173.35 0.97 0.97 1.20 1.11
A7 26.5 21.2 347.13 2.97 125 130.23 135.5 111.29 105.75 0.96 0.92 1.12 1.18
A8 32 25.6 347.13 2.46 133 137.55 141.72 112.90 114.45 0.97 0.94 1.18 1.16
A9 43.1 34.48 347.13 1.83 145 152.3 154.26 120.41 132.01 0.95 0.94 1.20 1.10

A10 26.5 21.2 347.13 2.42 164 167.01 171.93 143.96 135.55 0.98 0.95 1.14 1.21
A11 32 25.6 347.13 2.01 175 177.85 181.14 147.73 148.07 0.98 0.97 1.18 1.18
A12 43.1 34.48 347.13 1.49 190 199.72 199.73 160.56 173.35 0.95 0.95 1.18 1.10
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Table 5. Cont.

Designation

Compressive
Strength (MPa) Confinement

Factor

Load-Carrying Capacity (kN) Comparison of
Load-Carrying Capacity

Concrete
Mix Steel Pu P0 Pu/P0

fck fc fy λ Tested EC4
[18,19]

ACI
[20]

Zhao
et al. [22]

Mander
et al. [21]

EC4
[18,19]

ACI
[20]

Zhao
et al. [22]

Mander
et al. [21]

At 400 ◦C temperature

A13 26.5 21.2 244.6 2.09 119 121.43 128.02 109.13 75.27 0.98 0.93 1.09 1.58
A14 32 25.6 244.6 1.73 121 126.91 132.68 107.56 81.56 0.95 0.91 1.12 1.48
A15 43.1 34.48 244.6 1.29 130 137.98 142.09 109.16 94.25 0.94 0.91 1.19 1.38
A16 26.5 21.2 244.6 1.71 151 153.96 160.84 138.92 96.6 0.98 0.94 1.09 1.56
A17 32 25.6 244.6 1.41 162 162.08 167.74 138.3 105.65 1.00 0.97 1.17 1.53
A18 43.1 34.48 244.6 1.05 173 178.49 181.69 142.87 123.92 0.97 0.95 1.21 1.40
A19 26.5 21.2 244.6 2.09 117 121.43 128.02 109.13 75.27 0.96 0.91 1.07 1.55
A20 32 25.6 244.6 1.73 119 126.91 132.68 107.56 81.56 0.94 0.90 1.11 1.46
A21 43.1 34.48 244.6 1.29 125 137.98 142.09 109.16 94.25 0.91 0.88 1.15 1.33
A22 26.5 21.2 244.6 1.71 142 153.96 160.84 138.92 96.6 0.92 0.88 1.02 1.47
A23 32 25.6 244.6 1.41 154 162.08 167.74 138.3 105.65 0.95 0.92 1.11 1.46
A24 43.1 34.48 244.6 1.05 165 178.49 181.69 142.87 123.92 0.92 0.91 1.15 1.33

At 500 ◦C temperature

A25 26.5 21.2 194.79 1.67 99 95.24 100.3 96.08 60.1 1.04 0.99 1.03 1.65
A26 32 25.6 194.79 1.38 105 99.63 104.03 93.95 65.14 1.05 1.01 1.12 1.61
A27 43.1 34.48 194.79 1.03 109 108.48 111.56 93.98 75.31 1.00 0.98 1.16 1.45
A28 26.5 21.2 194.79 1.36 125 120.87 126.12 121.73 77.16 1.03 0.99 1.03 1.62
A29 32 25.6 194.79 1.13 130 127.37 131.64 120.15 84.41 1.02 0.99 1.08 1.54
A30 43.1 34.48 194.79 0.84 145 140.49 142.8 122.27 99.06 1.03 1.02 1.19 1.46
A31 26.5 21.2 194.79 1.67 95 95.24 100.3 96.08 60.1 1.00 0.95 0.99 1.58
A32 32 25.6 194.79 1.38 100 99.63 104.03 93.95 65.14 1.00 0.96 1.06 1.54
A33 43.1 34.48 194.79 1.03 105 108.48 111.56 93.98 75.31 0.97 0.94 1.12 1.39
A34 26.5 21.2 194.79 1.36 120 120.87 126.12 121.73 77.16 0.99 0.95 0.99 1.56
A35 32 25.6 194.79 1.13 124 127.37 131.64 120.15 84.41 0.97 0.94 1.03 1.47
A36 43.1 34.48 194.79 0.84 135 140.49 142.8 122.27 99.06 0.96 0.95 1.10 1.36

4.2. Compressive Strength at Elevated Temperatures

Under ambient conditions, SCCFSTs exhibited high compressive strength when com-
pared to traditionally reinforced concrete columns. The confinement provided by the steel
tube improves the lateral confinement of SCC, resulting in increased compressive strength
and ductility [36,38]. Under elevated temperature conditions, the behavior of SCCFSTs can
be considerably affected owing to the changes in the material properties of both steel and
concrete. At elevated temperatures, concrete experiences thermal degradation, leading
to a drop in its mechanical characteristics, such as the compressive strength, modulus of
elasticity, and tensile strength [37,39]. In addition, the steel tube’s mechanical properties,
including the yield strength and modulus of elasticity, were affected by the temperature.

From Figure 4 and Table 6, the results indicate that the compressive stress–strain curve
experienced a sudden drop of 14.77 MPa (22.65%) at 500 ◦C. Beyond 400 ◦C up to 800 ◦C, the
mechanical strength of circular SCCFSTs gradually decreased. This behavior was attributed
to steel maintaining its strength up to 400 ◦C, exhibiting only a minimal reduction in the
strength compared to under ambient temperature. The steel’s recrystallization temperature
was above 400 ◦C, resulting in decrease in the mechanical strength of the confined SCCFST
columns. The reduction in the compressive strength from ambient temperature to 400 ◦C
was minimal, while the most noticeable drop in the reduction ratio was witnessed between
400 ◦C and 800 ◦C (Table 7). Further studies were carried out at 30 ◦C, 400 ◦C, and 500 ◦C
to reduce the amount of experimental data in the present study.
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Figure 4. Stress–strain behavior of circular SCCFSTs at various temperatures.

Table 6. Confined compressive strength of specimens at various temperatures.

Length-to-
Diameter Ratio

Diameter-to-
Thickness Ratio

(t = 2 mm)

Compressive
Strength (MPa) Confined Compressive Strength (MPa)

(fcc) for Various Temperatures (◦C)
Concrete Mix

L/d d/t fck fc 30 100 200 300 400 500 600

8

25
26.5 21.2 65.19 64.68 64.17 61.62 60.61 50.42 34.63
32 25.6 68.75 67.23 66.21 63.66 61.62 53.48 36.67

43.1 34.48 75.38 73.85 72.32 69.26 66.21 55.51 40.74

30
26.5 21.2 59.06 58.36 56.94 54.82 53.41 44.21 33.25
32 25.6 62.95 62.25 60.83 59.42 57.30 45.98 33.95

43.1 34.48 68.26 67.20 65.78 63.31 61.19 51.28 37.14

10

25
26.5 21.2 63.66 63.15 62.64 60.61 59.59 48.38 33.10
32 25.6 67.74 66.21 65.19 62.64 60.61 50.93 34.63

43.1 34.48 73.85 72.83 70.28 65.19 63.66 53.48 38.20

30
26.5 21.2 58.00 57.30 55.88 53.05 50.22 42.44 30.06
32 25.6 61.89 60.83 59.06 56.94 54.47 43.86 31.83

43.1 34.48 67.20 65.78 63.66 60.83 58.36 47.75 33.60

Table 7. Reduction ratio for unconfined concrete and confined concrete.

Temperature (◦C)

Reduction Ratio

EC4 [18,19] Tested (Confined Concrete)

Unconfined Concrete M25 M30 M40

30 1.00 1.000 1.000 1.000
100 1.00 0.992 0.978 0.980
200 0.95 0.984 0.963 0.959
300 0.85 0.945 0.926 0.919
400 0.75 0.930 0.896 0.878
500 0.60 0.773 0.778 0.736
600 0.45 0.531 0.533 0.541
700 0.30 0.281 0.304 0.304
800 0.15 0.156 0.185 0.189
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In Figure 5, a notable observation is the shift in failure modes as the temperature
increased. Up to 400 ◦C, SCCFSTs primarily displayed inward buckling failure under
compression. This means that tubes either collapsed or deformed inwards when subjected
to compressive loads at these lower temperatures. However, as the temperature surpassed
500 ◦C, a significant change occurred, and outward buckling failure became prevalent. This
implies that at higher temperatures, tubes tended to deform outwards when subjected to
compression, demonstrating a shift in their structural response. This transition in failure
modes highlights the critical influence of temperature on the behavior of SCCFSTs under
load, providing valuable insights for the structural design and safety considerations.
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4.3. Modulus of Elasticity at Elevated Temperatures

The modulus of elasticity of confined concrete in a steel tube also shows temperature-
dependent behavior. As the temperature rose, the modulus of elasticity decreased due
to the reduction in the stiffness of the concrete matrix. However, the steel tube typically
maintained its elastic properties under a higher temperature due to its higher recrystalliza-
tion temperature [40–43]. These results denote a relatively smaller decrease in the overall
modulus of elasticity of confined concrete compared to its unconfined counterpart under
elevated temperatures. Table 8 lists the average percentage of reduction in the modulus
of elasticity between 5.05% and 12.68%; the modulus of elasticity was calculated using
Equation (7).

Table 8. Variation in modulus of elasticity with respect to affected temperatures.

Mix
Grade of

Concrete (MPa)
Compressive Strength

(fc) in MPa
Unconfined Modulus of
Elasticity (Ecu) in GPa

Confined Modulus of Elasticity (Ecc) in GPa

30 ◦C 400 ◦C 500 ◦C

M25 25 27.5 28.51 37.95 36.59 33.37
M25 25 25.5 27.36 36.12 34.35 31.25
M25 25 26.5 26.47 37.5 36.28 32.69
M30 30 29 29.01 38.97 36.90 34.37
M30 30 34 29.13 37.29 35.58 31.87
M30 30 33 28.24 38.68 36.59 33.54
M40 40 44.5 31.63 40.81 38.24 35.02
M40 40 43.4 32.06 38.83 36.76 33.66
M40 40 41.4 30.54 40.39 37.50 34.37
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4.4. Effect of Poisson’s Ratio

Figure 6 illustrates the lateral strain and longitudinal strain versus stress curves for
the three mixes at elevated temperatures. Additionally, Table 9 provides the corresponding
values of Poisson’s ratio. Figure 6 reveals a close relationship between the lateral and
longitudinal strains within the elastic regions under compression for temperatures ranging
from 30 ◦C to 400 ◦C. However, beyond 400 ◦C, sudden increases in the strain values were
observed. Further, Figure 4 highlights that with increasing the strength of concrete, the
strain curve tended to become more linear.
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Table 9. Poisson’s ratio with respect to affected temperatures for tested specimens.

Mix
Grade of

Concrete (MPa)
Compressive

Strength (fc) in MPa
Poisson’s Ratio of

Unconfined Concrete

Poisson’s Ratio of Confined Concrete

30 ◦C 400 ◦C 500 ◦C

M25 25 27.5 0.185 0.282 0.283 0.396
M25 25 25.5 0.180 0.258 0.240 0.317
M25 25 26.5 0.178 0.258 0.265 0.384
M30 30 29.0 0.165 0.280 0.275 0.360
M30 30 34.0 0.158 0.280 0.278 0.391
M30 30 33.0 0.161 0.245 0.253 0.350
M40 40 44.5 0.140 0.320 0.338 0.470
M40 40 43.4 0.135 0.279 0.378 0.351
M40 40 41.4 0.138 0.337 0.344 0.480

During testing, it was noticed that as the circular SCCFSTs of all three grades were
subjected to elevated temperatures under compression until they achieved their ultimate
strength, Poisson’s ratio exhibited a rapid increase until failure occurred. Therefore, like
the modulus of elasticity, Poisson’s ratio was measured at the peak position of axial stress.
This decision was influenced by the significance of this point in the testing process, as it
represents a critical stage where the material undergoes plastic deformation and ultimately
fails. Consequently, obtaining Poisson’s ratio at this juncture gives valuable insights into
the composite material behavior under the extreme loading conditions [40].
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4.5. Multiple Regression Fit
4.5.1. Peak Load of Confined SCCFSTs

Temperature effect (from 30 ◦C to 400 ◦C): The peak load (P0) of confined SCCFSTs
in the temperature range from 30 ◦C to 400 ◦C can be approximated using Equation (11).
The peak load is influenced by the temperature (T), with a positive coefficient of 0.0957. As
the temperature increased within this range, the peak load tended to decrease, as depicted
in Figure 7a. Furthermore, the peak load was affected by the area of steel tube (As) and
the yield strength of steel tube (fy), with a coefficient of 0.0011, as illustrated in Figure 7b.
Additionally, the peak load was influenced by the area of concrete (Ac) and the compressive
strength of concrete (fc), with a coefficient of 0.00078, as displayed in Figure 7c. These
factors collectively contributed to the peak load behavior within this temperature range.
Temperature effect (from 500 ◦C to 800 ◦C): For elevated temperatures between 500 ◦C
and 800 ◦C, the peak load of confined SCCFSTs can be estimated using Equation (12). The
temperature (T) still plays a role in determining the peak load, but its influence is reduced
compared to the previous temperature range. The temperature coefficient for this range
was 0.0376, as demonstrated in Figure 7d, indicating a smaller impact on the peak load.
Moreover, the area of steel tube (As) and the yield strength of steel tube (fy) combined with
the area of concrete (Ac) and the compressive strength of concrete (fc) affected the peak
load, with a coefficient of 0.0012, as shown in Figure 7e,f.

The multiple linear regression model provides a reasonable fit to the peak load of
confined SCCFSTs under distinctly elevated temperatures. It indicates how the temperature
and properties of the steel tube and concrete noticeably influence the peak load response
in specific temperature ranges. These findings can be valuable for understanding and
predicting the behavior of confined SCCFSTs under varying temperature conditions, aiding
in the design and assessment of structures subjected to extreme thermal environments.

P0 =

{
−30.3554 + 0.0957T + 0.0011As fy + 0.00078Ac fc 30◦C < T < 400◦C (11)
−25.9898 + 0.0376T + 0.0012

(
As fy + Ac fc

)
500 ◦C < T < 800 ◦C (12)

4.5.2. Confinement Factor of Confined SCCFSTs

The enhanced compressive strength of CFST columns is attributed to the steel tube
confinement on infilled concrete. The confinement effect is commonly measured using the

confinement factor, λ, which is typically stated as λ =
As f y
Ac f c

, where As and Ac designate the
cross-sectional areas of steel tube and concrete core, respectively, and fy and fc represent the
yield strength of steel tube and the strength of concrete core, respectively [43]. The graph
of the multiple linear regression fit for λ of confined SCCFSTs demonstrates two Equations
(13) and (14). The relationship between λ and T was described utilizing these equations
for two distinct temperature ranges. For the temperature ranging from 30 ◦C to 400 ◦C,
Equation (13) was used. On the other hand, for temperatures between 500 ◦C and 800 ◦C,
Equation (14) was employed.

fl =

{
6.0263 + 0.0005T + 1.5127λ 30 ◦C < T < 400 ◦C (13)
17.484 − 0.02T + 0.1892λ 500 ◦C < T < 800◦C (14)

Figure 8a,c displays how lateral confining stress (fl) was influenced by different tem-
perature conditions. From Figure 8b,d, it can be observed that the relationship between
λ and fl was linear for both temperature ranges. As the temperature increased within the
specified ranges, the behavior of λ became apparent in the variations of fl. The coefficients
of λ in Equations (13) and (14) gave insights into how changes in λ affected the response
(fl) for each temperature range.
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Figure 7. Predicted values of P0: (a) Temperature line fit plot from 30 ◦C to 400 ◦C, (b) Asfy line fit
plot from 30 ◦C to 400 ◦C, (c) Acfc line fit plot from 30 ◦C to 400 ◦C, (d) Temperature line fit plot from
500 ◦C to 800 ◦C, (e) Asfy line fit plot from 500 ◦C to 800 ◦C, and (f) Acfc line fit plot from 500 ◦C to
800 ◦C.
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Figure 8. Predicted values of lateral stress in steel with respect to confinement factor and temperature:
(a) Temperature line fit plot from 30 ◦C to 400 ◦C, (b) λ = Asfy/Acfc fit plot from 30 ◦C to 400 ◦C,
(c) Temperature line fit plot from 500 ◦C to 800 ◦C, and (d) λ = Asfy/Acfc line fit plot from 500 ◦C to
800 ◦C.

5. Conclusions

This study focused on the stress–strain behavior, modulus of elasticity, and Poisson’s
ratio in SCC cores within the steel tubes at ambient and high temperatures (from 100 ◦C to
800 ◦C). Three specimens per combination were examined, yielding full-confined SCCFST
stress–strain curves. The experimental investigation provided the following results:

• The tested specimens had varying behaviors under elevated temperatures; at 30 ◦C
one specimen showed hardening, while the others exhibited softening tendencies, and
at 500 ◦C, one specimen presented the steepest strength reduction, indicating that
elevated temperature played a dominant role in determining the peak behavior.

• The circular SCCFST specimens revealed comparable maximum normalized strength
values ranging from 0.91 to 1.65, with remarkable effects from the surrounding tem-
peratures, particularly when exposed to temperatures of 400 ◦C and above 500 ◦C.
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• The compressive stress–strain curve of the circular SCCFSTs experienced a sudden
drop of 14.77 MPa (22.65%) at 500 ◦C, followed by a gradual decrease in the mechanical
strength beyond 400 ◦C up to 800 ◦C, which was attributed to the steel tube maintaining
its strength up to 400 ◦C with only minimal reduction. But recrystallization above
400 ◦C resulted in a significant reduction in the mechanical strength of the confined
SCCFSTs, and the most substantial drop in the reduction ratio occurred between
400 ◦C and 800 ◦C.

• The confined concrete displayed a relatively smaller reduction in the overall modulus
of elasticity compared to its unconfined counterpart under elevated temperatures,
with an average percentage of reduction ranging between 5.05% and 12.68%.

• A close relationship was found between the lateral strain and longitudinal strain
within elastic limits under compression for temperatures ranging from 30 ◦C to 400 ◦C,
but a sudden increase in strain was seen beyond 400 ◦C.

• The validation of the experimental data was conducted using EC4 [18,19], ACI [20],
Mandar et al. [21], and Zhao et al. [22], and confirmed the accuracy and reliability of
the results obtained through the analysis.

• The multiple regression analysis demonstrated a close alignment between the pre-
dicted and experimental P0 values at elevated temperatures. The temperature was set
between 30 ◦C and 400 ◦C, and the average variation was 2.23%, while above 400 ◦C,
the average variation increased to 11.88%.
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