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Abstract: Macro diagonal cracks can significantly reduce the stiffness of slender reinforced concrete
(RC) beams, which results in excessive deflection compared with limitations from design specifi-
cations. To evaluate the post-cracking stiffness of slender RC beams with diagonal cracks, a shear
degradation model that considers shear deformation is proposed. Based on the variable angle truss
model, this study deduced the strut angle formula based on the minimum energy principle. Then,
the relationship between the stirrup yielding shear stiffness and elastic shear stiffness was modeled.
Finally, the calculation procedure was developed by quantifying the stiffness degradation tendency.
The comparison between the experimental results of deflection and the proposed analytical method
showed good agreement. Additionally, the proposed method can capture the full-range features of
shear strain curves.

Keywords: reinforced concrete beam; shear crack; stiffness model; shear deformation; strut angle;
variable angle truss model

1. Introduction

Diagonal cracks are commonly seen in cast-in-place and precast reinforced concrete
(RC) box girder bridges, which results in additional shear deformation besides flexural
deflection. Therefore, accurately computing the total deformation is a perquisite for the
design of RC box girder bridges. Typically, the total deformation can be computed by
adding the deformations caused by shear and flexural deformations. In order to decouple
the contribution of diagonal cracking to deflection from other time-varying factors (such
as concrete shrinkage and creep), it is necessary to evaluate the shear stiffness of diagonal
cracked bridges. However, due to the complex influencing mechanism of shear cracks on
shear stiffness degradation, quantitative and practical evaluation methods that are suitable
for engineering applications are particularly needed.

From a practical perspective, current deflection models for RC beams, whether cast in
situ or prefabricated, typically ignore the contribution of shear deformations [1,2]. However,
some prior shear tests on slender beams revealed that the measured deflections are generally
much larger than the prediction-by-code method [3–5]. One possible reason for these
underestimations may be from the neglect of the contribution of shear deformations,
especially the contribution of shear deformation after shear cracking [6–11].

In the face of frequently occurring excessive deflections and shear failure in large-span
concrete and precast concrete bridges and buildings, it is crucial to build rational shear
models. The shear stiffness of a diagonally cracked RC beam is approximately 10% to
30% of the shear stiffness of the uncracked one, depending on the web reinforcement
provided [12]. This means that diagonal cracking has a much larger effect on shear stiffness
than flexural cracking on bending stiffness. However, unlike the calculation of bending
stiffness, which is based on the Branson’s effective moment of inertia model and is accurate
enough for design application [13], there is still no widely accepted shear stiffness model
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for cracked RC beams. Therefore, a simple, rational, and practical shear stiffness model for
RC beams with shear cracks is needed.

Since the development of the truss analogy concept by Ritter and Mörsh, researchers
have paid great attention to the shear deformation/stiffness of cracked beams [14]. Leon-
hardt and Walther (1961) [15], Kupfer (1964) [16], and Park and Paulay (1974) [12] inves-
tigated the shear stiffness of diagonally cracked beam based on the parallel-chord truss
model. They also suggested different values or solving methods for the strut angle of
the web strut. Vecchio and Collins (1986) [17], Bentz (2000) [18], Debernardi and Taliano
(2006) [5], and Desalegne and Lubell (2012) [19] proposed or modified the MCFT (modified
compression field theory) to predict the shear load-deformation response of RC beams.
Pang and Hsu (1996) [20] and Zhu et al. (2001) [21] presented the shear modulus for the
FA-STM (fixed-angle softened truss model) based on the smeared-crack concept. How-
ever, the iteration procedure of MCFT and FA-STM are somewhat complicated. Barzegar
(1989) [22], Hansapinyo et al. (2003) [4], and Rahal (2010) [23] attempted to establish an
empirical equation for the shear stiffness of beams after cracking. Their fitting parameters
include concrete strain, stirrup ratio, and longitudinal reinforcement ratio.

Recently, the lower-bound theory of plasticity [9] and minimum strain energy princi-
ple [7] have been used for calculating the strut angle. Based on the minimum strain energy
principle, truss models with variable strut angles were used to investigate the effective
shear stiffness of RC beams with diagonal cracking [8,24,25].

For the shear stiffness degradation criteria, scholars have proposed various rules, such
as linear tangent degradation [7], linear secant stiffness degradation [26], hybrid stiffness
degradation [9], exponential degradation [8], adopted Branson’s degradation [3], etc. How-
ever, due to the complex influencing mechanism of shear cracks on shear behavior [27–30],
there is a need for shear stiffness theories that can properly reflect the gradual degradation
of shear stiffness with the development of shear cracks.

This paper aims to propose an energy-based strut angle calculation method and a
practical degradation rule of the effective shear stiffness of diagonally cracked RC beams.
With the adoption of the minimum strain energy principle and the additional consideration
of the contribution of moment, an implicit analytical calculation formula for strut angle
is established. Furthermore, through a parameter analysis and comparative study with
implicit expressions, a simplified practical strut angle calculation formula is obtained.
Experimental validation shows that the proposed method yields good and consistent
predictions of post-cracking shear stiffness and shear deformation.

2. Post-Cracking Shear Stiffness Model of Reinforced Concrete Beams
2.1. Intial Elastic Shear Stiffness Ke

Beam shear can be divided into two stages: pre-cracking stage and post-cracking stage.
At the first stage, the elastic shear stiffness Ke can be calculated using elasticity theory [12],
as shown in Equation (1).

Ke = Gc Av =
1

2(1 + µ)
Ec Av (1)

where Ke is the elastic shear stiffness before cracking, Gc is the shear modulus of concrete,
Ec is the modulus of elasticity of concrete, µ is the Poisson’s ratio of concrete, Av is the
effective shear area (Av = bwdv), bw is the web width of the beam, and dv is the effective
shear depth.

In the post-cracking stage, as diagonal cracking violates the continuity of concrete, an
alternative approach must be adopted for the post-cracking shear stiffness calculation.

2.2. Stirrup Yielding Shear Stiffness Ky Based on Truss Model

A truss model gives good depiction of slender beams in shear, which provides a
possibility that the post-cracking shear stiffness can be depicted by the truss model. For
slender beams, when the stirrups are yielded and the diagonally shear cracks are well
developed, the truss model shown in Figure 1 can be used for analyses. As the observed
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shear cracks are generally parallel to each other in principle, the inclination of the strut
angle θy can be assumed to be the same. The shear deformation of the truss is mainly
induced by the deformation of web members δweb, including the elongation of stirrups
δs and the vertical deformation δc caused by the shortening of the inclined strut. The
deformation of stirrups and inclined concrete struts are listed in Table 1, in which As, Ag,
and Acm are the areas of the longitudinal reinforcement, cross-section, and compression
zone, respectively.
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Table 1. Member deformation of the variable-angle truss model.

Inducement Member Force Unit Load Length Rigidity Deformation

Shear force
V

Stirrups V 1 dv Esρvbwdv cot θy
V

Esρvbw cot θy

Inclined
Strut

V
sin θy

1
sin θy

dv
sin θy

1
Ecbdv cos θy

V
Ecb sin3 θy cos θy

Upper
chord

V cot θy
2

cot θy
2

dv cot θy Ec Acm Vdv cot3 θ
4Ec Acm

Lower
chord

V cot θy
2

cot θy
2

dv cot θy Es As
Vdv cot3 θy

4Es As

Moment
M

Upper
chord −M

dv

cot θy
2

dv cot θy Ec Acm
−M cot2 θy

2Ec Acm

Lower
chord

M
dv

cot θy
2

dv cot θy Es As
M cot2 θy
2nEc As

Equal to the shear distortion (shear deformation per unit length) induced by a unit
shear force, the shear stiffness of the equivalent truss can be expressed as

Ky =
V
γ0

=
V

δweb/
(
dv cot θy

) =
nρv cot2 θy

1 + nρv csc4 θy
Ec Av (2)

where n is the ratio of the elastic modulus of the reinforcement and the concrete (n = Es/Ec),
and ρv is the stirrup ratio. Equation (2) shows that the shear stiffness is mainly affected by
the material type (n, Es, Ec), geometric properties (Av), stirrup ratio (ρv), and strut angle (θy).

In order to evaluate the degradation of the shear stiffness of the beam after the yielding
of stirrups, it is necessary to establish the relationship between the stirrup yielding shear
stiffness Ky and the initial shear stiffness Ke. Combine Equations (1) and (2), the ratio of Ky
to Ke can be expressed as

ξy =
Ky

Ke
=

2n(1 + µ)ρv cot2 θy

1 + nρv csc4 θy
(3)

where the ratio factor ξy is defined as the degradation coefficient of shear stiffness. Appar-
ently, the parameters that have an effect on the shear stiffness degradation are the stirrup
ratio ρv and the strut angle θy. For a specified specimen, n, µ, and ρv are all known; if
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θy is determined, the degradation coefficient can be easily calculated from Equation (3).
Similarly, the yielding shear stiffness can be obtained from Equation (2).

Considering that the stirrup ratio ρv of practically used RC beams is generally between
1.0% and 2.0%, n = Es/Ec ≈ 6 and the Poisson’s ratio of the concrete µ ≈ 0.2. For θy between
25◦ and 45◦, the shear stiffness degradation coefficient is between 0.12 and 0.29. That is to
say, for concrete beams with severe web shear cracks, the yielding shear stiffness can be
reduced by more than 70% compared with the elastic shear stiffness.

2.3. Shear Stiffness Degradation Rules for Partially Shear-Cracked RC Beams

Because the transition mechanism from an elastic shear stiffness to a stirrup yielding
shear stiffness is affected by many factors, such as reinforcement ratio, section size, concrete
strength, etc., it is unrealistic to give an accurate and quantitative expression to describe
this degradation process.

Scholars have developed some empirical or simplified degradation rules to depict the
degraded shear stiffness of partially shear-cracked RC beams, such as linear secant stiffness
degradation [30], linear tangent stiffness degradation [7], mixed degradation [9], exponen-
tial degradation [8], regression fitting degradation [10], adopted Branson’s degradation [3],
etc. Below are four representative effective shear stiffness models,

Ke f f ,1 = Ky +
V −Vcr

Vy −Vcr

(
Ke − Ky

)
∈
[
Ky, Ke

]
(4)

Ke f f ,2 =
V

Vcr
Ke

+ V−Vcr
Vy−Vcr

(
Vy
Ky
− Vcr

Ke

) ∈ [Ky, Ke
]

(5)

Ke f f ,3 = Ke f f ,1 + Ke f f ,2 (6)

Ke f f ,4 = Ky +

(
Vy −V

Vy −Vcr

)3(
Ke − Ky

)
∈
[
Ky, Ke

]
(7)

where Keff,1, Keff,2, Keff,3, and Keff,4 are the effective shear stiffness considering linear secant
degradation, linear tangent degradation, mix degradation, and adopted Branson’s degra-
dation, respectively; Vcr and Vy are the diagonal cracking shear force and stirrup yielding
shear force, which can be analytically calculated using Equations (8) and (9).

Vcr = 0.17
√

f ′cbwdv (8)

Vy = Vcr + ρv fyvbwdv cot θy (9)

After determining the key parameters of the yield shear stiffness and the degradation
rule of the shear stiffness, the effective shear stiffness of a partially shear-cracked RC beam
can be calculated according to the following steps:

a. Before shear cracking, the elastic shear stiffness Ke can be calculated using Equation (1)
and used for the calculation of elastic shear deformation;

b. The cracking shear force Vcr and stirrup yielding force Vy of the critical section are
calculated using Equations (8) and (9);

c. After shear cracking, the yielding shear stiffness Ky can be obtained from Formula (2),
and which the shear stiffness degradation coefficient ξy can be calculated using
Equation (3);

d. The shear increment V-Vcr under the shear load V at different loading levels is
calculated and substituted into the selected formula from Equations (4)–(7) to calculate
the effective shear stiffness Keff of the RC beam with shear cracks;

e. The average shear strain or shear deformation of the corresponding beam segment is
calculated according to the effective shear stiffness Keff under a specific shear load.
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3. Determination of Strut Angle, θy

3.1. Strut Angle Based on Minimum Energy Principle

It is believed that the angle θy will occur at an inclination that requires the minimum
potential energy [16]. The strain energy stored in the truss members can be determined
using the virtual work principle. Assume that a unit shear force is applied to the truss,
the internal force and deformation of each member (including web members and chord
members) of the truss can be obtained (See Figure 1 and Table 1). The total vertical
deformation of the truss is the sum of the members’ deformations listed in Table 1, that is:

δ =
V
(
1 + nρv csc4 θy

)
nρvEcb cot θy

+
Vdv cot3 θy

(
1 + n As

Acm

)
4nEc As

+
M cot2 θy

(
1− nAs

Acm

)
2nEc As

(10)

The strain energy stored in the truss is equal to the external shear work (EWD) ap-
plied to the truss, which is the distortion angle of the truss induced by a unit load. The
distortion angle can be obtained by dividing the vertical deformation of the truss by its
horizontal length:

EWD = γ =
δ

dv cot θy
=

V
(
1 + nρv csc4 θy

)
nρvEc Av cot2 θy

+
V cot2 θy

(
1 + n As

Acm

)
4nEc As

+
M cot θy

(
1− nAs

Acm

)
2nEcdv As

(11)

Based on the minimum strain energy principle, the rational strut angle leads to a
minimum energy. By differentiating Equation (11) with respect to θy and equating it to zero:

d(EWD)

dθy
=

dγ

dθy
= 0 (12)

Through simplification, Equation (12) becomes(
4nρv +

ρv

ρs
R1

)
cot4 θy +

(
λMV

ρv

ρs
R2

)
cot3 θy = 4 + 4nρv (13)

where
(

1 + nρs
Ag

Acm

)
Av
Ag

= R1,
(

1− nρs
Ag

Acm

)
Av
Ag

= R2, and M
Vdv

= λMV , in which ρs (=As/Ag)
is the longitudinal reinforcement ratio. The analytical solution of Equation (13) is too
complex for expression. So, a trial-and-error procedure is used for the θy calculation.

The factors R1, R2 in Equation (13) remain constant for a specified section. For the
rectangular section, the effective shear depth dv is the maximum of {0.72h, 0.9d} [14];
therefore, Av/Ag can be assumed to be 0.72 for simplicity; the depth of the compression
zone c can be simply assumed to be 0.35d [31]; therefore, Acm/Ag is equal to 0.35. For the
I-section, Av/Ag is equal to Aweb/Ag, and Acm/Ag is still simply assumed to be 0.35.

The factor λMV in Equation (13), which can be regard as the shear span-to-depth ratio,
has a larger influence on shear deformation than the stirrup ratio ρv during the pre-cracking
stage but less influence during the post-cracking stage [3,6]. This interesting phenomenon
is further discussed in the next subsection and in the experimental validation.

3.2. Simplification Formula for Strut Angle

As is mentioned above, the shear-to-depth ratio λMV has little effect on the post-
cracking shear deformation. To validate this supposition, first assume that the influence
of moment is neglected, that is, λMV = 0. Then, Equation (13) can be rearranged and
worked out:

θy = arctan


1 + R1

4nρs

1 + 1
nρv

0.25
 (14)

The strut angles calculated using Equations (13) and (14) are compared to investigate
the influence of λMV (see Figure 2).
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As is shown in Figure 2, the factor λMV has an effect on the strut angle θy, but slightly so,
especially for a beam with a higher longitudinal reinforcement ratio ρs. For example, when
the longitudinal reinforcement ratio ρs > 2.0%, the calculated strut angle of Equation (13)
(taking into account the influence of λMV) is approximately 1.0 to 1.1 times of the calculated
angle obtained using Equation (14) (assuming λMV = 0). The relative difference is very
small and can be ignored.

Particularly, when we set Av = 0.72 Ag and Acm = 0.35 Ag, the value of R1 is approxi-
mately equal to 1 for cross-sections with ordinary longitudinal reinforcement arrangements.
Therefore, Equation (14) can be simplified to:

θy = arctan

(1 + 1
4nρs

1 + 1
nρv

)0.25 (15)

4. Experimental Validation
4.1. Shear Deformation Test in the Literature

To evaluate the proposed shear stiffness model, three series of shear test data were used
for validation, in which the shear deformation was directly measured, and its corresponding
equivalent shear stiffness was deduced. A total of 23 lattices/zones of 10 beams are used
for comparison. It should be noted that many RC beam test data in which only the total
deformation was measured cannot be used for validation and, therefore, were excluded.

The authors conducted shear deformation tests on six large thin-webbed RC beams.
Self-tailored strain measuring lattices were installed on one side of the beams, and each
measuring lattice was composed of five mechanical dial gauges. The mean shear strain of
each lattice was obtained through a strain analysis. The detailed procedures are illustrated
in reference [6].

Debernardi and Taliano [5] reported an experiment comprising six RC I-section beams
with a thin web. Square lattices made up of transducers were arranged to measure the
mean curvature and the mean shear strain, from which the shear deformations can be
decoupled from flexural deformation. Fifteen lattices in four specimens (TR1, TR2, TR3,
and TR6) with detailed shear strain curves were selected for validation. The specimens
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were simply supported, subjected to two symmetrical loads (TR1 and TR2), a symmetrical
load (TR3), or a non-symmetrical load (TR6).

Hansapinyo et al. [4] tested four RC beams with web reinforcement to investigate
the shear deformation after diagonal cracking. Electronic transducers were also used
to measure the shear strains of each panel based on the rosette concept. All of the four
specimens were selected for validation. The main parameters of all the specimens are listed
in Tables 2 and 3.

Table 2. Details of specimens.

Resources Specimen
ID

f’c
(MPa)

Ec
(GPa)

dv
(mm)

bw
(mm)

fyv
(MPa)

ρv
(%)

ρs
(%)

Vcr
(kN)

Vy
(kN)

Zheng [6] C1 39.0 29.4 684 100 327 0.5 4.8 150 240
C2 36.0 28.2 684 100 327 0.4 4.8 160 240

Debernardi [5]

TR1 22.0 22.0 300 100 570 0.5 0.74 40 160 *
TR2 22.0 22.0 300 100 570 0.5 1.34 50 200
TR3 20.0 21.0 300 100 570 0.5 0.74 40 160 *
TR6 33.5 27.2 300 100 570 0.5 1.34 55 240

Hansapinyo [4]

S1 33.0 27.0 350 150 370 0.47 4.26 73.6 180
S2 33.0 27.0 320 150 370 0.47 4.26 64.1 170
S3 33.0 27.0 320 150 370 0.47 2.13 61.3 160
S4 33.0 27.0 320 150 370 0.31 2.13 61.6 130

“*”—The yielding shear force Vy was calculated using Equation (9), as the specimen failed in flexure before the
stirrups yielding in shear span.

Table 3. Shear-to-span depth ratio of each measuring zone.

Resources Specimen ID Zone a/h or M/(Vh)

Zheng [6] C1, C2
G3 0.5
G4 0

Debernardi [5]

TR1, TR2
A, E 1.67
B, D 2.5

TR3
A, E 2.08
B, D 2.92

TR6
A 2
G 4
F 4.83

Hansapinyo [4] S1, S2, S4 - 2.6
S3 - 3.5

4.2. Comparison of Strut Angle and Degradation Coefficient

The stirrup yielding strut angles θy, θP, θH were calculated using the proposed method,
Pan et al. [7], and He et al. [9], respectively. The stirrup yielding strut angles θy, θP, θH and
corresponding calculated degradation coefficient ξy, ξP, ξH are listed in Table 4. Overall,
the average ratio of the predicted values to the observed degradation coefficient ξexp and
its coefficient of variation (CV) are 0.95 and 0.19, 0.76 and 0.25, and 0.95 and 0.20 for the
proposed method, Pan’s method, and He’s method, respectively.

As is shown in Table 4, Pan’s method obtain a higher prediction of strut angle and
lower prediction of degradation coefficient than the other two methods, and it has the
largest value of CV. The other two methods obtain a relatively good prediction of shear
stiffness degradation. However, He’s prediction method ignores the influence of the
longitudinal reinforcement ratio and may cause larger deviations for specimens with a low
longitudinal reinforcement ratio.
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Table 4. Strut inclination θy and degradation coefficient ξy at stirrup yielding status.

Resource Specimen
ID

θy
(Degree)

θP
(Degree)

θH
(Degree) ξy ξP ξH ξexp ξy/ξexp ξP/ξexp ξH/ξexp

Zheng [6] C1 26.3 31.3 25.1 0.182 0.156 0.186 0.190 0.96 0.69 0.97
C2 25.2 30.0 24.1 0.169 0.145 0.173 0.178 0.95 0.71 0.98

Debernardi [5]

TR1 * 33.9 42.3 35.0 0.164 0.107 0.156 - - - -
TR2 31.1 38.5 35.0 0.183 0.132 0.156 0.225 0.81 0.59 0.69

TR3 * 34.0 42.4 36.1 0.169 0.112 0.154 - - - -
TR6 30.8 38.4 30.8 0.162 0.113 0.162 0.253 0.64 0.45 0.64

Hansapinyo [4]

S1 26.4 31.5 26.8 0.179 0.152 0.178 0.155 1.15 0.98 1.15
S2 26.4 31.5 26.8 0.179 0.152 0.178 0.143 1.25 1.06 1.24
S3 28.5 35.2 26.8 0.170 0.128 0.178 0.178 0.96 0.72 1.00
S4 26.1 32.5 23.8 0.142 0.106 0.152 0.168 0.85 0.63 0.90

Average 0.95 0.76 0.95

CV 0.19 0.25 0.20

“*”—Stirrups did not yield before specimen failure.

4.3. Comparison of Effective Shear Stiffness and Shear Strain

The measured and calculated effective shear stiffness reduction factor ξ and shear
strain of 23 zones of 10 beams are shown in Figures 3–7. All the shear force–shear strain
curves have a distinct turn point, which means the shear stiffness decreases abruptly after
the first diagonal cracking. Behind the turn point, the curve stays nearly linear before the
stirrup yielding. Based on the experimental results, here, the linear tangent degradation
model, which depicts the main features of shear strain curves of slender RC beams, was
adopted to evaluate the post-cracking shear stiffness and was used for comparison.
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Figure 3. Comparison of measured and calculated effective shear stiffness and shear strain of Beams
C1, C2 [6,7,9].
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Figure 4. Comparison of measured and calculated effective shear stiffness and shear strain of Beams
TR1, TR3 [5,7,9].
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Figure 5. Comparison of measured and calculated effective shear stiffness and shear strain of Beams
TR2, TR6 [5,7,9].
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Figure 6. Comparison of measured and calculated effective shear stiffness and shear strain of Beams
S1, S2 [4,7,9].
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Figure 7. Comparison of measured and calculated effective shear stiffness and shear strain of Beams
S3, S4 [4,7,9].
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As is known, the shear span-to-depth ratio λMV has a significant effect on shear strain
before cracking. However, as is observed from the tests, the influence becomes very small
for RC beams at the post-cracking stage (See A to H zones with different λMV values of
specimens TR1 to TR6 in Figures 4 and 5).

Three methods for determining the strut angle are used for comparison: the proposed
method, method by Pan et al. [7], and method by He et al. [9]. As is shown in Figures 3–7,
all of the three methods give a rational evaluation of effective shear stiffness, while Pan’s
method gives a more conservative result than the two other methods. Compared to He’s
method, the proposed method accounts for the influence of ρs and gives a better prediction
for beams with a lower ρs (Specimen TR2 in Figure 5). Based on the assumption that the
longitudinal reinforcement will not yield before stirrup yielding, He’s method tends to give
a similar prediction of effective shear stiffness with the proposed method for RC beams,
with (ρsfys)/(ρvfyv) > 3.

From Figures 3–7, it can be seen that the proposed shear stiffness degradation model
simulates the degradation process of shear stiffness very well and provides better stiffness
prediction results in most cases. Although the stiffness prediction results of specimen S2
are slightly larger (about 20%), the shear stiffness degradation law still conforms well. It
should be noted that for specimen S2, the deviation between the predicted value calculated
using the analytical method in the original literature [4] and the measured shear strain is
also the largest, which may be due to the shear stiffness anomaly caused by the specimen’s
own defects.

For thin-webbed beams, a linear tangent stiffness degradation tends to give safe
predictions. Therefore, the authors suggest that linear tangent degradation criteria are used
for the concrete box girder bridge’s shear stiffness evaluation in engineering practice.

In addition, although there is a significant difference in the shear span-to-depth
ratio between different beam segments of the same specimen in the experiment (such as
TR1~TR6), there is no clear connection between the measured shear stiffness degradation
coefficient and the shear span-to-depth ratio. The stiffness degradation curves of each beam
segment are also relatively close, indicating that the shear span ratio has little effect on the
post-cracking shear stiffness degradation, and its impact on the shear stiffness and strain
after cracking can be ignored.

Finally, the proposed shear stiffness model for RC beams is only validated using 23
beam segments. More shear deformation data are needed for further validation. The digital
image correlation (DIC) technique based on shear deformation measurements may be
widely used in a future study [32–35].

5. Conclusions

To evaluate the effective shear stiffness of RC beams with diagonal cracks, this paper
proposed a post-cracking shear stiffness degradation model. Based on the variable truss
model, and using the minimum strain energy principle, the strut angle was analytically
deduced. Then, the linear tangent stiffness degradation rules were found to be more
suitable for thin-webbed concrete beams. With experimental validation, the following
conclusions can be drawn:

1. Based on the variable-angle truss model, the relationship between the stirrup yielding
shear stiffness and elastic shear stiffness was established. Then, a practical linear
tangent shear stiffness degradation model, which depicts the main features of shear
strain curves of slender RC beams at the post-cracking stage, was adopted to evaluate
the effective shear stiffness.

2. The strut angle θy, which was found as a function of the stirrup ratio, longitudinal
reinforcement ratio, and elasticity modulus ratio, was determined using the minimum
energy principle. Compared with other two methods in the literature, the proposed
angle equation tended to give a moderate prediction of strut angles and degradation
coefficients for varying beam parameters.



Buildings 2023, 13, 2814 12 of 13

3. A turning point occurs in the shear strain curves corresponding to the first diagonal
crack. Behind the turn point, the tangent slope of the curve remains nearly constant
before the stirrup yielding, especially for thin-webbed beams. Additionally, the shear
span-to-depth ratio λMV has little effect on the shear deformation of slender RC beams
at the post-cracking stage.

4. The analytical prediction was compared with the shear strain data of 23 zones. The
results showed that the proposed method gives a good and consistent prediction of
the effective shear stiffness and shear strain. The proposed degradation model can be
used for the post-cracking shear stiffness evaluation of shear-cracked RC beams.

5. In practice, the procedure introduced in Section 2.3 can be used for a quick shear
stiffness evaluation of concrete box girder bridges in service, on which performing
experimental tests may be impractical and costly.
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