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Abstract: Every year, Vietnam faces typhoons accompanied by strong winds. Semi-permanent houses
are severely damaged by these winds. We researched a strengthening method using a Polypropylen
(PP) band to prevent housing damage caused by strong winds. In this study, we have developed
a new method of fixing PP band to bricks. The PP band is sandwiched between two flat steel
washers and fastened with steel screws to a plastic plug embedded in the side of the brick. A total of
49 specimens were used to study the influence of the PP band on the flexural, shear, and torsional
behaviors of brick masonry. In the flexural tests, the results show that the average load-carrying
capacity at ultimate failure and deflection at first crack of the PP band specimens was 1.7 and
1.62 times, respectively, higher than those of non-PP band specimens. In the shear tests, the tests
on the strengthened specimens showed an increase in the shear strength for all pre-compression
ranges of 0.2–0.6 N/mm2. However, it was not significant. Similarly, the initial stiffness was not
significantly affected by the pre-compression level in both the reinforced and unreinforced cases. In
the torsion tests, the improvements in the average load-carrying capacity and deformation ability at
the first crack were 1.21 times and 1.47 times, respectively. In the reinforced specimens, at ultimate
failure, a slight increase in load was observed, but it did not exceed the initial peak load.

Keywords: Vietnam typhoon; unreinforced brick masonry wall (URM); semi-permanent house;
out-of-plane loading; polypropylene (PP) band

1. Introduction

Vietnam is a country with most of its territory facing the sea. Earthquakes are not
considered a high-priority disaster. However, severe winds from typhoons and tropical
storms are responsible for extensive damage. For instance, Typhoon Damrey in 2017
resulted in the devastation of 302,783 houses [1] and Typhoon Molave in 2020 destroyed
and damaged 188,759 houses [2]. Typhoons alone account for 80% of all disaster-related
damage in the country [3]. In addition, the strength and frequency of typhoons have been
gradually increasing in recent years [4,5], which creates more risks to humanity and the
economy. In the types of houses damaged by typhoons, studies have pointed out that
70% of them are semi-permanent houses with break structures [6,7]. They are concentrated
in rural areas, such as towns and villages. Strengthening interventions have been repeatedly
documented as effective methods to preserve unreinforced masonry structures and protect
human lives.

Nowadays, many methods have been proposed to strengthen masonry structures,
such as reinforced concrete, mortar layer, vertical reinforcement, external post-tensioned
technique, and external FRP reinforcement methods [8–12]. However, using these methods
is difficult for developing countries, such as Vietnam, owing to the high professional knowl-
edge needed and associated costs. Therefore, strengthening methods using Polypropylene
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(PP) band materials have emerged as promising alternatives in developing countries. It
was initially proposed by Mayorca et al. with the idea of creating a mesh layer and laying it
on the wall surface to increase the strength of the wall [13–15]. The results showed that the
PP band-strengthened wall did not increase the structural peak strength. But, it improved
the performance after crack occurrence and maintained integrity for large deformations.
Umair et al. [16] investigated the effect of the PP band and FRP composite on the increases
in the strength and deformation capacity of masonry wall panels in diagonal compression
and out-of-plane bending tests. The study proved that the FRP + PP band composite is
a high-performance composite solution for seismic retrofitting masonry structures and
that using the FRP and PP band composites is viable solution for seismic retrofitting URM
structures. In studies [17,18], cost-effective materials such as PP bands and steel wire
meshes were used to strengthen masonry wallets. The results clearly showed that both
strengthening methods effectively delayed the collapse of the structure and enhanced a
significant amount of the flexural load-carrying capacity and ductility of the wall.

In the studies mentioned above, there are two ways of strengthening the PP band.
In the first method, the PP band was tightened together by clips using tensioners and
sealers [18]. This method was effective in strengthening small brick masonry patterns.
However, when considering its use on walls, it is difficult to attach the PP band mesh to the
wall. Almost all the walls were restrained at three or four edges. Therefore, the PP band
mesh cannot wrap the wall at the intersection between the wall and column. In the second
method, PP band mesh was created by using a portable ultrasonic welder. Afterwards,
holes were drilled through the mortar layers in the wall and small straws/pipes were left
embedded at the joints. PP band mesh can be applied to both faces of the wall with the
help of connectors, which can be steel wires and PP bands [16]. When using steel wires to
fasten the PP band mesh on the wall, as shown in Figure 2a, the hardness at the connection
position was low. Additionally, when observed from the form of destruction in Figure 1,
it was found that the surface between the mortar bricks or in the mortar layer was often
where the cracks first appeared and continued to expand until failure. This raises the
problem of damage to the connection position. It effectively reduces the tension ability
of the PP band mesh, owing to the simultaneous displacement of both the fixed position
and mesh. Therefore, to clarify this issue, we have developed a suitable PP band fixation
method to enhance the hardness at the connection position, shown in Figure 2b.
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Figure 2. Methods of PP band strengthening. (a) Sathiparan et al., 2015 [16]. (b) Recent studies.

2. Target Fracture Pattens of Unreinforced Brick Masonry Wall

It is well known that earthquakes are one of the leading causes of the collapse of
masonry structures, and the two major seismic-induced damage and collapse models of
masonry walls are the in-plane and out-of-plane collapse mechanisms. The URM structures
are much weaker in the out-of-plane direction than in the in-plane direction [19]. Out-of-
plane loading (perpendicular to the loading direction) is created by wind gusts in typhoons,
leading to the collapse of houses. It is more dominant than the in-plane failure of URM
walls [20]. However, most masonry walls involved in real semi-permanent houses are
supported on three or four sides. These boundary conditions lead to the assumption
that the walls are subjected to bi-axial flexion when subjected to out-of-plane loads. The
failure models of two-way spanning walls depend on the panel dimensions and support
conditions. Consequently, the wall undergoes a combination of horizontal, vertical, and
diagonal flexions, which must be investigated (Figure 3).
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Figure 3. Two-way bending failure modes on the three-edge-supported wall.

Under horizontal bending, vertical cracks can form by two distinct modes and illustrate
stepped failure, wherein the crack follows a toothed pattern along the brick–mortar bond
of the bed and head joints. The two aspects involved when stepped failure occurs along
a stepped crack line are the bending tensile strength of the head joint and the torsional
and frictional capacities of the bed joints. Furthermore, in line failure, where the crack
cuts across the brick units and head joints in a straight line, the corresponding resistance
mechanisms are the bending tensile strength of the head joint and the lateral rupture
strength of the brick units. The trend for either mode to be favored depends on the relative
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material strengths of the brick units and masonry bond. In addition, the failure mode is
associated with diagonal bending, which is characterized by the appearance and spread
of a diagonal crack in the wall, following the head and bed joints. The strength aspects
included in developing a diagonal crack line are the bending tensile strength of the bed
joints, torsional and frictional capacities of the bed joints, bending tensile strength of the
head joints, and torsional and frictional capacities of the head joints. Regarding vertical
bending, a horizontal crack develops along the bed joint, and the strength aspect involved
in the appearance of this type is the bending tensile strength or shear strength of the bed
joint based on the properties of the brick and masonry bond [21,22]. The mechanisms are
quite complex under the bending condition and the distribution of bending moment across
the wall, which makes it difficult to assess failure mechanics completely along both the bed
joint and head joint. In future, it may be solved by multiscale (e.g., macroscale, microscale,
and nanoscale) research, as conducted in Ref [16], but now it is still a problem. Therefore,
this study only focused on the failure behaviors of bed joints to investigate the effective
strengthening of the PP band on bending, shear, and torsional behaviors using the method
developed by the authors. The obtained results will be the necessary parameters to use for
numerical modelling of actual walls in subsequent studies.

3. Materials and Methods for Fixing PP Band to Brick
3.1. Materials
3.1.1. Brick and Mortar

Burnt bricks with dimensions of 210 mm × 100 mm × 60 mm (length × width ×
thickness) were used to construct the specimens according to JIS R1250 [23]. The mechanical
properties of the bricks were determined by performing center-point bending, compression,
and water absorption tests. The bricks were tested under uniaxial compressive loading
(0.0075 mm/s) along the horizontal direction. In further accordance with Vasconcelos and
Lourenco [24], Young’s modulus of brick (Eb) was also calculated by considering values
between 30% and 60% of the compressive strength. Three-point bending tests were also
carried out on the brick units at a rate of 0.0075 mm/s in accordance with JIS R2213 [25].
The test results are summarized in Table 1.

Table 1. Mechanical properties of materials.

Type of Material Properties Values (COVs)

Brick

Dimension 210 mm × 100 mm × 60 mm
Density 1.98 g/cm3

Water absorption 9% (4.3%)
Flexural strength 5.2 N/mm2 (9.8%)
Compressive strength 36 N/mm2 (10.3%)
Young’s modulus 15,700 N/mm2

Ordinary Portland
Cement

Density 3.15 g/cm3

Specific surface area 3490 cm2/g

Pit Sand Density 2.61 g/cm3

Mortar
Flexural strength
Compressive strength
Young’s modulus

28 days
3.6 N/mm2 (10.4%)

17.4 N/mm2 (11.5%)
2400 N/mm2

Experiment day 4.7 N/mm2 (11.7%)
23 N/mm2 (12.6%)-

Cement mortar was selected with mixed proportions of water/cement (C/S) and
cement/sand (C/S) equal to 0.7 and 4.17, respectively. Tap water was used for mixing,
and the water temperature was in the range of 25 ± 5 ◦C. Cement, sand, and water were
measured by weight in accordance with their respective proportions. Saturated surface dry
sand with a grain size of less than 0.6 mm was used in each mix. The mechanical properties



Buildings 2023, 13, 2863 5 of 17

of mortar were evaluated by testing mortar prisms of 40 mm × 40 mm × 160 mm at the age
of 28 days and the experiment day. Molding was performed under laboratory conditions.
The samples were kept in the steel mold for 24 h after casting, and the samples were
removed from the molds after they were kept in the curing water until the date of testing.
The flexural strength was measured by means of three-point bending tests according to
JIS R5021 [26], whereas the compressive strength was determined on the halves of the
specimens after the bending tests. The mechanical properties of the mortar are listed in
Table 1 together with the coefficients of variation (COVs) in the parentheses.

3.1.2. Strengthening Material

The specimens were strengthened using a PP band (popularly used as a carton pack-
aging material). We evaluated the tensile properties of PP bands with dimensions 15.5
mm × 0.5 mm × 500 mm (width × thickness × length) according to JIS Z1527:2002 [27].
Figure 4 exhibits the setup used for the tensile test. The properties of the PP bands used in
this investigation are listed in Table 2.
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Table 2. Parameter for PP bands.

Type of Material Properties Values

PP band

Width 15.5 mm
Thickness 0.5 mm
Density 0.9 g/cm3

Tensile strength 194.6 N/mm2

Cut-off strain 13.0%
Modulus of elasticity 1500 N/mm2

3.2. PP Band Fixing Method to Brick Tests

The installation process is straightforward and does not require skilled labor. The
preliminary assessment of the proposed method in the direct tension tests was performed
on three cases: (1) using only steel screws (5 mm dia. × 25 mm) (Figure 5a), (2) using
steel washers and PP bands placed between the steel washers and bricks joined using steel
screws (Figure 5b), (3) using two steel washers with the PP bands placed between them and
joined by steel screws (Figure 5c). Each case consists of three specimens with dimensions
as shown in Figure 5d. The lengths of the PP bands and loading method were selected in
accordance with JIS Z1527:2002 [27]. First, we drilled 6 mm holes in the bricks using an
electric drill. The diameters of the holes were sized to ensure a tight fit with the star plugs
(6 mm dia. × 25 mm). The tightening force applied to each steel screw was adequate to
hold the PP bands firmly in the plane. Figure 5e presents the specimen layouts.

The tensile stress–strain curves for the different investigated cases are presented in
Figure 6a–c. It is observed that in Case (1), the average tensile strength and strain were the
lowest at 36.5 N/mm2 and 0.013, respectively (Table 3 and Figure 6a). The PP bands were
damaged and separated from the steel screws. Case (2) showed the good bonding ability
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of the PP bands and rough brick surfaces under the effect of the initial twisting force. The
slide in strength of the PP band on the steel washer is also observed in Figure 6b, at a strain
range of 0.024 to 0.036. However, in terms of the tensile strength and strain, they were still
lower than those in Case (3). In Case (3), the average tensile strength and strain were the
highest at 81 N/mm2 and 0.046 (Table 3 and Figure 6c). It was observed that the connection
in Case (3) was the best compared to the other cases. The deformation at the linking part
between the steel washers and PP bands does not occur suddenly but is sustained awhile
at the edge of the undamaged hole. Therefore, it is advisable to use two steel washers to
strengthen the specimens.
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Table 3. Tensile test results in the investigated cases.

Case Sample Load, N Tensile Strength, N/mm2 Strain Average of Tensile
Strength, N/mm2 Average of Strain

1
OW-1
OW-2
OW-3

262
272
317

33.7
35.1
40.7

0.011
0.012
0.016

36.5 0.013
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Table 3. Cont.

Case Sample Load, N Tensile Strength, N/mm2 Strain Average of Tensile
Strength, N/mm2 Average of Strain

2
OWPP-1
OWPP-2
OWPP-3

442
452
538

57.0
58.3
69.4

0.025
0.027
0.031

61.6 0.028

3
TWPP-1
TWPP-2
TWPP-3

628
607
649

81.0
78.3
83.7

0.055
0.038
0.045

81.0 0.046

4. Experimental Tests

In this study, we conducted flexural, shear, and torsion tests. The details of the tests
are explained below.

4.1. Flexural Tests

Nine prism specimens were subjected to flexural failure tests with seven bricklayers
and six layers of mortar joints, with dimensions of 480 mm × 210 mm × 100 mm (Figure 7).
Four of the nine (FN-1 to FN-4) were not strengthened by the PP bands to determine the
flexural tensile strength of the joint and the others (FP-1 to FP-5) were strengthened by the
PP bands. Table 4 lists the dimensions of the prism specimens and the distance between
supports. The distance between the two fixed PP band positions was approximately
equal to the distance between the two PP bands. The tensile force of the PP band when
strengthening was created by a hanging scale with a value of 80 N for all specimens.
A four-point bending test was performed according to the recommendation of ASTM
E518:2010 [28]. The prism specimens were placed horizontally on the support, the distance
between supports was maintained at 430 mm (L), and the two-line load was applied by
two steel rods with dimensions of 120 mm × 22 mm (length × diameter), with a space of
142 mm, as illustrated in Figure 8. The flexural strength is calculated using Equation (1), as

Rum =
(P + 0.75Ps)× L

b × d2 (1)

where Rum is the ultimate flexural strength, Ps is the self-weight of the prism (N), L is the
effective span (mm), b is the average width of the prism (mm), and d is the average depth
of the prism (mm).
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Table 4. Dimensions of the prism specimens and the distances between supports.

Numbers Weight W, N Span L, mm Wide b, mm Depth d, mm

FN-1
FN-2
FN-3
FN-4

Non PP band

200.3
199.8
198.3
198.1

426
427
427
427

210.0
209.5
210.3
209.7

100.0
100.5
100.0
99.80

FP-1
FP-2
FP-3
FP-4
FP-5

PP band

203.4
200.4
198.1
201.6
205.1

432
427
428
430
432

209.8
211.5
210.0
210.5
210.0

100.0
101.2
101.6
100.0
100.0
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In addition, the mechanical properties, such as stiffness and ductility, were considered
because they are critical parameters for determining the efficacy of any strengthening
technique in flexural behaviors. The initial stiffness is given by the ratio of the flexural
strength to the deflection at the first crack, whereas the secant stiffness is obtained from the
ratio of the ultimate flexural strength to the corresponding deflection. Ductility, which is
the deformation capacity of a structure before collapse, is evaluated using Equation (2).

µ∆ =
∆u

∆y
(2)

where ∆u and ∆y are the deflections at ultimate load Pu and cracking load Py, respectively.
Fourteen linear variable displacement transducers (LVDTs) (U1 to U12; INS1 and INS2)

were installed along the horizontal central line of the specimen at two sides to measure
the prism displacements during the test, as shown in Figure 8. Two LVDTs (INS1 and
INS2) at the specimen center position and load cell were connected to the data acquisition
system of the universal testing machine (INSTRON). Due to limitations in the output of the
system in Instron, only two LVDTs were used. The others were connected to a fast data
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logger (U-CAM). The load rate for all prism specimens was kept at 0.005 mm/s. Timing
synchronization between the U-CAM and Instron data was performed.

4.2. Shear Tests

Thirty triplet masonry specimens were used in the shear behavior tests. Each triplet
specimen was created from three layers of brick and two layers of mortar with the dimen-
sions of 210 mm × 204 mm × 100 mm, as shown in Figure 9. Eighteen out of thirty prisms
without PP bands were used to determine the friction angle and cohesion of the mortar joint.
Four different levels of pre-compression were used (0 N/mm2, 0.2 N/mm2, 0.4 N/mm2,
and 0.6 N/mm2) in accordance with RILEM TC 127-MS:1996 [29]. The remaining triplet
specimens were used to estimate the effects of strengthening with the PP bands in the
shear behavior tests. Furthermore, the stiffness of each specimen was ascertained from the
stress–slip relationship curve. The strengthening steps for the specimens with PP bands
were carried out similarly to those in the flexural test.
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Figure 9. Non-PP band triplet specimen and PP band triplet specimen.

At first, the compressive stress was applied onto the specimen via threaded bars before
the shear load was applied. To obtain the pre-compression stress, direct tensile tests of the
two threaded bars were initially performed in the elastic region using four strain gauges.
The primary purpose was to determine the force–strain relationship in each threaded bar
(Figure 10). Prior to conducting the shear behavior test, four strain gauges were connected
to the fast data logger (U-CAM) to measure the strains created by the wrench tightening
force exerted by the handle (Figure 11a), up to the desired level of axial pre-compression.
Two nuts fixed to the bottom steel plate and two threaded bars, and a wooden board and a
layer of paperboard were placed at the center of the steel plate. The specimen was placed on
a wooden board and compressed by a wrench tightening force using the other two nuts to
influence the second steel plate. This ensured diffusion of the compressive load on the entire
surface of the specimen. After the pre-compression value was obtained, the specimens
were tested in a 500 kN universal testing machine-operated (INSTRON) in displacement
control at a rate of 0.0075 mm/s (Figure 11b). The shear load was applied along the vertical
direction to the intermediate brick on an area of steel plate of 120 mm × 54 mm. The
displacement of each brick was measured using ten LVDTs (U1 to U8; INS1 and INS2)
positioned on four sides of the specimens, as shown in Figure 11b.

Triplet specimens were placed such that the applied load acted parallel to the mortar
joints. A load was applied as close as possible to the joints. Supports were provided
below the triplet specimens at both end units. The shear strength was calculated using
Equation (3), as

τ =
P

A1 + A2
(3)

where A1 and A2 are the areas of the upper and lower mortar joints on the brick surface
(mm2), respectively, and P is the ultimate load.
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The interface is governed by cohesive frictional behavior, which was modeled using
the Mohr–Coulomb failure criterion, illustrated in Equation (4) as

τ = c + σtanϕ (4)

where c is the cohesion coefficient in N/mm2, σ is the pre-compression in N/mm2, and ϕ
is the friction angle in degrees.

4.3. Torsion Tests

Ten specimens were used for the torsional behavior tests. Two layers of brick in each
specimen were staggered (half and half) and there was one layer of mortar, as listed in
Table 5. The PP bands were used to strengthen five specimens, and the other five were not
strengthened (Figure 12). Strengthening for the specimen with PP bands was performed
similarly to that in the flexural test. The ultimate torsional strength was calculated using
Equation (5) [30,31], as

τ =
P × L

b2 ×
(

a − b
3

) (5)

where τ is the ultimate torsional strength (N/mm2), P is the ultimate load (N), a is the
length of the mortar joint (mm), and b is the width of the brick (mm).

To measure the displacement of the specimen, two LVDTs (INS1 and INS2) were
placed at the mid-span of the specimen at two lateral faces, as shown in Figure 13. They
were connected to the INSTRON machine. The load rate was kept at 0.005 mm/s.
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Table 5. Specimen dimensions in the torsion tests.

Numbers Span L, mm Length a, mm Width b, mm

TN-1
TN-2
TN-3
TN-4
TN-5

Non PP band

262
263
260
262
266

105.0
106.4
105.3
105.5
105.2

100.0
100.5
100.0
99.80
100.0

TP-1
TP-2
TP-3
TP-4
TP-5

PP band

264
263
265
266
267

104.8
105.0
106.5
106.0
104.5

100.0
101.2
101.6
100.0
100.0
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5. Results and Discussion
5.1. Flexural Tests

Load–deflection relationships of unreinforced specimens at the center are displayed in
Figure 14a. The failures of the unreinforced prism specimens were sudden and brittle. Most
prism specimens were split into two pieces (Figure 15a). The failure of the specimen was
caused by a crack that appeared near either side of the loading steel rod. The average peak
flexural strength, average deflection, and average load-carrying capacity of the specimens
at the center were 0.343 N/mm2, 0.026 mm, and 0.163 kNm, respectively (Table 6).

The experiment on the PP band-strengthened specimens showed that the PP bands
effectively increased the collapse time of the specimens after the initial drop (Figure 14b).
Residual loading was observed in all specimens and improvements in the load-carrying
capacity and deflection ability were observed for the reinforced specimens. The average
load-carrying capacity at ultimate failure and deflection at first crack of the PP band
specimens were 1.70 times and 1.62 times (Table 6) higher than those of non-PP band
specimens. Similarly, the deflection ductility clearly increased when compared to the non-
PP band specimens, as listed in Table 6. The initial stiffnesses of the strengthened specimens
were similar to those of unreinforced specimens. The secant stiffnesses showed marked
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decreases. The first cracks of the FP-1, FP-3, and FP-4 specimens were initiated between the
steel rod loading lines, while those of the FP-2 and FP-5 specimens were outside of the steel
rod loading lines (Figure 15c). The PP bands took the resistance due to a further increase in
load only. The test was terminated when the link between the PP band and the washer was
completely ruptured (Figure 15b). It was concluded that the proposed method produced
the greatest improvements in the load-carrying capacity and deflection. This proves the
effectiveness of the proposed method, although Ref [16] stated that the strength of the wall
did not increase with the strengthening PP band.
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Table 6. Mechanical properties of the unreinforced and strengthened specimens in flexural tests.

Specimens

First Crack Ultimate Failure First
Crack

Ultimate
Failure

First
Crack

Ultimate
Failure

Deflection
Ductility,

Times

Average of
Improvement, Times

Load,
kN

Deflection,
mm

Load,
kN

Deflection,
mm

Flexural Strength,
N/mm2

Flexural Moment,
kNm

Deflection
(First

Crack)

Moment
(First

Crack and
Ultimate
Failure)

FN-1
FN-2
FN-3
FN-4
Ave.

1.53
1.63
1.46
1.50
1.53

0.041
0.016
0.025
0.020
0.026

-
-
-
-
-

-
-
-
-
-

0.34
0.36
0.33
0.34
0.343

-
-
-
-
-

0.163
0.173
0.155
0.159
0.163

-
-
-
-
-

1.0
1.0
1.0
1.0

- -

FP-1
FP-2
FP-3
FP-4
FP-5
Ave.

1.99
1.85
2.23
1.82
1.77
1.93

0.042
0.040
0.035
0.039
0.054
0.042

2.58
2.61
2.49
2.83
2.32
2.57

16.38
9.53

14.65
22.09
6.55

0.44
0.39
0.46
0.40
0.40
0.418

0.57
0.55
0.51
0.61
0.52
0.552

0.216
0.198
0.234
0.196
0.194
0.208

0.280
0.279
0.262
0.304
0.254
0.276

390
238
419
566
121

1.62 1.28 and
1.70
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5.2. Shear Tests

Figure 16a illustrates the shear strength–slip curves for various values of pre-compress-
ion (σ) for the unreinforced specimens. As observed, the shapes of the curves depend
on the level of pre-compression σ, with the shear strength τ increasing proportionally
with σ. With each value of pre-compression (0, 0.2, 0.4, and 0.6 N/mm2), the average
ultimate shear strengths were obtained as 0.39 N/mm2, 0.51 N/mm2, 0.83 N/mm2, and
1.22 N/mm2, respectively, as shown in Table 7. Tests on the strengthened specimens
(Figure 16b) showed increases in the shear strength for all pre-compression ranges of
0.2–0.6 N/mm2, by 0.57 N/mm2, 0.85 N/mm2, and 1.29 N/mm2, respectively (Table 8).
However, they were not significant. The initial stiffnesses were not significantly affected by
the pre-compression level in both the reinforced and unreinforced case.
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Table 7. Mechanical properties of the unreinforced specimens in shear tests.

Specimens Load, kN Slip, mm Pre-Compression
σ, N/mm2 or N

Shear Stress τ,
N/mm2

Stiffness,
N/mm3

Average of Shear
Stress τ, N/mm2

Average of
Slip, mm

SN0-1
SN0-2
SN0-3

17.87
14.78
16.33

0.084
0.072
0.077

0
0.43
0.35
0.39

5.12
4.86
5.06

0.39 0.078

SN02-1
SN02-2
SN02-3
SN02-4
SN02-5

19.98
24.47
19.38
22.01
21.78

0.094
0.101
0.102
0.116
0.095

0.2
(4200 N)

0.48
0.58
0.46
0.52
0.52

5.11
5.74
4.51
4.48
5.47

0.51 0.102

SN04-1
SN04-2
SN04-3
SN04-4
SN04-5

34.29
32.17
38.00
36.72
33.49

0.128
0.121
0.129
0.132
0.130

0.4
(8400 N)

0.82
0.77
0.90
0.87
0.80

6.38
6.33
7.01
6.62
6.13

0.83 0.128

SN06-1
SN06-2
SN06-3
SN06-4
SN06-5

49.65
52.60
54.47
54.07
50.43

0.185
0.235
0.208
0.194
0.211

0.6
(12,600 N)

1.18
1.25
1.29
1.19
1.20

6.38
5.32
6.20
6.13
5.69

1.22 0.207

The failures of the unreinforced and reinforced specimens were shown in two stages.
In the first stage, it was damaged at one of the four interfaces between the brick and
mortar layer, where the bond between them was weaker. Afterwards, the load continued
to increase until the second interface between the brick and mortar was destroyed. The
increase was due to the pressure from the two sides maintained during the experiment. In
reinforced specimens, the two lateral bricks tended to move inward, which meant that the
two PP band-fixed points also moved, making the PP band slack. Consequently, we did
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not observe an increase in load and the load suddenly decreased. Hence, the role of the PP
band in enhancing shear ability was not evident.

Table 8. Mechanical properties of the reinforced specimens in shear tests.

Specimens Load, kN Slip, mm Pre-Compression
σ, N/mm2

Shear Stress τ,
N/mm2

Stiffness,
N/mm3

Average of Shear
Stress τ, N/mm2

Average of
Slip, mm

SP02-1
SP02-2
SP02-3
SP02-4

26.94
20.43
24.57
23.61

0.126
0.100
0.108
0.116

0.2
(4200 N)

0.64
0.49
0.59
0.56

5.08
4.90
5.46
4.82

0.57 0.113

SP04-1
SP04-2
SP04-3
SP04-4

37.24
33.72
36.54
34.66

0.133
0.121
0.128
0.115

0.4
(8400 N)

0.89
0.80
0.87
0.83

6.69
6.60
6.80
7.22

0.85 0.124

SP06-1
SP06-2
SP06-3
SP06-4

55.62
51.54
57.21
53.34

0.223
0.203
0.318
0.196

0.6
(12,600 N)

1.32
1.23
1.36
1.27

5.92
6.06
4.27
6.48

1.29 0.235

Moreover, failure patterns of the unreinforced specimens are displayed in Figure 17a–d.
In cases of pre-compression (0, 0.2, 0.4 N/mm2), cracks appeared at the mortar–brick
interface, while with 0.6 N/mm2, the observed failure mode was a combination of sliding
along the mortar–brick interfaces and diagonal cracks appeared near the interface through
the mortar layer. A minor crack was also observed propagating into the central brick
at the peak load. The failure patterns of the reinforced specimens are also presented in
Figure 17e–g. It was observed that the reinforced specimens with PP bands did not sustain
failure mode changes, and cracks appeared at the mortar–brick interface in all cases of
pre-compression. At 0.6 N/mm2, cracks were also observed in the central brick.
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The results in terms of pre-compression and shear strength at failure, together with
parameters such as the friction angle and cohesion of the mortar joint, were obtained from
the linear interpolation in Figure 16c. The cohesion value (c) was equal to 0.288 and the
slope of the linear interpolation (tan ϕ) indicated a friction coefficient of 1.469.
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5.3. Torsion Tests

The load and deformation relationships of the unreinforced and reinforced specimens
are presented in Figure 18, and the results are summarized in Table 9. The failures of
the unreinforced specimens were sudden and brittle. The improvements in the average
load-carrying capacity and deformation ability at first crack were 1.21 times and 1.47 times,
respectively. The load suddenly dropped and no longer increased. The ductility evidently
increased. Cracks occurred at the mortar–brick interface (Figure 19a,b). In the reinforced
specimens, after failure, slight increases in load were observed in the TP-2, TP-3, and TP-5
specimens until the PP band’s fixed positions were ruptured (Figure 19d). However, it did
not exceed the peak load. This circumstance was not the same as that in the flexural test.
However, the PP band effectively increased the collapse time of specimens. Unlike the
cracks that appeared in the TP-2, TP-3, and TP-5 specimens, cracks in the TP-1 and TP-4
specimens appeared in both the brick and mortar layer and bricks (Figure 19c). This was
because the strengthening method creating a pre-tensioning force appears in the PP band,
helping to increase the load-carrying capacity of the reinforced specimen.
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Table 9. Mechanical properties of the unreinforced and reinforced specimens in torsion tests.

Specimens

First Crack Ultimate Failure First
Crack

Ultimate
Failure Deflection

Ductility,
Times

First
Crack

Ultimate
Failure

Average of Improvement,
Times

(First Crack)

Load,
kN

Deformation,
mm

Load,
kN

Deformation,
mm

Torsional Strength,
N/mm2

Torsional Moment,
kNm Deformation Moment

TN-1
TN-2
TN-3
TN-4
TN-5
Ave.

7.37
8.24
8.13
7.14
7.89

-

0.225
0.200
0.267
0.214
0.207
0.223

-
-
-
-
-
-

-
-
-
-
-
-

1.17
1.31
1.29
1.14
1.25
1.23

-
-
-
-
-
-

1.0
1.0
1.0
1.0
1.0
-

0.98
1.09
1.08
0.95
1.05
1.03

-
-
-
-
-
-

- -

TP-1
TP-2
TP-3
TP-4
TP-5
Ave.

9.98
9.18
8.07

11.06
8.49

-

0.393
0.346
0.319
0.297
0.282
0.327

-
5.89
4.82

-
5.71

-

-
19.09
21.09

-
20.38

-

1.59
1.46
1.28
1.76
1.35
1.49

-
0.94
0.77

-
0.91
0.87

-
55
66
-

72
-

1.32
1.22
1.07
1.46
1.11
1.24

-
0.78
0.75

-
0.75
0.76

1.47 1.21
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6. Conclusions

A total of 49 specimens were tested to investigate the effectiveness of the PP band-
fixing method on the flexural, shear, and torsion behaviors. Based on the observations of
the experimental investigations, the following conclusions were drawn.

1. Strengthening the prism specimens with PP bands in the flexural tests significantly
improved their performances in terms of load-carrying capacities and deflections
at the first crack and ultimate failure that were the findings in this study. The PP
band specimens showed 1.70 times and 1.62 times higher capacities than those of the
non-PP band specimens. Improvements in the load-carrying capacity and deflection
capacity were observed.

2. In the shear tests, the strengthened specimens represented negligible increases in the
shear strength at the peak load for all pre-compression ranges of 0–0.6 N/mm2. After
the specimens were damaged, the load did not increase and gradually decreased.
Therefore, the use of the PP band is not yet effective for strengthening triplet specimens
under pre-compression.

3. In the torsion tests, improvements of 1.21 times and 1.47 times in the load-carrying
capacity and deformation capacity at the first crack were observed, respectively.
Nevertheless, at ultimate failure, the load-carrying capacity was lower than that at the
first crack, even though PP bands were also effective in increasing the load. Thanks to
PP band strengthening, the collapse times of the specimens were extended.

4. The proposed fixing method was effective in improving performances, restricting
separation at the brick–mortar interface, and maintaining the specimens’ integrity,
particularly in the flexural tests.
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